1
|
Mao X, Jing M, Wang Y, An W, Ji T. Exploring a novel model for newborn genetic screening in Ningxia, northern China: A retrospective observational study. Medicine (Baltimore) 2024; 103:e41064. [PMID: 39969324 PMCID: PMC11688042 DOI: 10.1097/md.0000000000041064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/05/2024] [Indexed: 02/20/2025] Open
Abstract
The accuracy and precision of quantitative aspects of conventional newborn screening (NBS) are limited due to the complexity of clinical manifestations and the constraints of conventional screening methods. Gene sequencing is commonly employed as an adjunct diagnostic technique to assist in diagnosis. The combined utilization of traditional NBS and newborn genetic screening can effectively reduce false-negative and false-positive rates, thereby enhancing the accuracy and precision of screening, while minimizing the health impact caused by genetic diseases in infants. This study aim to explore the feasibility and effectiveness of newborn genetic screening in Ningxia. For the first time in Ningxia, a genetic sequencing panel based on multiplex PCR technology and next-generation sequencing (NGS) combined with traditional mass spectrometry (MS/MS) was used for initial NBS. This involved the analysis of 134 disease-causing genes covering 74 common inborn disorders. A total of 1837 newborns were screened from January 2020 to December 2021 in the Ningxia region, and 7 positive cases were detected by gene panel among the 1837 newborns including 1 PAH disorder, 1 DUOX2 disorder, 1 G6PD disorder and 4 MT-RNR1 disorders. However, no 1 has yet been detected using traditional NBS. The top ten high-frequency mutant genes detected in the panel test were arranged from high to low as follows: PAH, DUOX2, SLC26A4, GJB2, ATP7B, MMACHC, SLC22A5, ACADS, DUOXA2 and SLC25A13. Population-specific newborn genetic screening can facilitate the progress of genetic defect prevention and treatment.
Collapse
Affiliation(s)
- Xinmei Mao
- Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Miao Jing
- Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Yue Wang
- Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Wenzhen An
- Zhejiang Biosan Biochemical Technologies Co. Ltd, Hangzhou City, Zhejiang Province, China
| | - Taoyun Ji
- Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Christyani G, Carswell M, Qin S, Kim W. An Overview of Advances in Rare Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:1201. [PMID: 38256274 PMCID: PMC10815984 DOI: 10.3390/ijms25021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as the leading global cause of mortality, with rare cancer comprising 230 distinct subtypes characterized by infrequent incidence. Despite the inherent challenges in addressing the diagnosis and treatment of rare cancers due to their low occurrence rates, several biomedical breakthroughs have led to significant advancement in both areas. This review provides a comprehensive overview of state-of-the-art diagnostic techniques that encompass new-generation sequencing and multi-omics, coupled with the integration of artificial intelligence and machine learning, that have revolutionized rare cancer diagnosis. In addition, this review highlights the latest innovations in rare cancer therapeutic options, comprising immunotherapy, targeted therapy, transplantation, and drug combination therapy, that have undergone clinical trials and significantly contribute to the tumor remission and overall survival of rare cancer patients. In this review, we summarize recent breakthroughs and insights in the understanding of rare cancer pathophysiology, diagnosis, and therapeutic modalities, as well as the challenges faced in the development of rare cancer diagnosis data interpretation and drug development.
Collapse
Affiliation(s)
| | | | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| |
Collapse
|
3
|
Pervez MT, Hasnain MJU, Abbas SH, Moustafa MF, Aslam N, Shah SSM. A Comprehensive Review of Performance of Next-Generation Sequencing Platforms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3457806. [PMID: 36212714 PMCID: PMC9537002 DOI: 10.1155/2022/3457806] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Background Next-generation sequencing methods have been developed and proposed to investigate any query in genomics or clinical activity involving DNA. Technical advancement in these sequencing methods has enhanced sequencing volume to several billion nucleotides within a very short time and low cost. During the last few years, the usage of the latest DNA sequencing platforms in a large number of research projects helped to improve the sequencing methods and technologies, thus enabling a wide variety of research/review publications and applications of sequencing technologies. Objective The proposed study is aimed at highlighting the most fast and accurate NGS instruments developed by various companies by comparing output per hour, quality of the reads, maximum read length, reads per run, and their applications in various domains. This will help research institutions and biological/clinical laboratories to choose the sequencing instrument best suited to their environment. The end users will have a general overview about the history of the sequencing technologies, latest developments, and improvements made in the sequencing technologies till now. Results The proposed study, based on previous studies and manufacturers' descriptions, highlighted that in terms of output per hour, Nanopore PromethION outperformed all sequencers. BGI was on the second position, and Illumina was on the third position. Conclusion The proposed study investigated various sequencing instruments and highlighted that, overall, Nanopore PromethION is the fastest sequencing approach. BGI and Nanopore can beat Illumina, which is currently the most popular sequencing company. With respect to quality, Ion Torrent NGS instruments are on the top of the list, Illumina is on the second position, and BGI DNB is on the third position. Secondly, memory- and time-saving algorithms and databases need to be developed to analyze data produced by the 3rd- and 4th-generation sequencing methods. This study will help people to adopt the best suited sequencing platform for their research work, clinical or diagnostic activities.
