1
|
Pant K, Peixoto E, Gradilone SA. Primary Cilia in Hepatic Biliary Hyperplasia: Implications for Liver Diseases. Semin Liver Dis 2025. [PMID: 40118103 DOI: 10.1055/a-2563-9791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Primary cilia, hair-like projections on the surface of various cell types, play crucial roles in sensing and regulating environmental cues within the liver, particularly among cholangiocytes. These structures detect changes in bile composition, flow, and other biochemical signals, integrating this information to modulate cellular processes. Dysfunction in cholangiocyte cilia-whether due to structural abnormalities or genetic mutations-has been linked to an array of cholangiopathies and ciliopathies. These include conditions such as biliary atresia, cholangiocarcinoma, primary sclerosing cholangitis, and polycystic liver diseases, each with distinct clinical phenotypes influenced by impaired ciliary function. Given the complexity of the ciliary proteome and its role in cellular signaling, including the Hedgehog, Wnt, and TGR5 pathways, ciliary dysfunction disrupts essential signaling cascades, thus driving disease progression. While over 40 gene mutations are associated with ciliopathic features, there may be additional contributors within the expansive ciliary proteome. This study synthesizes current knowledge on cholangiocyte cilia, emphasizing their mechanistic role in liver disease, and highlights emerging therapeutic strategies aimed at restoring ciliary function. In conclusion, ciliotherapies are proposed as a promising approach for addressing cholangiopathies, with the potential to shift the current therapeutic landscape.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | | | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota
- Masonic Cancer Centre, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
2
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Wu N, Bayatpour S, Hylemon PB, Aseem SO, Brindley PJ, Zhou H. Gut Microbiome and Bile Acid Interactions: Mechanistic Implications for Cholangiocarcinoma Development, Immune Resistance, and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:397-408. [PMID: 39730075 PMCID: PMC11841492 DOI: 10.1016/j.ajpath.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare but highly malignant carcinoma of bile duct epithelial cells with a poor prognosis. The major risk factors of CCA carcinogenesis and progression are cholestatic liver diseases. The key feature of primary sclerosing cholangitis and primary biliary cholangitis is chronic cholestasis. It indicates a slowdown of hepatocyte secretion of biliary lipids and metabolites into bile as well as a slowdown of enterohepatic circulation (bile acid recirculation) of bile acids with dysbiosis of the gut microbiome. This leads to enterohepatic recirculation and an increase of toxic secondary bile acids. Alterations of serum and liver bile acid compositions via the disturbed enterohepatic circulation of bile acids and the disturbance of the gut microbiome then activate a series of hepatic and cancer cell signaling pathways that promote CCA carcinogenesis and progression. This review focuses on the mechanistic roles of bile acids and the gut microbiome in the pathogenesis and progression of CCA. It also evaluates the therapeutic potential of targeting the gut microbiome and bile acid-mediated signaling pathways for the therapy and prophylaxis of CCA.
Collapse
Affiliation(s)
- Nan Wu
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Sareh Bayatpour
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sayed O Aseem
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
4
|
Li Y, Leung PS, Zhang W, Zhang S, Liu Z, Kurth M, Patterson AD, Gershwin ME, Song J. Immunobiology of bile and cholangiocytes. J Autoimmun 2025; 151:103376. [PMID: 39892203 DOI: 10.1016/j.jaut.2025.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
The biliary tract is now recognized as an immune organ, and within the biliary tract, both bile and cholangiocytes play a key role in maintaining immune defense and homeostasis. First, immunoreactive proteins such as secretory IgA provide local antimicrobial effects. Second, bile acids (BAs) protect the biliary tree from immune-related injury through receptor signaling, mainly via the membrane-bound receptor TGR5 on cholangiocytes. Third, the biliary microbiota, similar to the intestinal microbiota, contributes to sustaining a stable physiobiological microenvironment. Fourth, cholangiocytes actively modulate the expression/release of adhesion molecules and cytokines/chemokines and are involved in antigen presentation; additionally, cholangiocyte senescence and apoptosis also influence immune responses. Conversely, aberrant bile composition, altered BA profiles, imbalances in the biliary microbiota, and cholangiocyte dysfunction are associated with immune-mediated cholangiopathies, including primary biliary cholangitis, primary sclerosing cholangitis, and biliary atresia. While current therapeutic agents that modulate BA homeostasis and receptor signaling have shown promise in preclinical and clinical studies, future research on biliary/intestinal microbiota and cholangiocyte function should focus on developing novel therapeutic strategies for treating cholangiopathies.
Collapse
Affiliation(s)
- Yang Li
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Shucheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Zhenning Liu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China
| | - Mark Kurth
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, 16802, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, PR China.
| |
Collapse
|
5
|
Di Giorgio C, Urbani G, Marchianò S, Biagioli M, Bordoni M, Bellini R, Massa C, Lachi G, Cari L, Morretta E, Spinelli L, Monti MC, Sepe V, Zampella A, Distrutti E, Banales JM, Lapitz A, Milkiewicz P, Milkiewicz M, Fiorucci S. Liver GPBAR1 Associates With Immune Dysfunction in Primary Sclerosing Cholangitis and Its Activation Attenuates Cholestasis in Abcb4-/- Mice. Liver Int 2025; 45:e16235. [PMID: 39804015 PMCID: PMC11727439 DOI: 10.1111/liv.16235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model. METHODS Single-cell analysis of healthy human liver samples and gene expression analysis of PSC liver samples were conducted. In vitro studies on a human cholangiocyte cell line (NHC), U937 and human hepatic stellate cells (hSteCs) were performed. Additionally, Abcb4-/- mice were treated with BAR501 for 12-24 weeks. RESULTS Single-cell analysis demonstrated that GPBAR1 is expressed by macrophages, NK cells, sinusoidal cells and to a lesser extent by cholangiocytes. Total liver expression of GPBAR1 increases in PSC patients compared to that in healthy controls and positively correlates with markers for monocytes and NK cells and cytokeratin 19. In vitro treatment of NHCs with BAR501 reversed the acquisition of a pro-inflammatory phenotype and the downregulation of GPBAR1 expression promoted by LPS in an NF-κB-dependent manner. Treating Abcb4-/- mice reduced bile duct inflammation and liver fibrosis and prevented the downregulation of GPBAR1 expression. Treating mice with BAR501 also modulated the bile acid pool composition and reduced the dysbiosis-associated gut permeability, and intestinal and systemic inflammation. Ex vivo experiments using conditioned media from BAR501-treated cholangiocytes mitigated the activation of macrophages. CONCLUSIONS Our study provides evidence for the therapeutic potential of selective GPBAR1 agonists in intestinal inflammation-associated cholestasis, warranting the evaluation of BAR501 in PSC patients.
Collapse
MESH Headings
- Animals
- Cholangitis, Sclerosing/immunology
- Cholangitis, Sclerosing/drug therapy
- Cholangitis, Sclerosing/complications
- Cholangitis, Sclerosing/genetics
- Cholangitis, Sclerosing/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Humans
- Mice
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Mice, Knockout
- Cholestasis/immunology
- Cholestasis/drug therapy
- Liver/metabolism
- Liver/immunology
- Liver/pathology
- Disease Models, Animal
- Male
- Female
- Hepatic Stellate Cells/metabolism
Collapse
Affiliation(s)
| | - Ginevra Urbani
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Silvia Marchianò
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Michele Biagioli
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Rachele Bellini
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Carmen Massa
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Ginevra Lachi
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Luigi Cari
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Elva Morretta
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Lucio Spinelli
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Valentina Sepe
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Angela Zampella
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University HospitalUniversity of the Basque Country (UPV/EHU), CIBERehdDonostia‐San SebastianSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Department of Biochemistry and Genetics, School of SciencesUniversity of NavarraPamplonaSpain
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University HospitalUniversity of the Basque Country (UPV/EHU), CIBERehdDonostia‐San SebastianSpain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
- Translational Medicine GroupPomeranian Medical UniversitySzczecinPoland
| | - Malgorzata Milkiewicz
- Department of Medical BiologyPomeranian Medical University in SzczecinSzczecinPoland
| | - Stefano Fiorucci
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| |
Collapse
|
6
|
Tessier MEM, Schraw JM, Beer S, Harpavat S, Kyle Jensen M, Magee JC, Ng V, Scheurer ME, Taylor SA, Shneider BL. The association of human milk intake and outcomes in biliary atresia. J Pediatr Gastroenterol Nutr 2025; 80:163-173. [PMID: 39526563 PMCID: PMC11863988 DOI: 10.1002/jpn3.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Human milk intake has many benefits which could influence outcomes in biliary atresia (BA). However, the role of human milk in BA has not been examined. We hypothesized that human milk intake would be associated with improved outcomes in BA. METHODS We assessed the impact of any human milk (AHM) as compared to formula only (FO) intake before Kasai portoenterostomy (KP) on outcomes in 447 infants with BA using the PROBE database (NCT00061828) post hoc. The primary outcome was clearance of jaundice (COJ = total bilirubin (TB) < 2 mg/dL by 3 months post-KP). Secondary outcomes included 2-year survival with native liver (SNL), bilirubin levels, cholangitis, ascites, and growth. We assessed the fecal microbiome (n = 8) comparing AHM versus FO. RESULTS At baseline, 211 infants received AHM and 215 received FO. 53.9% of AHM and 50.5% of FO achieved COJ (p = NS). SNL was insignificantly increased in AHM (odds ratio = 1.47, 95% confidence interval: 1.00-2.12, p = 0.053). TB decreased in AHM from 4 weeks to 3 months post-KP [4.8-4.0 mg/dL (p = 0.01)] unlike the FO group (4.9-4.9 mg/dL, p = 0.4). At 3 months post-KP, AHM infants had greater weight gain (1.88 ± 0.66 vs. 1.57 ± 0.73 kg, p < 0.001) and mid-upper arm circumference (12.9 ± 1.4 vs. 12.2 ± 1.7 cm, p < 0.001). Other secondary outcomes were not different. Microbiome differences were seen between AHM and FO. CONCLUSIONS Human milk intake in infants with BA did not significantly improve COJ or SNL. However, growth parameters were improved, and TB 3 months post-KP was decreased. Thus, human milk intake should not be discouraged. Prospective studies with detailed assessment of human milk intake are needed.
Collapse
Affiliation(s)
- Mary Elizabeth M Tessier
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - Jeremy M Schraw
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Stacey Beer
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - Sanjiv Harpavat
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| | - M Kyle Jensen
- Department of Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - John C Magee
- Department of Surgery, University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Vicky Ng
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah A Taylor
- Department of Pediatrics, Division of Gastroenterology Hepatology and Nutrition, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Benjamin L Shneider
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Gastroenterology Hepatology and Nutrition, Houston, Texas, USA
| |
Collapse
|
7
|
Fuchs CD, Simbrunner B, Baumgartner M, Campbell C, Reiberger T, Trauner M. Bile acid metabolism and signalling in liver disease. J Hepatol 2025; 82:134-153. [PMID: 39349254 DOI: 10.1016/j.jhep.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Bile acids (BAs) serve as signalling molecules, efficiently regulating their own metabolism and transport, as well as key aspects of lipid and glucose homeostasis. BAs shape the gut microbial flora and conversely are metabolised by microbiota. Disruption of BA transport, metabolism and physiological signalling functions contribute to the pathogenesis and progression of a wide range of liver diseases including cholestatic disorders and MASLD (metabolic dysfunction-associated steatotic liver disease), as well as hepatocellular and cholangiocellular carcinoma. Additionally, impaired BA signalling may also affect the intestine and kidney, thereby contributing to failure of gut integrity and driving the progression and complications of portal hypertension, cholemic nephropathy and the development of extrahepatic malignancies such as colorectal cancer. In this review, we will summarise recent advances in the understanding of BA signalling, metabolism and transport, focusing on transcriptional regulation and novel BA-focused therapeutic strategies for cholestatic and metabolic liver diseases.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Clarissa Campbell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Quelhas P, Oliveira R, Kieling C, Vieira S, dos Santos J. Structural Disruption of Cilia and Increased Cytoplasmic Tubulin in Biliary Atresia-An Exploratory Study Focusing on Early Postoperative Prognosis Following Portoenterostomy. Biomedicines 2025; 13:87. [PMID: 39857671 PMCID: PMC11763231 DOI: 10.3390/biomedicines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Introduction: Biliary atresia (BA) is a progressive hepatobiliary disease in infants, leading to liver failure and the need for transplantation. While its etiopathogenesis remains unclear, recent studies suggest primary cilia (PC) disruption plays a role. This study investigates correlations between PC and cytoplasmic tubulin (TUBA4A) alterations with hypoxia in patients with the isolated form of BA, focusing on native liver survival. Methods: Using qualitative and quantitative digital image analysis of immunofluorescence-stained liver samples, we assessed PC and TUBA4A features correlating these findings with HIF-1α nuclear positivity, clinical-laboratory data, and early native liver survival. Liver samples from fourteen BA patients and six controls with another liver disease were analyzed by digital image analysis, with data evaluated using Spearman's correlation and independent t-tests. Results: HIF-1α positivity in cholangiocytes was observed in 42.8% of BA patients. While the PC ratio per biliary structure (cilia ratio status, CRs) was similar between BA patients and controls, PC length was decreased in BA patients. Cytoplasmic TUBA4A levels were elevated in BA patients. CRs positively correlated with lower cytoplasmic TUBA4A expression and was higher in patients without HIF-1α nuclear positivity. Reduced cilia length correlated with higher bilirubin levels at portoenterostomy. Predictors of early poor prognosis (death or need for transplantation until 1 year of life) included HIF-1α positivity, elevated direct bilirubin levels, decreased cilia length, PC bending, and increased TUBA4A expression. Conclusions: Reduced PC length, PC bending, and increased intensity of cytoplasmic TUBA4A expression occur in the isolated BA clinical type and negatively impact the early prognosis after post-portoenterostomy. These findings suggest the existence of a disruption in the tubulin transport between cytoplasm and PC. The detrimental effect of HIF-1alpha pathway activation over early native liver survival was confirmed, although independently from PC or cytoplasmic tubulin features.
Collapse
Affiliation(s)
- Patrícia Quelhas
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
| | - Rui Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Germano de Sousa-Centro de Diagnóstico Histopatológico CEDAP, University of Coimbra, 3000-377 Coimbra, Portugal
| | - Carlos Kieling
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil; (C.K.); (S.V.)
| | - Sandra Vieira
- Unidade de Gastroenterologia e Hepatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil; (C.K.); (S.V.)