Collapse
Affiliation(s)
- Muhammad Tariq Pervez
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Mirza Jawad ul Hasnain
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Syed Hassan Abbas
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Mahmoud F. Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Naeem Aslam
- Department of Computer Science, NFCIET, Khanewal Road, Multan, Pakistan
| | | |
Collapse
|
4
|
Cappello F, Angerilli V, Munari G, Ceccon C, Sabbadin M, Pagni F, Fusco N, Malapelle U, Fassan M. FFPE-Based NGS Approaches into Clinical Practice: The Limits of Glory from a Pathologist Viewpoint. J Pers Med 2022; 12:750. [PMID: 35629172 PMCID: PMC9146170 DOI: 10.3390/jpm12050750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023] Open
Abstract
The introduction of next-generation sequencing (NGS) in the molecular diagnostic armamentarium is deeply changing pathology practice and laboratory frameworks. NGS allows for the comprehensive molecular characterization of neoplasms, in order to provide the best treatment to oncologic patients. On the other hand, NGS raises technical issues and poses several challenges in terms of education, infrastructures and costs. The aim of this review is to give an overview of the main NGS sequencing platforms that can be used in current molecular diagnostics and gain insights into the clinical applications of NGS in precision oncology. Hence, we also focus on the preanalytical, analytical and interpretative issues raised by the incorporation of NGS in routine pathology diagnostics.
Collapse
Affiliation(s)
- Filippo Cappello
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
| | - Valentina Angerilli
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
| | - Giada Munari
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (G.M.); (M.S.)
| | - Carlotta Ceccon
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
| | - Marianna Sabbadin
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (G.M.); (M.S.)
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University Milan Bicocca, 20900 Milan, Italy;
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (F.C.); (V.A.); (C.C.)
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (G.M.); (M.S.)
| |
Collapse
|
5
|
Fjaellegaard K, Koefod Petersen J, Andersen G, Biagini M, Bhatnagar R, Laursen CB, Clementsen PF, Bodtger U. The prevalence of tumour markers in malignant pleural effusions associated with primary pulmonary adenocarcinoma: a retrospective study. Eur Clin Respir J 2021; 8:1984375. [PMID: 34745460 PMCID: PMC8567952 DOI: 10.1080/20018525.2021.1984375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Oncological treatment of primary pulmonary adenocarcinoma (AC) includes drugs targeting the pathways involving programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK). The aim of the study was to report the prevalence of these tumour markers in pleural fluid with cytology positive for pulmonary AC and the potential influence of volume pleural fluid tested. Methods We retrospectively reviewed all thoracenteses performed in a two-year period at our interventional unit at Department of Respiratory Medicine at Zealand University Hospital Naestved, Denmark. ALK and PD-L1 testing was done using immunohistochemistry and EGFR testing using next-generation sequencing. We included pleural fluid specimens containing malignant cells originating from primary pulmonary AC and with at least one tumour marker requested by the clinicians. Results When screening 927 pleural fluid specimens, we identified 57 in accordance with the inclusion criteria. PD-L1, ALK and EGFR were obtained in 35/55 (64%), 38/57 (67%) and 26/47 (55%), respectively. The prevalence did not increase when analysing volumes > 50 mL (p = 0.21–0.58) Conclusion Tumour markers in pleural fluid specimens containing cells from pulmonary AC can be demonstrated in more than half of the cases. Therefore, supplementary invasive procedures than thoracentesis could potentially await these analyses.