- Department of Pediatrics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
- Programa de Transplante de Fígado Pediátrico, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Jorge dos Santos
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal;
| |
Collapse
|
9
|
Reusswig F, Reich M, Wienands L, Herebian D, Keitel-Anselmino V, Elvers M. The bile acid receptor TGR5 inhibits platelet activation and thrombus formation. Platelets 2024; 35:2322733. [PMID: 38968449 DOI: 10.1080/09537104.2024.2322733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/29/2024] [Indexed: 07/07/2024]
Abstract
Liver failure and cirrhosis are characterized by abnormal hemostasis with aberrant platelet activation. In particular, the consequences of cholestatic liver disease and molecular mechanisms, including the role of bile acids leading to impaired platelet responses, are not well understood. Here, we demonstrate that bile acids inhibit human and murine platelet activation, adhesion and spreading, leading to reduced thrombus formation under flow conditions. We identified the G-protein coupled receptor TGR5 in platelets and provide support for its role as mediator of bile acid-induced impairment of platelet activation. In the liver, TGR5 couples to Gαs proteins, activates the adenylate cyclase to induce a transient cAMP rise and stimulates the MAPK signaling pathway to regulate cholangiocyte proliferation, hepatocyte survival and inflammation. In this report, we demonstrate that the genetic deficiency of TGR5 in mice led to enhanced platelet activation and thrombus formation, suggesting that TGR5 plays an important role in hemostasis. Mechanistically, platelet inhibition is achieved by TGR5 mediated PKA activation and modulation of AKT and ERK1/2 phosphorylation. Thus, this report provides evidence for the ability of TGR5 ligands to reduce platelet activation and identifies TGR5 agonism as a new target for the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Friedrich Reusswig
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, Magdeburg, Germany
| | - Leonard Wienands
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Verena Keitel-Anselmino
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University, Magdeburg, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular- and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10:136. [PMID: 39587086 PMCID: PMC11589602 DOI: 10.1038/s41522-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis. The GLBA plays a crucial role in numerous physiological and pathological mechanisms through a complex interplay of signaling pathways. However, gaps remain in our knowledge regarding the developmental and functional influences of the GLBA communication pathway. The gut microbial metabolites serve as communication agents between these three distant organs, functioning prominently within the GLBA. In this review, we provide a comprehensive overview of the current understanding of the GLBA, focusing on signaling molecules role in animal and human health and disease. In this review paper elucidate its mechanisms of communication, explore its implications for immune, and energy metabolism in animal and human, and highlight future research directions. Understanding the intricate communication pathways of the GLBA holds promise for creating innovative treatment approaches for a wide range of immune and metabolic conditions.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
11
|
Zhuang T, Wang X, Wang Z, Gu L, Yue D, Wang Z, Li X, Yang L, Huang W, Ding L. Biological functions and pharmacological behaviors of bile acids in metabolic diseases. J Adv Res 2024:S2090-1232(24)00495-8. [PMID: 39522690 DOI: 10.1016/j.jare.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Bile acids, synthesized endogenously from cholesterol, play a central role in metabolic regulation within the enterohepatic circulatory system. Traditionally known as emulsifying agents that facilitate the intestinal absorption of vitamins and lipids, recent research reveals their function as multifaceted signal modulators involved in various physiological processes. These molecules are now recognized as key regulators of chronic metabolic diseases and immune dysfunction. Despite progress in understanding their roles, their structural diversity and the specific functions of individual bile acids remain underexplored. AIM OF REVIEW This study categorizes the bile acids based on their chemical structures and their roles as signaling molecules in physiological processes. It consolidates current knowledge and provides a comprehensive overview of the current research. The review also includes natural and semisynthetic variants that have demonstrated potential in regulating metabolic processes in animal models or clinical contexts. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acids circulate primarily within the enterohepatic circulation, where they help maintain a healthy digestive system. Disruptions in their balance are linked to metabolic disorders, hepatobiliary diseases and intestinal inflammation. Through receptor-mediated pathways, bile acids influence the progression of metabolic diseases by regulating glucose and lipid metabolism, immune function, and energy expenditure. This review aims to provide a comprehensive, systematic foundation to for understanding their physiological roles and supporting future therapeutic developments for metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Zixuan Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihua Gu
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Dawei Yue
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200163, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Wendong Huang
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
12
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
13
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Bile Acids-Based Therapies for Primary Sclerosing Cholangitis: Current Landscape and Future Developments. Cells 2024; 13:1650. [PMID: 39404413 PMCID: PMC11475195 DOI: 10.3390/cells13191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
14
|
Xiao M, Qin D, Li X, Bu F, Ma S, Chen X, Zhao Y, Luo C, Min L. Prognosis-oriented molecular subtypes of retroperitoneal liposarcoma. Clin Transl Med 2024; 14:e70050. [PMID: 39406474 PMCID: PMC11479751 DOI: 10.1002/ctm2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Affiliation(s)
- Mengmeng Xiao
- Department of General SurgeryPeking University People's HospitalBeijingP. R. China
- Department of Retroperitoneal Tumor SurgeryPeking University International HospitalBeijingP. R. China
| | - Da Qin
- Department of GastroenterologyState Key Laboratory for Digestive HealthNational Clinical Research Center for Digestive DiseaseBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing Friendship HospitalCapital Medical UniversityBeijingP. R. China
| | - Xiangji Li
- Department of GastroenterologyState Key Laboratory for Digestive HealthNational Clinical Research Center for Digestive DiseaseBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing Friendship HospitalCapital Medical UniversityBeijingP. R. China
- Department of Retroperitoneal Tumor SurgeryPeking University International HospitalBeijingP. R. China
| | - Fanqin Bu
- Department of GastroenterologyState Key Laboratory for Digestive HealthNational Clinical Research Center for Digestive DiseaseBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing Friendship HospitalCapital Medical UniversityBeijingP. R. China
| | - Shixiang Ma
- Department of Retroperitoneal Tumor SurgeryPeking University International HospitalBeijingP. R. China
| | - Xiaobing Chen
- Department of Retroperitoneal Tumor SurgeryPeking University International HospitalBeijingP. R. China
| | - Yu Zhao
- Department of GastroenterologyState Key Laboratory for Digestive HealthNational Clinical Research Center for Digestive DiseaseBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing Friendship HospitalCapital Medical UniversityBeijingP. R. China
| | - Chenghua Luo
- Department of General SurgeryPeking University People's HospitalBeijingP. R. China
- Department of Retroperitoneal Tumor SurgeryPeking University International HospitalBeijingP. R. China
| | - Li Min
- Department of GastroenterologyState Key Laboratory for Digestive HealthNational Clinical Research Center for Digestive DiseaseBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing Friendship HospitalCapital Medical UniversityBeijingP. R. China
| |
Collapse
|
15
|
Jalan-Sakrikar N, Guicciardi ME, O’Hara SP, Azad A, LaRusso NF, Gores GJ, Huebert RC. Central role for cholangiocyte pathobiology in cholestatic liver diseases. Hepatology 2024:01515467-990000000-01022. [PMID: 39250501 PMCID: PMC11890218 DOI: 10.1097/hep.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cholangiopathies comprise a spectrum of chronic intrahepatic and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis, and often cirrhosis and its sequela. Treatment for these diseases is limited, and collectively, they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators but also common cellular and molecular events driving disease progression (eg, cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on the crosstalk between cholangiocytes and portal fibroblasts and HSCs. The proclivity of these cells to undergo a senescence-associated secretory phenotype, which is proinflammatory and profibrogenic, and the intrinsic intracellular activation pathways resulting in the secretion of cytokines and chemokines are reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages) and adaptive (T cells and B cells) immune systems is also examined in detail. The information will help consolidate information on this topic and guide further research and potential therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Steven P. O’Hara
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Adiba Azad
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Gastroenterology Research Unit, Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
- Mayo Clinic Center for Cell Signaling in Gastroenterology; Mayo College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Zhang C, Wang G, Yin X, Gou L, Guo M, Suo F, Zhuang T, Yuan Z, Liu Y, Gu M, Yao R. Hepatic protein phosphatase 1 regulatory subunit 3G alleviates obesity and liver steatosis by regulating the gut microbiota and bile acid metabolism. J Pharm Anal 2024; 14:100976. [PMID: 39263354 PMCID: PMC11388703 DOI: 10.1016/j.jpha.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 09/13/2024] Open
Abstract
Intestinal dysbiosis and disrupted bile acid (BA) homeostasis are associated with obesity, but the precise mechanisms remain insufficiently explored. Hepatic protein phosphatase 1 regulatory subunit 3G (PPP1R3G) plays a pivotal role in regulating glycolipid metabolism; nevertheless, its obesity-combatting potency remains unclear. In this study, a substantial reduction was observed in serum PPP1R3G levels in high-body mass index (BMI) and high-fat diet (HFD)-exposed mice, establishing a positive correlation between PPP1R3G and non-12α-hydroxylated (non-12-OH) BA content. Additionally, hepatocyte-specific overexpression of Ppp1r3g (PPP1R3G HOE) mitigated HFD-induced obesity as evidenced by reduced weight, fat mass, and an improved serum lipid profile; hepatic steatosis alleviation was confirmed by normalized liver enzymes and histology. PPP1R3G HOE considerably impacted systemic BA homeostasis, which notably increased the non-12-OH BAs ratio, particularly lithocholic acid (LCA). 16S ribosomal DNA (16S rDNA) sequencing assay indicated that PPP1R3G HOE reversed HFD-induced gut dysbiosis by reducing the Firmicutes/Bacteroidetes ratio and Lactobacillus population, and elevating the relative abundance of Blautia, which exhibited a positive correlation with serum LCA levels. A fecal microbiome transplantation test confirmed that the anti-obesity effect of hepatic PPP1R3G was gut microbiota-dependent. Mechanistically, PPP1R3G HOE markedly suppressed hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol-12α-hydroxylase (CYP8B1), and concurrently upregulated oxysterol 7-α hydroxylase and G protein-coupled BA receptor 5 (TGR5) expression under HFD conditions. Furthermore, LCA administration significantly mitigated the HFD-induced obesity phenotype and elevated non-12-OH BA levels. These findings emphasize the significance of hepatic PPP1R3G in ameliorating diet-induced adiposity and hepatic steatosis through the gut microbiota-BA axis, which may serve as potential therapeutic targets for obesity-related disorders.
Collapse
Affiliation(s)
- Chu Zhang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Gui Wang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xin Yin
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Lingshan Gou
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Mengyuan Guo
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Feng Suo
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Tao Zhuang
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhenya Yuan
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Yanan Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Maosheng Gu
- Department of Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221009, China
| | - Ruiqin Yao
- Xuzhou Key Laboratory of Neurobiology, Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
18
|
Sun D, Xie C, Zhao Y, Liao J, Li S, Zhang Y, Wang D, Hua K, Gu Y, Du J, Huang G, Huang J. The gut microbiota-bile acid axis in cholestatic liver disease. Mol Med 2024; 30:104. [PMID: 39030473 PMCID: PMC11265038 DOI: 10.1186/s10020-024-00830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 07/21/2024] Open
Abstract
Cholestatic liver diseases (CLD) are characterized by impaired normal bile flow, culminating in excessive accumulation of toxic bile acids. The majority of patients with CLD ultimately progress to liver cirrhosis and hepatic failure, necessitating liver transplantation due to the lack of effective treatment. Recent investigations have underscored the pivotal role of the gut microbiota-bile acid axis in the progression of hepatic fibrosis via various pathways. The obstruction of bile drainage can induce gut microbiota dysbiosis and disrupt the intestinal mucosal barrier, leading to bacteria translocation. The microbial translocation activates the immune response and promotes liver fibrosis progression. The identification of therapeutic targets for modulating the gut microbiota-bile acid axis represents a promising strategy to ameliorate or perhaps reverse liver fibrosis in CLD. This review focuses on the mechanisms in the gut microbiota-bile acids axis in CLD and highlights potential therapeutic targets, aiming to lay a foundation for innovative treatment approaches.
Collapse
Affiliation(s)
- Dayan Sun
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Chuanping Xie
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yong Zhao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Junmin Liao
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Shuangshuang Li
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yanan Zhang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Dingding Wang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Kaiyun Hua
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Yichao Gu
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Jingbin Du
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China
| | - Guoxian Huang
- Department of Pediatric Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Jinshi Huang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nalishi Road, Xicheng District, Beijing, 100045, China.
| |
Collapse
|
19
|
Fiorucci S, Marchianò S, Urbani G, Di Giorgio C, Distrutti E, Zampella A, Biagioli M. Immunology of bile acids regulated receptors. Prog Lipid Res 2024; 95:101291. [PMID: 39122016 DOI: 10.1016/j.plipres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
20
|
Jin W, Zheng M, Chen Y, Xiong H. Update on the development of TGR5 agonists for human diseases. Eur J Med Chem 2024; 271:116462. [PMID: 38691888 DOI: 10.1016/j.ejmech.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The G protein-coupled bile acid receptor 1 (GPBAR1) or TGR5 is widely distributed across organs, including the small intestine, stomach, liver, spleen, and gallbladder. Many studies have established strong correlations between TGR5 and glucose homeostasis, energy metabolism, immune-inflammatory responses, and gastrointestinal functions. These results indicate that TGR5 has a significant impact on the progression of tumor development and metabolic disorders such as diabetes mellitus and obesity. Targeting TGR5 represents an encouraging therapeutic approach for treating associated human ailments. Notably, the GLP-1 receptor has shown exceptional efficacy in clinical settings for diabetes management and weight loss promotion. Currently, numerous TGR5 agonists have been identified through natural product-based approaches and virtual screening methods, with some successfully progressing to clinical trials. This review summarizes the intricate relationships between TGR5 and various diseases emphasizing recent advancements in research on TGR5 agonists, including their structural characteristics, design tactics, and biological activities. We anticipate that this meticulous review could facilitate the expedited discovery and optimization of novel TGR5 agonists.
Collapse
Affiliation(s)
- Wangrui Jin
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yihua Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Hai Xiong
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
21
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
22
|
Cheng Z, Chen Y, Schnabl B, Chu H, Yang L. Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets. J Adv Res 2024; 59:173-187. [PMID: 37356804 PMCID: PMC11081971 DOI: 10.1016/j.jare.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) has been the second most common cause of liver transplantation in the United States. To date, NASH pathogenesis has not been fully elucidated but is multifactorial, involving insulin resistance, obesity, metabolic disorders, diet, dysbiosis, and gene polymorphism. An effective and approved therapy for NASH has also not been established. Bile acid is long known to have physiological detergent function in emulsifying and absorbing lipids and lipid-soluble molecules within the intestinal lumen. With more and more in-depth understandings of bile acid, it has been deemed to be a pivotal signaling molecule, which is capable of regulating lipid and glucose metabolism, liver inflammation, and fibrosis. In recent years, a plethora of studies have delineated that disrupted bile acid homeostasis is intimately correlated with NASH disease severity. AIMS The review aims to clarify the role of bile acid in hepatic lipid and glucose metabolism, liver inflammation, as well as liver fibrosis, and discusses the safety and efficacy of some pharmacological agents targeting bile acid and its associated pathways for NASH. KEY SCIENTIFIC CONCEPTS OF REVIEW Bile acid has a salutary effect on hepatic metabolic disorders, which can ameliorate liver fat accumulation and insulin resistance mainly through activating Takeda G-protein coupled receptor 5 and farnesoid X receptor. Moreover, bile acid also exerts anti-inflammation and anti-fibrosis properties. Furthermore, bile acid has great potential in nonalcoholic liver disease stratification and treatment of NASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Yixiong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
23
|
Ye D, He J, He X. The role of bile acid receptor TGR5 in regulating inflammatory signalling. Scand J Immunol 2024; 99:e13361. [PMID: 38307496 DOI: 10.1111/sji.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a bile acid receptor, and its role in regulating metabolism after binding with bile acids has been established. Since the immune response depends on metabolism to provide biomolecules and energy to cope with challenging conditions, emerging evidence reveals the regulatory effects of TGR5 on the immune response. An in-depth understanding of the effect of TGR5 on immune regulation can help us disentangle the interaction of metabolism and immune response, accelerating the development of TGR5 as a therapeutic target. Herein, we reviewed more than 200 articles published in the last 20 years in PubMed, to discuss the roles of TGR5 in regulating inflammatory response, the molecular mechanism, as well as existing problems. Particularly, its anti-inflammation effect is emphasized.