Collapse
Affiliation(s)
- Katrine Fjaellegaard
- Department of Respiratory Medicine, Zealand University Hospital Naestved, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jesper Koefod Petersen
- Department of Respiratory Medicine, Zealand University Hospital Naestved, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Gitte Andersen
- Department of Pathology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Matteo Biagini
- Department of Pathology, Zealand University Hospital Roskilde, Roskilde, Denmark
| | - Rahul Bhatnagar
- Department of Respiratory Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol, UK.,Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Christian B Laursen
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark.,Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Paul Frost Clementsen
- Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark.,Copenhagen Academy for Medical Education and Simulation (CAMES), Rigshospitalet, University of Copenhagen and the Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Bodtger
- Department of Respiratory Medicine, Zealand University Hospital Naestved, Naestved, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Internal Medicine, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
6
|
Lv A, Tu Z, Huang Y, Lu W, Xie B. Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol Lett 2020; 21:54. [PMID: 33281965 PMCID: PMC7709555 DOI: 10.3892/ol.2020.12316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
Exosomal microRNAs (miRs/miRNAs) have been reported to be associated with cervical cancer. The aim of the present study was to investigate circulating exosomal miRNA as a biomarker for cervical cancer diagnosis. In the present study, samples from 6 patients with cervical cancer and 6 healthy control subjects were retrieved for exosomal RNA-sequencing. The results revealed that a total of 39 miRNAs were differentially expressed between patients with cervical cancer and healthy controls (P<0.001; fold-change >2.0). Exosomal miR-125a-5p was further quantified in plasma from 60 subjects, which included 22 healthy individuals and 38 patients with cervical cancer. miR-16a-5p served as the reference miRNA for quantitative PCR analysis of exosomal miR-125a-5p in patients with cervical cancer and healthy individuals. The results revealed that exosomal miR-125a-5p expression levels in the patients with cervical cancer were significantly lower than those in the healthy controls (P<0.001). Receiver operating characteristic (ROC) curve analyses were performed and the results revealed that the level of plasma exosomal miR-125a-5p was a potential marker for differentiating between non-cervical cancer and cervical cancer, with an ROC area under the curve of 0.7129. At the cut-off value of 2.537 for miR-125a-5p, cervical cancer diagnostic sensitivities and specificities were 59.1 and 84.2%, respectively. The present study provides confirmation that exosomal miR-125a-5p could potentially serve as a biomarker for cervical cancer diagnosis. The present study involved only a small number of clinical samples; more samples are required to support the conclusions of the present study.
Collapse
Affiliation(s)
- Aixia Lv
- Reproductive Center, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Zengrong Tu
- Reproductive Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yunhua Huang
- Reproductive Medicine Center, Hainan Maternal and Children's Medical Center, Haikou, Hainan 570206, P.R. China
| | - Weiying Lu
- Reproductive Medicine Center, Hainan Maternal and Children's Medical Center, Haikou, Hainan 570206, P.R. China.,Reproductive Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Baoguo Xie
- Reproductive Medicine Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
7
|
Delcourt T, Vanneste K, Soumali MR, Coucke W, Ghislain V, Hebrant A, Van Valckenborgh E, De Keersmaecker SCJ, Roosens NH, Van De Walle P, Van Den Bulcke M, Antoniou A. NGS for (Hemato-) Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Quality Assessment Program. Cancers (Basel) 2020; 12:E3180. [PMID: 33138022 PMCID: PMC7692129 DOI: 10.3390/cancers12113180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Next-generation sequencing (NGS) is being integrated into routine clinical practice in the field of (hemato-) oncology to search for variants with diagnostic, prognostic, or therapeutic value at potentially low allelic frequencies. The complex sequencing workflows used require careful validation and continuous quality control. Participation in external quality assessments (EQA) helps laboratories evaluate their performance and guarantee the validity of tests results with the ultimate goal of ensuring high-quality patient care. Here, we describe three benchmarking trials performed during the period 2017-2018 aiming firstly at establishing the state-of-the-art and secondly setting up a NGS-specific EQA program at the national level in the field of clinical (hemato-) oncology in Belgium. DNA samples derived from cell line mixes and artificially mutated cell lines, designed to carry variants of clinical relevance occurring in solid tumors, hematological malignancies, and BRCA1/BRCA2 genes, were sent to Belgian human genetics, anatomic pathology, and clinical biology laboratories, to be processed following routine practices, together with surveys covering technical aspects of the NGS workflows. Despite the wide variety of platforms and workflows currently applied in routine clinical practice, performance was satisfactory, since participating laboratories identified the targeted variants with success rates ranging between 93.06% and 97.63% depending on the benchmark, and few false negative or repeatability issues were identified. However, variant reporting and interpretation varied, underlining the need for further standardization. Our approach showcases the feasibility of developing and implementing EQA for routine clinical practice in the field of (hemato-) oncology, while highlighting the challenges faced.