Collapse
Affiliation(s)
- Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiayao He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Disease of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
24
|
Li T, Hasan MN, Gu L. Bile acids regulation of cellular stress responses in liver physiology and diseases. EGASTROENTEROLOGY 2024; 2:e100074. [PMID: 39027418 PMCID: PMC11257078 DOI: 10.1136/egastro-2024-100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bile acids are physiological detergents and signalling molecules that are critically implicated in liver health and diseases. Dysregulation of bile acid homeostasis alters cell function and causes cell injury in chronic liver diseases. Therapeutic agents targeting bile acid synthesis, transport and signalling hold great potential for treatment of chronic liver diseases. The broad cellular and physiological impacts of pharmacological manipulations of bile acid metabolism are still incompletely understood. Recent research has discovered new links of bile acid signalling to the regulation of autophagy and lysosome biology, redox homeostasis and endoplasmic reticulum stress. These are well-conserved mechanisms that allow cells to adapt to nutrient and organelle stresses and play critical roles in maintaining cellular integrity and promoting survival. However, dysregulation of these cellular pathways is often observed in chronic liver diseases, which exacerbates cellular dysfunction to contribute to disease pathogenesis. Therefore, identification of these novel links has significantly advanced our knowledge of bile acid biology and physiology, which is needed to understand the contributions of bile acid dysregulation in disease pathogenesis, establish bile acids as diagnostic markers and develop bile acid-based pharmacological interventions. In this review, we will first discuss the roles of bile acid dysregulation in the pathogenesis of chronic liver diseases, and then discuss the recent findings on the crosstalk of bile acid signalling and cellular stress responses. Future investigations are needed to better define the roles of these crosstalks in regulating cellular function and disease processes.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mohammad Nazmul Hasan
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lijie Gu
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
25
|
Mirzaei S, DeVon HA, Cantor RM, Cupido AJ, Pan C, Ha SM, Silva LF, Hilser JR, Hartiala J, Allayee H, Rey FE, Laakso M, Lusis AJ. Relationships and Mendelian Randomization of Gut Microbe-Derived Metabolites with Metabolic Syndrome Traits in the METSIM Cohort. Metabolites 2024; 14:174. [PMID: 38535334 PMCID: PMC10972019 DOI: 10.3390/metabo14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass index (BMI) (β = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (β = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (β = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23, p = 4.4 × 10-33), and BMI (β = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (β = -0.19, p = 3.8 × 10-51) and triglycerides (β = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
Collapse
Affiliation(s)
- Sahereh Mirzaei
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Holli A. DeVon
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Rita M. Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1007 AZ Amsterdam, The Netherlands
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Lilian Fernandes Silva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaana Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markku Laakso
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Human Genetics and Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Zhan K, Wu H, Xu Y, Rao K, Zheng H, Qin S, Yang Y, Jia R, Chen W, Huang S. The function of the gut microbiota-bile acid-TGR5 axis in diarrhea-predominant irritable bowel syndrome. mSystems 2024; 9:e0129923. [PMID: 38329942 PMCID: PMC10949424 DOI: 10.1128/msystems.01299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Imbalanced gut microbiota (GM) and abnormal fecal bile acid (BA) are thought to be the key factors for diarrhea-predominant irritable bowel syndrome (IBS-D), but the underlying mechanism remains unclear. Herein, we explore the influence of the GM-BA-Takeda G-protein-coupled receptor 5 (TGR5) axis on IBS-D. Twenty-five IBS-D patients and fifteen healthy controls were recruited to perform BA-related metabolic and metagenomic analyses. Further, the microbiota-humanized IBS-D rat model was established by fecal microbial transplantation (FMT) to investigate the GM-BA-TGR5 axis effects on the colonic barrier and visceral hypersensitivity (VH) in IBS-D. Finally, we used chenodeoxycholic acid (CDCA), an important BA screened out by metabolome, to evaluate whether it affected diarrhea and VH via the TGR5 pathway. Clinical research showed that GM associated with bile salt hydrolase (BSH) activity such as Bacteroides ovatus was markedly reduced in the GM of IBS-D, accompanied by elevated total and primary BA levels. Moreover, we found that CDCA not only was increased as the most important primary BA in IBS-D patients but also could induce VH through upregulating TGR5 in the colon and ileum of normal rats. TGR5 inhibitor could reverse the phenotype, depression-like behaviors, pathological change, and level of fecal BSH in a microbiota-humanized IBS-D rat model. Our findings proved that human-associated FMT could successfully induce the IBS-D rat model, and the imbalanced GM-BA-TGR5 axis may promote colonic mucosal barrier dysfunction and enhance VH in IBS-D. IMPORTANCE Visceral hypersensitivity and intestinal mucosal barrier damage are important factors that cause abnormal brain-gut interaction in diarrhea-predominant irritable bowel syndrome (IBS-D). Recently, it was found that the imbalance of the gut microbiota-bile acid axis is closely related to them. Therefore, understanding the structure and function of the gut microbiota and bile acids and the underlying mechanisms by which they shape visceral hypersensitivity and mucosal barrier damage in IBS-D is critical. An examination of intestinal feces from IBS-D patients revealed that alterations in gut microbiota and bile acid metabolism underlie IBS-D and symptom onset. We also expanded beyond existing knowledge of well-studied gut microbiota and bile acid and found that Bacteroides ovatus and chenodeoxycholic acid may be potential bacteria and bile acid involved in the pathogenesis of IBS-D. Moreover, our data integration reveals the influence of the microbiota-bile acid-TGR5 axis on barrier function and visceral hypersensitivity.
Collapse
Affiliation(s)
- Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Haomeng Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongyin Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kehan Rao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shumin Qin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Rui Jia
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaogang Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Collaborative Innovation Team of Traditional Chinese Medicine in Prevention and Treatment of Functional Gastrointestinal Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
28
|
Islam D, Israr I, Taleb MAB, Rao A, Yosief R, Sultana R, Sampaziotis F, Tysoe OC, Trauner M, Karpen SJ, Ghanekar A, Kamath BM. A novel model to study mechanisms of cholestasis in human cholangiocytes reveals a role for the SIPR2 pathway. Hepatol Commun 2024; 8:e0389. [PMID: 38407207 PMCID: PMC10898671 DOI: 10.1097/hc9.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/09/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Ductular reactivity is central to the pathophysiology of cholangiopathies. Mechanisms underlying the reactive phenotype activation by exogenous inflammatory mediators and bile acids are poorly understood. METHODS Using human extrahepatic cholangiocyte organoids (ECOs) we developed an injury model emulating the cholestatic microenvironment with exposure to inflammatory mediators and various pathogenic bile acids. Moreover, we explored roles for the bile acid activated Sphingosine-1-phosphate receptor 2 (S1PR2) and potential beneficial effects of therapeutic bile acids UDCA and norUDCA. RESULTS Synergistic exposure to bile acids (taurocholic acid, glycocholic acid, glycochenodeoxycholic acid) and TNF-α for 24 hours induced a reactive state as measured by ECO diameter, proliferation, lactate dehydrogenase activity and reactive phenotype markers. While NorUDCA and UDCA treatments given 8 hours after injury induction both suppressed reactive phenotype activation and most injury parameters, proliferation was improved by NorUDCA only. Extrahepatic cholangiocyte organoid stimulation with S1PR2 agonist sphingosine-1-phosphate reproduced the cholangiocyte reactive state and upregulated S1PR2 downstream mediators; these effects were suppressed by S1PR2 antagonist JET-013 (JET), downstream mediator extracellular signal-regulated kinase 1/2 inhibitor, and by norUDCA or UDCA treatments. JET also partially suppressed reactive phenotype after bile acid injury. CONCLUSIONS We developed a novel model to study the reactive cholangiocyte state in response to pathological stimuli in cholestasis and demonstrated a contributory role of S1PR2 signaling in both injury and NorUDCA/UDCA treatments. This model is a valuable tool to further explore the pathophysiology of human cholangiopathies.
Collapse
Affiliation(s)
- Diana Islam
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Izza Israr
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mohamed A. B. Taleb
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aditya Rao
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robel Yosief
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rukhsar Sultana
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fotios Sampaziotis
- Wellcome–MRC Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Olivia C. Tysoe
- Wellcome–MRC Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anand Ghanekar
- Division of General Surgery, Department of Surgery, University Health Network & The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Development & Stem Cell Biology program, Peter Gilligan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Özdirik B, Schnabl B. Microbial Players in Primary Sclerosing Cholangitis: Current Evidence and Concepts. Cell Mol Gastroenterol Hepatol 2023; 17:423-438. [PMID: 38109970 PMCID: PMC10837305 DOI: 10.1016/j.jcmgh.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease with progressive biliary inflammation, destruction of the biliary tract, and fibrosis, resulting in liver cirrhosis and end-stage liver disease. To date, liver transplantation is the only definitive treatment option for PSC. The precise etiology of PSC remains elusive, but it is widely accepted to involve a complex interplay between genetic predisposition, immunologic dysfunction, and environmental influence. In recent years, the gut-liver axis has emerged as a crucial pathway contributing to the pathogenesis of PSC, with particular focus on the role of gut microbiota. However, the role of the fungal microbiome or mycobiome has been overlooked for years, resulting in a lack of comprehensive studies on its involvement in PSC. In this review, we clarify the present clinical and mechanistic data and concepts concerning the gut bacterial and fungal microbiota in the context of PSC. This review sheds light on the role of specific microbes and elucidates the dynamics of bacterial and fungal populations. Moreover, we discuss the latest insights into microbe-altering therapeutic approaches involving the gut-liver axis and bile acid metabolism.
Collapse
Affiliation(s)
- Burcin Özdirik
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
30
|
Huang WJ, Qiu BJ, Qi XS, Chen CY, Liu WM, Zhou SA, Ding M, Lu FF, Zhao J, Tang D, Zhou X, Fu GB, Wang ZY, Ma HQ, Wu YL, Wu HP, Chen XS, Yu WF, Yan HX. CD24 +LCN2 + liver progenitor cells in ductular reaction contributed to macrophage inflammatory responses in chronic liver injury. Cell Biosci 2023; 13:184. [PMID: 37784089 PMCID: PMC10546777 DOI: 10.1186/s13578-023-01123-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed. RESULTS The current study combined genetic lineage tracing with in vitro small-molecule-based reprogramming to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non-parenchymal tissues. tdTom+ hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre-mediated recombination, EpCAM+ biliary epithelial cells (BECs) from wild-type intrahepatic bile ducts and ALB/GFP-EpCAM- cells were isolated from AlbCreERT/R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-vitro cultured LPCs derived from the resident LPCs in non-parenchymal tissues expressed Lipocalin-2 (Lcn2) at high levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc-RNA-sequencing and pathological datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into CCl4-induced fibrotic livers exacerbated liver damage and dysfunction, possibly due to LCN2-dependent macrophage inflammatory response. CONCLUSIONS CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage-mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.
Collapse
Affiliation(s)
- Wei-Jian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Celliver Biotechnology Inc., Shanghai, China
| | - Bi-Jun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Xiao-Shu Qi
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Cai-Yang Chen
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Wen-Ming Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Min Ding
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China
| | - Feng-Feng Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University., Shanghai, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xu Zhou
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Gong-Bo Fu
- Department of Medical Oncology, First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Zhen-Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Hong-Qian Ma
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yu-Ling Wu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Hong-Ping Wu
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Song Chen
- Department of Infectious Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200120, China.
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200120, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
- Celliver Biotechnology Inc., Shanghai, China.
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Jiaotong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
31
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
32
|
Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1400-1414. [PMID: 37355037 DOI: 10.1016/j.ajpath.2023.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Vanessa Chandler
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
33
|
Yao Q, Chen W, Yu Y, Gao F, Zhou J, Wu J, Pan Q, Yang J, Zhou L, Yu J, Cao H, Li L. Human Placental Mesenchymal Stem Cells Relieve Primary Sclerosing Cholangitis via Upregulation of TGR5 in Mdr2 -/- Mice and Human Intrahepatic Cholangiocyte Organoid Models. RESEARCH (WASHINGTON, D.C.) 2023; 6:0207. [PMID: 37600495 PMCID: PMC10433880 DOI: 10.34133/research.0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a biliary disease accompanied by chronic inflammation of the liver and biliary stricture. Mesenchymal stem cells (MSCs) are used to treat liver diseases because of their immune regulation and regeneration-promoting functions. This study was performed to explore the therapeutic potential of human placental MSCs (hP-MSCs) in PSC through the Takeda G protein-coupled receptor 5 (TGR5) receptor pathway. Liver tissues were collected from patients with PSC and healthy donors (n = 4) for RNA sequencing and intrahepatic cholangiocyte organoid construction. hP-MSCs were injected via the tail vein into Mdr2-/-, bile duct ligation (BDL), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse models or co-cultured with organoids to confirm their therapeutic effect on biliary cholangitis. Changes in bile acid metabolic profile were analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Compared with healthy controls, liver tissues and intrahepatic cholangiocyte organoids from PSC patients were characterized by inflammation and cholestasis, and marked downregulation of bile acid receptor TGR5 expression. hP-MSC treatment apparently reduced the inflammation, cholestasis, and fibrosis in Mdr2-/-, BDL, and DDC model mice. By activating the phosphatidylinositol 3 kinase/extracellular signal-regulated protein kinase pathway, hP-MSC treatment promoted the proliferation of cholangiocytes, and affected the transcription of downstream nuclear factor κB through regulation of the binding of TGR5 and Pellino3, thereby affecting the cholangiocyte inflammatory phenotype.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Lingling Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
34
|
Yang WJ, Han FH, Gu YP, Qu H, Liu J, Shen JH, Leng Y. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis. Acta Pharmacol Sin 2023; 44:1649-1664. [PMID: 36997665 PMCID: PMC10374578 DOI: 10.1038/s41401-023-01081-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Excessive apoptosis of intestinal epithelial cell (IEC) is a crucial cause of disrupted epithelium homeostasis, leading to the pathogenesis of ulcerative colitis (UC). The regulation of Takeda G protein-coupled receptor-5 (TGR5) in IEC apoptosis and the underlying molecular mechanisms remained unclear, and the direct evidence from selective TGR5 agonists for the treatment of UC is also lacking. Here, we synthesized a potent and selective TGR5 agonist OM8 with high distribution in intestinal tract and investigated its effect on IEC apoptosis and UC treatment. We showed that OM8 potently activated hTGR5 and mTGR5 with EC50 values of 202 ± 55 nM and 74 ± 17 nM, respectively. After oral administration, a large amount of OM8 was maintained in intestinal tract with very low absorption into the blood. In DSS-induced colitis mice, oral administration of OM8 alleviated colitis symptoms, pathological changes and impaired tight junction proteins expression. In addition to enhancing intestinal stem cell (ISC) proliferation and differentiation, OM8 administration significantly reduced the rate of apoptotic cells in colonic epithelium in colitis mice. The direct inhibition by OM8 on IEC apoptosis was further demonstrated in HT-29 and Caco-2 cells in vitro. In HT-29 cells, we demonstrated that silencing TGR5, inhibition of adenylate cyclase or protein kinase A (PKA) all blocked the suppression of JNK phosphorylation induced by OM8, thus abolished its antagonizing effect against TNF-α induced apoptosis, suggesting that the inhibition by OM8 on IEC apoptosis was mediated via activation of TGR5 and cAMP/PKA signaling pathway. Further studies showed that OM8 upregulated cellular FLICE-inhibitory protein (c-FLIP) expression in a TGR5-dependent manner in HT-29 cells. Knockdown of c-FLIP blocked the inhibition by OM8 on TNF-α induced JNK phosphorylation and apoptosis, suggesting that c-FLIP was indispensable for the suppression of OM8 on IEC apoptosis induced by OM8. In conclusion, our study demonstrated a new mechanism of TGR5 agonist on inhibiting IEC apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway in vitro, and highlighted the value of TGR5 agonist as a novel therapeutic strategy for the treatment of UC.
Collapse
Affiliation(s)
- Wen-Ji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Hui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Pei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Zhang J, Lyu Z, Li B, You Z, Cui N, Li Y, Li Y, Huang B, Chen R, Chen Y, Peng Y, Fang J, Wang Q, Miao Q, Tang R, Gershwin ME, Lian M, Xiao X, Ma X. P4HA2 induces hepatic ductular reaction and biliary fibrosis in chronic cholestatic liver diseases. Hepatology 2023; 78:10-25. [PMID: 36799463 DOI: 10.1097/hep.0000000000000317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUNDS Prolyl-4-hydroxylases (P4Hs) are key enzymes in collagen synthesis. The P4HA subunit (P4HA1, P4HA2, and P4HA3) contains a substrate binding and catalyzation domain. We postulated that P4HA2 would play a key role in the cholangiocyte pathology of cholestatic liver diseases. METHODS We studied humans with primary biliary cholangitis (PBC) and Primary sclerosing cholangitis (PSC), P4HA2 -/- mice injured by DDC, and P4HA2 -/- /MDR2 -/- double knockout mice. A parallel study was performed in patients with PBC, PSC, and controls using immunohistochemistry and immunofluorescence. In the murine model, the level of ductular reaction and biliary fibrosis were monitored by histology, qPCR, immunohistochemistry, and Western blotting. Expression of Yes1 Associated Transcriptional Regulator (YAP) phosphorylation was measured in isolated mouse cholangiocytes. The mechanism of P4HA2 was explored in RBE and 293T cell lines by using qPCR, Western blot, immunofluorescence, and co-immunoprecipitation. RESULTS The hepatic expression level of P4HA2 was highly elevated in patients with PBC or PSC. Ductular reactive cholangiocytes predominantly expressed P4HA2. Cholestatic patients with more severe liver injury correlated with levels of P4HA2 in the liver. In P4HA2 -/- mice, there was a significantly reduced level of ductular reaction and fibrosis compared with controls in the DDC-induced chronic cholestasis. Decreased liver fibrosis and ductular reaction were observed in P4HA2 -/- /MDR2 -/- mice compared with MDR2 -/- mice. Cholangiocytes isolated from P4HA2 -/- /MDR2 -/- mice displayed a higher level of YAP phosphorylation, resulting in cholangiocytes proliferation inhibition. In vitro studies showed that P4HA2 promotes RBE cell proliferation by inducing SAV1 degradation, eventually resulting in the activation of YAP. CONCLUSIONS P4HA2 promotes hepatic ductular reaction and biliary fibrosis by regulating the SAV1-mediated Hippo signaling pathway. P4HA2 is a potential therapeutic target for PBC and PSC.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - You Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Min Lian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, Middle Shandong Road, Shanghai 200001, China
| |
Collapse
|
36
|
Zhao Y, Wei S, Chen L, Zhou X, Ma X. Primary biliary cholangitis: molecular pathogenesis perspectives and therapeutic potential of natural products. Front Immunol 2023; 14:1164202. [PMID: 37457696 PMCID: PMC10349375 DOI: 10.3389/fimmu.2023.1164202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is a chronic cholestatic immune liver disease characterized by persistent cholestasis, interlobular bile duct damage, portal inflammation, liver fibrosis, eventual cirrhosis, and death. Existing clinical and animal studies have made a good progress in bile acid metabolism, intestinal flora disorder inflammatory response, bile duct cell damage, and autoimmune response mechanisms. However, the pathogenesis of PBC has not been clearly elucidated. We focus on the pathological mechanism and new drug research and development of PBC in clinical and laboratory in the recent 20 years, to discuss the latest understanding of the pathological mechanism, treatment options, and drug discovery of PBC. Current clinical treatment mode and symptomatic drug support obviously cannot meet the urgent demand of patients with PBC, especially for the patients who do not respond to the current treatment drugs. New treatment methods are urgently needed. Drug candidates targeting reported targets or signals of PBC are emerging, albeit with some success and some failure. Single-target drugs cannot achieve ideal clinical efficacy. Multitarget drugs are the trend of future research and development of PBC drugs.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Pharmacy, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lisheng Chen
- Department of Pharmacy, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Cossiga V, Guarino M, Capasso M, Morisco F. Relevance of Bile Acids in Cholangiocarcinoma Pathogenesis: Critical Revision and Future Directions. Cells 2023; 12:1576. [PMID: 37371045 PMCID: PMC10296882 DOI: 10.3390/cells12121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cholangiocarcinoma (CCA), a highly heterogeneous cancer, is the second most common type of primary liver cancer. It is characterized by resistance to therapy and poor prognosis, with a 5-year survival rate lower than 20%. The pathogenesis of CCA is complex and multifactorial, and in recent years, bile acids (BAs) have been implicated in CCA development and prognosis. BAs belong to a category of amphipathic compounds that hold significant importance as signaling molecules and inflammatory agents. They possess the ability to activate transcriptional factors and cellular signaling pathways, thereby governing the regulation of lipid, glucose, and energy metabolism in diverse human disorders. These disorders encompass chronic liver diseases among other conditions. In this review, we provided an update on the current knowledge on the molecular mechanisms involving BAs in cholangiocarcinogenesis. Additionally, we analyzed the role of gut and biliary microbiota in CCA pathogenesis. Future research is required to better understand how to modulate BA activity and, possibly, identify new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Filomena Morisco
- Diseases of the Liver and Biliary System Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (V.C.); (M.G.); (M.C.)