Collapse
Affiliation(s)
- Thomas Delcourt
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Mohamed Rida Soumali
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Wim Coucke
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Vanessa Ghislain
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Aline Hebrant
- Cancer Centre, Sciensano, 1050 Brussels, Belgium; (A.H.); (E.V.V.); (M.V.D.B.)
| | | | - Sigrid C. J. De Keersmaecker
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Nancy H. Roosens
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Philippe Van De Walle
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Marc Van Den Bulcke
- Cancer Centre, Sciensano, 1050 Brussels, Belgium; (A.H.); (E.V.V.); (M.V.D.B.)
| | - Aline Antoniou
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| |
Collapse
|
8
|
Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms 2020; 8:microorganisms8020305. [PMID: 32098375 PMCID: PMC7075021 DOI: 10.3390/microorganisms8020305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023] Open
Abstract
Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops. F. graminearum has been extensively studied to understand its pathogenicity and virulence factors. These studies gained momentum with the advent of next-generation sequencing (NGS) technologies and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and virulence factors of F. graminearum. This current review aimed to trace progress made in discovering F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence factors discovered using NGS, and to some extent, using proteomics. We present more than 100 discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity and virulence factors have already been discovered, more work needs to be done to take advantage of NGS and its companion applications of proteomics.
Collapse
|
9
|
Kron A, Alidousty C, Scheffler M, Merkelbach-Bruse S, Seidel D, Riedel R, Ihle MA, Michels S, Nogova L, Fassunke J, Heydt C, Kron F, Ueckeroth F, Serke M, Krüger S, Grohe C, Koschel D, Benedikter J, Kaminsky B, Schaaf B, Braess J, Sebastian M, Kambartel KO, Thomas R, Zander T, Schultheis AM, Büttner R, Wolf J. Impact of TP53 mutation status on systemic treatment outcome in ALK-rearranged non-small-cell lung cancer. Ann Oncol 2019; 29:2068-2075. [PMID: 30165392 PMCID: PMC6225899 DOI: 10.1093/annonc/mdy333] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background We analyzed whether co-occurring mutations influence the outcome of systemic therapy in ALK-rearranged non-small-cell lung cancer (NSCLC). Patients and methods ALK-rearranged stage IIIB/IV NSCLC patients were analyzed with next-generation sequencing and fluorescence in situ hybridization analyses on a centralized diagnostic platform. Median progression-free survival (PFS) and overall survival (OS) were determined in the total cohort and in treatment-related sub-cohorts. Cox regression analyses were carried out to exclude confounders. Results Among 216 patients with ALK-rearranged NSCLC, the frequency of pathogenic TP53 mutations was 23.8%, while other co-occurring mutations were rare events. In ALK/TP53 co-mutated patients, median PFS and OS were significantly lower compared with TP53 wildtype patients [PFS 3.9 months (95% CI: 2.4–5.6) versus 10.3 months (95% CI: 8.6–12.0), P < 0.001; OS 15.0 months (95% CI: 5.0–24.9) versus 50.0 months (95% CI: 22.9–77.1), P = 0.002]. This difference was confirmed in all treatment-related subgroups including chemotherapy only [PFS first-line chemotherapy 2.6 months (95% CI: 1.3–4.1) versus 6.2 months (95% CI: 1.8–10.5), P = 0.021; OS 2.0 months (95% CI: 0.0–4.6) versus 9.0 months (95% CI: 6.1–11.9), P = 0.035], crizotinib plus chemotherapy [PFS crizotinib 5.0 months (95% CI: 2.9–7.2) versus 14.0 months (95% CI: 8.0–20.1), P < 0.001; OS 17.0 months (95% CI: 6.7–27.3) versus not reached, P = 0.049] and crizotinib followed by next-generation ALK-inhibitor [PFS next-generation inhibitor 5.4 months (95% CI: 0.1–10.7) versus 9.9 months (95% CI: 6.4–13.5), P = 0.039; OS 7.0 months versus 50.0 months (95% CI: not reached), P = 0.001). Conclusions In ALK-rearranged NSCLC co-occurring TP53 mutations predict an unfavorable outcome of systemic therapy. Our observations encourage future research to understand the underlying molecular mechanisms and to improve treatment outcome of the ALK/TP53 co-mutated subgroup.