| |
Collapse
|
38
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
39
|
Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci 2023; 13:77. [PMID: 37120573 PMCID: PMC10149012 DOI: 10.1186/s13578-023-01035-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver transplantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabolism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essential role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA.
| |
Collapse
|
40
|
Aseem SO, Hylemon PB, Zhou H. Bile Acids and Biliary Fibrosis. Cells 2023; 12:cells12050792. [PMID: 36899928 PMCID: PMC10001305 DOI: 10.3390/cells12050792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary fibrosis is the driving pathological process in cholangiopathies such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Cholangiopathies are also associated with cholestasis, which is the retention of biliary components, including bile acids, in the liver and blood. Cholestasis may worsen with biliary fibrosis. Furthermore, bile acid levels, composition and homeostasis are dysregulated in PBC and PSC. In fact, mounting data from animal models and human cholangiopathies suggest that bile acids play a crucial role in the pathogenesis and progression of biliary fibrosis. The identification of bile acid receptors has advanced our understanding of various signaling pathways involved in regulating cholangiocyte functions and the potential impact on biliary fibrosis. We will also briefly review recent findings linking these receptors with epigenetic regulatory mechanisms. Further detailed understanding of bile acid signaling in the pathogenesis of biliary fibrosis will uncover additional therapeutic avenues for cholangiopathies.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
41
|
Alsaleh M, Sithithaworn P, Khuntikeo N, Loilome W, Yongvanit P, Hughes T, O'Connor T, Andrews RH, Wadsworth CA, Williams R, Koomson L, Cox IJ, Holmes E, Taylor-Robinson SD. Urinary Metabolic Profiling of Liver Fluke-Induced Cholangiocarcinoma-A Follow-Up Study. J Clin Exp Hepatol 2023; 13:203-217. [PMID: 36950498 PMCID: PMC10025591 DOI: 10.1016/j.jceh.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background/Aims Global liquid chromatography mass spectrometry (LC-MS) profiling in a Thai population has previously identified a urinary metabolic signature in Opisthorchis viverrini-induced cholangiocarcinoma (CCA), primarily characterised by disturbance in acylcarnitine, bile acid, steroid, and purine metabolism. However, the detection of thousands of analytes by LC-MS in a biological sample in a single experiment potentially introduces false discovery errors. To verify these observed metabolic perturbations, a second validation dataset from the same population was profiled in a similar fashion. Methods Reverse-phase ultra-performance liquid-chromatography mass spectrometry was utilised to acquire the global spectral profile of 98 spot urine samples (from 46 healthy volunteers and 52 CCA patients) recruited from Khon Kaen, northeast Thailand (the highest incidence of CCA globally). Results Metabolites were differentially expressed in the urinary profiles from CCA patients. High urinary elimination of bile acids was affected by the presence of obstructive jaundice. The urine metabolome associated with non-jaundiced CCA patients showed a distinctive pattern, similar but not identical to published studies. A panel of 10 metabolites achieved a diagnostic accuracy of 93.4% and area under the curve value of 98.8% (CI = 96.3%-100%) for the presence of CCA. Conclusions Global characterisation of the CCA urinary metabolome identified several metabolites of biological interest in this validation study. Analyses of the diagnostic utility of the discriminant metabolites showed excellent diagnostic potential. Further larger scale studies are required to confirm these findings internationally, particularly in comparison to sporadic CCA, not associated with liver fluke infestation.
Collapse
Key Words
- ANOVA, analysis of variance
- BCAA, branched chain amino acids
- CCA, cholangiocarcinoma
- CID, collision-induced dissociation
- CT, computed tomography
- CV-ANOVA, ANOVA of cross-validated residuals
- DDA, data-dependent acquisition
- ESI −, electrospray ionisation negative mode
- ESI, electrospray ionisation
- ESI +, electro spray ionisation positive mode
- LC-MS, liquid chromatography mass spectroscopy
- MRI, magnetic resonance imaging
- NMR, nuclear magnetic resonance
- OPLS-DA, orthogonal projections to latent structures discriminant analysis
- QC, quality control
- ROC, receiver operating characteristic
- RP, reverse phase
- TOF, time of flight
- UPLC, ultra-performance liquid chromatography
- biomarkers
- cholangiocarcinoma
- dCCA, distal cholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
- liver fluke
- mass spectroscopy
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
- Munirah Alsaleh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Paiboon Sithithaworn
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thomas Hughes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Thomas O'Connor
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Ross H. Andrews
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Christopher A. Wadsworth
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Roger Williams
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, United Kingdom
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Larry Koomson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Isobel Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, United Kingdom
- Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| | - Simon D. Taylor-Robinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, St Mary's Hospital Campus, London W2 INY, United Kingdom
| |
Collapse
|
42
|
Hov JR, Karlsen TH. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol 2023; 20:135-154. [PMID: 36352157 DOI: 10.1038/s41575-022-00690-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Primary sclerosing cholangitis (PSC) offers unique opportunities to explore the gut-liver axis owing to the close association between liver disease and colonic inflammation. It is well established that the gut microbiota in people with PSC differs from that of healthy individuals, but details of the microbial factors that demarcate PSC from inflammatory bowel disease (IBD) without PSC are poorly understood. In this Review, we aim to provide an overview of the latest literature on the gut microbiome in PSC and PSC with IBD, critically examining hypotheses on how microorganisms could contribute to the pathogenesis of PSC. A particular emphasis will be put on pathogenic features of the gut microbiota that might explain the occurrence of bile duct inflammation and liver disease in the context of IBD, and we postulate the potential existence of a specific yet unknown factor related to the gut-liver axis as causative in PSC. Available data are scrutinized in the perspective of therapeutic approaches related to the gut-liver axis.
Collapse
Affiliation(s)
- Johannes R Hov
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section of gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
43
|
Qi L, Chen Y. Circulating Bile Acids as Biomarkers for Disease Diagnosis and Prevention. J Clin Endocrinol Metab 2023; 108:251-270. [PMID: 36374935 DOI: 10.1210/clinem/dgac659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
CONTEXT Bile acids (BAs) are pivotal signaling molecules that regulate energy metabolism and inflammation. Recent epidemiological studies have reported specific alterations in circulating BA profiles in certain disease states, including obesity, type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and Alzheimer disease (AD). In the past decade, breakthroughs have been made regarding the translation of BA profiling into clinical use for disease prediction. In this review, we summarize and synthesize recent data on variation in circulating BA profiles in patients with various diseases to evaluate the value of these biomarkers in human plasma for early diagnosis. EVIDENCE ACQUISITION This review is based on a collection of primary and review literature gathered from a PubMed search for BAs, obesity, T2DM, insulin resistance (IR), NAFLD, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), colon cancer, and AD, among other keywords. EVIDENCE SYNTHESIS Individuals with obesity, T2DM, HCC, CCA, or AD showed specific alterations in circulating BA profiles. These alterations may have existed long before the initial diagnosis of these diseases. The intricate relationship between obesity, IR, and NAFLD complicates the establishment of clear and independent associations between BA profiles and nonalcoholic steatohepatitis. Alterations in the levels of total BAs and several BA species were seen across the entire spectrum of NAFLD, demonstrating significant increases with the worsening of histological features. CONCLUSIONS Aberrant circulating BA profiles are an early event in the onset and progression of obesity, T2DM, HCC, and AD. The pleiotropic effects of BAs explain these broad connections. Circulating BA profiles could provide a basis for the development of biomarkers for the diagnosis and prevention of a wide range of diseases.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
44
|
Xu J, Cao J, Tan B, Xie S. G protein-coupled bile acid receptor 1 reduced hepatic immune response and inhibited NFκB, PI3K/AKT, and PKC/P38 MAPK signaling pathway in hybrid grouper. J Anim Sci 2023; 101:skad307. [PMID: 37715969 PMCID: PMC10576523 DOI: 10.1093/jas/skad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023] Open
Abstract
The mammalian G protein-coupled bile acid receptor 1 (TGR5) is involved in the inflammatory response. However, the functions of TGR5 in the immune response of fish remain unclear. In this study, the full-length sequence of tgr5 from hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) was cloned, and the function of TGR5 in the immune response was explored. The results showed that the ORF of tgr5 gene in hybrid grouper was 1029 bp and encoded 342 amino acids. Activation of TGR5 by INT-777 significantly decreased the activities and mRNA expression of TNFα and IL1β, whereas inhibition of TGR5 by SBI-115 showed the opposite effect. SBI-115 treatment significantly increased the expression of phosphorylated inhibitor κB α (p-IKBα) protein. After the INT-777 treatment, the concentration of protein kinase C (PKC) and expression of the p38 mitogen-activated protein kinases (p38a), p38b and p38c, were significantly decreased in vivo. INT-777 agonist significantly decreased the expression of phosphorylated phosphoinositide 3-kinase (p-PI3K) protein and the ratio of phosphorylated and nonphosphorylated serine/threonine-protein kinase (p-AKT/AKT). In conclusion, activation of hepatic TGR5 inhibited the PKC/P38 MAPK, PI3K/AKT, NFκB signaling pathway and improved hepatic immune responses of hybrid grouper in vivo and in vitro.
Collapse
Affiliation(s)
- Jia Xu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Junming Cao
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| |
Collapse
|
45
|
Maldonado L, Orozco-Aguilar J, Valero-Breton M, Tacchi F, Cifuentes-Silva E, Cabello-Verrugio C. Differential Fibrotic Response of Muscle Fibroblasts, Myoblasts, and Myotubes to Cholic and Deoxycholic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:219-234. [PMID: 37093430 DOI: 10.1007/978-3-031-26163-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fibrosis is a condition characterized by an increase in the components of the extracellular matrix (ECM). In skeletal muscle, the cells that participate in the synthesis of ECM are fibroblasts, myoblasts, and myotubes. These cells respond to soluble factors that increase ECM. Fibrosis is a phenomenon that develops in conditions of chronic inflammation, extensive lesions, or chronic diseases. A pathological condition with muscle weakness and increased bile acids (BA) in the blood is cholestatic chronic liver diseases (CCLD). Skeletal muscle expresses the membrane receptor for BA called TGR5. To date, muscle fibrosis in CCLD has not been evaluated. This study aims to assess whether BA can induce a fibrotic condition in muscle fibroblasts, myoblasts, and myotubes. The cells were incubated with deoxycholic (DCA) and cholic (CA) acids, and fibronectin protein levels were evaluated by Western blot. In muscle fibroblasts, both DCA and CA induced an increase in fibronectin protein levels. The same response was found in fibroblasts when activating TGR5 with the specific receptor agonist (INT-777). Interestingly, DCA reduced fibronectin protein levels in both myoblasts and myotubes, while CA did not show changes in fibronectin protein levels in myoblasts and myotubes. These results suggest that DCA and CA can induce a fibrotic phenotype in muscle-derived fibroblasts. On the other hand, DCA decreased the fibronectin in myoblasts and myotubes, whereas CA did not show any effect in these cell populations. Our results show that BA has different effects depending on the cell population to be analyzed.
Collapse
Affiliation(s)
- Luis Maldonado
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Eduardo Cifuentes-Silva
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, 8370146, Santiago, Chile.
- Faculty of Life Sciences, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
46
|
Wu WS, Chen RF, Cheng CC, Wei JL, Lin CF, You RI, Chen YC, Lee MC, Chen YC. Suppressing of Src-Hic-5-JNK-AKT Signaling Reduced GAPDH Expression for Preventing the Progression of HuCCT1 Cholangiocarcinoma. Pharmaceutics 2022; 14:pharmaceutics14122698. [PMID: 36559193 PMCID: PMC9784408 DOI: 10.3390/pharmaceutics14122698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm of the bile ducts, being the second most common type of cancer in the liver, and most patients are diagnosed at a late stage with poor prognosis. Targeted therapy aiming at receptors tyrosine kinases (RTKs) such as c-Met or EGFR have been developed but with unsatisfactory outcomes. In our recent report, we found several oncogenic molecules downstream of RTKs, including hydrogen peroxide clone-5 (Hic-5), Src, AKT and JNK, were elevated in tissues of a significant portion of metastatic CCAs. By inhibitor studies and a knockdown approach, these molecules were found to be within the same signal cascade responsible for the migration of HuCCT1 cells, a conventionally used CCA cell line. Herein, we also found Src inhibitor dasatinib and Hic-5 siRNA corporately suppressed HuCCT1 cell invasion. Moreover, dasatinib inhibited the progression of the HuCCT1 tumor on SCID mice skin coupled with decreasing the expression of Hic-5 and EGFR and the activities of Src, AKT and JNK. In addition, we found a glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and several cytoskeletal molecules such as tubulin and cofilin were dramatically decreased after a long-term treatment of the HuCCT1 tumor with a high dose of dasatinib. Specifically, GAPDH was shown to be a downstream effector of the Hic-5/Src/AKT cascade involved in HuCCT1 cell migration. On the other hand, TFK1, another CCA cell line without Hic-5 expression, exhibited very low motility, whereas an ectopic Hic-5 expression enhanced the activation of Src and AKT and marginally increased TFK1 migration. In the future, it is tempting to investigate whether cotargeting Src, Hic-5 and/or GAPDH is efficient for preventing CCA progression in future clinical trials.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Rui-Fang Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chuan-Chu Cheng
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Jia-Ling Wei
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chen-Fang Lin
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yen-Chang Chen
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Pathology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|
47
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
48
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
49
|
Olaizola P, Rodrigues PM, Caballero-Camino FJ, Izquierdo-Sanchez L, Aspichueta P, Bujanda L, Larusso NF, Drenth JPH, Perugorria MJ, Banales JM. Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
Affiliation(s)
- Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Francisco J Caballero-Camino
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Patricia Aspichueta
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- Departments of Medicine and Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- Departments of Medicine and Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Nicholas F Larusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Joost P H Drenth
- Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain
- Departments of Medicine and Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
50
|
Structural basis and molecular mechanism of biased GPBAR signaling in regulating NSCLC cell growth via YAP activity. Proc Natl Acad Sci U S A 2022; 119:e2117054119. [PMID: 35858343 PMCID: PMC9303995 DOI: 10.1073/pnas.2117054119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for β-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-β-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.
Collapse
|