Collapse
Affiliation(s)
- A Kron
- Network Genomic Medicine, Cologne, Germany; Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - C Alidousty
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - M Scheffler
- Network Genomic Medicine, Cologne, Germany; Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - S Merkelbach-Bruse
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - D Seidel
- Center for Integrated Oncology Köln Bonn, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - R Riedel
- Network Genomic Medicine, Cologne, Germany; Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - M A Ihle
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - S Michels
- Network Genomic Medicine, Cologne, Germany; Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - L Nogova
- Network Genomic Medicine, Cologne, Germany; Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - J Fassunke
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - C Heydt
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - F Kron
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - F Ueckeroth
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - M Serke
- Network Genomic Medicine, Cologne, Germany; Department of Pneumology, Lungenklinik Hemer des Deutschen Gemeinschafts-Diakonieverbandes GmbH, Hemer, Germany
| | - S Krüger
- Network Genomic Medicine, Cologne, Germany; Department of Pneumology, Florence Nightingale Hospital, Düsseldorf, Germany
| | - C Grohe
- Network Genomic Medicine, Cologne, Germany; Department of Pneumology, Evangelische Lungenklinik Berlin (Paul Gerhardt Diakonie), Berlin, Germany
| | - D Koschel
- Network Genomic Medicine, Cologne, Germany; Department of Pneumology, Fachkrankenhaus Coswig, Coswig, Germany
| | - J Benedikter
- Network Genomic Medicine, Cologne, Germany; Department of Pneumology, Klinikum Bogenhausen, Munich, Germany
| | - B Kaminsky
- Network Genomic Medicine, Cologne, Germany; Department of Pneumology, Krankenhaus Bethanien, Solingen, Germany
| | - B Schaaf
- Network Genomic Medicine, Cologne, Germany; Lung Cancer Center, Klinikum Dortmund GmbH, Dortmund, Germany
| | - J Braess
- Network Genomic Medicine, Cologne, Germany; Department of Oncology and Hematology, Krankenhaus Barmherzige Brueder, Regensburg, Germany
| | - M Sebastian
- Network Genomic Medicine, Cologne, Germany; Department of Oncology and Hematology, University Hospital Frankfurt (Johannes-Wolfgang Goethe Institute), Frankfurt am Main, Germany
| | - K-O Kambartel
- Network Genomic Medicine, Cologne, Germany; Department of Pneumology, Bethanien Hospital Moers-Lungenzentrum, Moers, Germany
| | - R Thomas
- Network Genomic Medicine, Cologne, Germany; Cologne Center for Genomics, University Hospital of Cologne, Cologne, Germany
| | - T Zander
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany
| | - A M Schultheis
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - R Büttner
- Network Genomic Medicine, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany; Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - J Wolf
- Network Genomic Medicine, Cologne, Germany; Lung Cancer Group Cologne, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Center for Integrated Oncology Köln Bonn, Cologne, Germany.
| |
Collapse
|
10
|
Pepe F, De Luca C, Smeraglio R, Pisapia P, Sgariglia R, Nacchio M, Russo M, Serra N, Rocco D, Battiloro C, Ambrosio F, Gragnano G, Vigliar E, Bellevicine C, Troncone G, Malapelle U. Performance analysis of SiRe next-generation sequencing panel in diagnostic setting: focus on NSCLC routine samples. J Clin Pathol 2018; 72:38-45. [PMID: 30279174 DOI: 10.1136/jclinpath-2018-205386] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/14/2023]
Abstract
AIMS Following the development for liquid biopsies of the SiRe next-generation sequencing (NGS) panel that covers 568 clinical relevant mutations in EGFR, KRAS, NRAS, BRAF, cKIT and PDGFRa genes, in this current study, we apply this small NGS panel on tissue samples of lung cancer. METHODS A total of 322 specimens were prospectively tested. Technical parameters were analysed on both cytological and histological samples. In a subset of 75 samples, the EGFR SiRe results were compared with those generated by the European Community (CE)-IVD EGFR assay on Idylla platform. Clinical outcomes of 11 patients treated, on the basis of SiRe results, were also evaluated. RESULTS Only 28 (8.7%) specimens failed to produce a library; out of the 294 remaining samples, a total of 168 somatic mutations were found. In nearly all instances (74/75-99%), the EGFR SiRe results were confirmed by Idylla. In general, SiRe analytical parameters were excellent. However, histological and cytological specimens differed in relation to average reads for sample, mean number of mapped reads, median read length and average reads for amplicon. Treatment outcome evaluation in 11 patients showed a partial response in 82 % (9/11) patients with a median progression-free survival of 340 days. CONCLUSIONS The small gene panel SiRe is a clinically relevant tool useful to widespread the adoption of NGS in predictive molecular pathology laboratories.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Riccardo Smeraglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Maria Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Nicola Serra
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Danilo Rocco
- Oncology, A.O.R.N. Vincenzo Monaldi, Naples, Italy
| | | | | | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Lüsebrink J, Pieper M, Tillmann RL, Brockmann M, Schildgen O, Schildgen V. Pre-clinical validation of a next generation sequencing testing panel. Exp Mol Pathol 2018; 104:170-174. [DOI: 10.1016/j.yexmp.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
|
12
|
Ghosh M, Sharma N, Singh AK, Gera M, Pulicherla KK, Jeong DK. Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture. Crit Rev Biotechnol 2018; 38:1157-1175. [PMID: 29631431 DOI: 10.1080/07388551.2018.1451819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than a quarter of a century, sequencing technologies from Sanger's method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Neelesh Sharma
- b Department of Veterinary Science and Animal Husbandry , Sher-e-Kashmir University of Agricultural Sciences and Technology , R.S. Pura , India
| | - Amit Kumar Singh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Meeta Gera
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | | | - Dong Kee Jeong
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| |
Collapse
|
13
|
Lee A, Lee SH, Jung CK, Park G, Lee KY, Choi HJ, Min KO, Kim TJ, Lee EJ, Lee YS. Use of the Ion AmpliSeq Cancer Hotspot Panel in clinical molecular pathology laboratories for analysis of solid tumours: With emphasis on validation with relevant single molecular pathology tests and the Oncomine Focus Assay. Pathol Res Pract 2018; 214:713-719. [PMID: 29615338 DOI: 10.1016/j.prp.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 11/16/2022]
Abstract
Targeted application of next-generation sequencing (NGS) technology allows detection of specific mutations that can provide treatment opportunities for cancer patients. We evaluated the applicability of the Ion AmpliSeq Cancer Hotspot Panel V2 (CHV2) using formalin-fixed, paraffin-embedded (FFPE) tissue of clinical specimens. Thirty-five FFPE tumour samples with known mutational status were collected from four different hospitals and sequenced with CHV2 using an Ion Chef System and Ion S5 XL system. Out of 35 cases, seven were sequenced with Oncomine focus Assay Panel for comparison. For the limit of detection test, we used an FFPE reference standard, a cell line that included an engineered 50% EGFR T790 M in an RKO cell line background. Coverage analysis results including number of mapped reads, on target percent, mean depth, and uniformity were not different according to hospitals. Sensitivity for mutation detection down to 3% was demonstrated. NGS results showed 100% concordance with the results from single molecular pathology tests Assay in 30 cases with 24 known positive mutations and 14 known negative mutations, and another NGS panel of the Oncomine focus in seven cases. The CHV2 NGS test for solid tumours using Ion chef system and S5 XL system in clinical molecular pathology laboratories for analysis of solid tumours could be routinely used and could replace some single molecular pathology tests after a stringent and thorough validation process.
Collapse
Affiliation(s)
- Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hak Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyungsin Park
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyo Young Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Joo Choi
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Ouk Min
- Department of Hospital Pathology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Use of the Ion PGM and the GeneReader NGS Systems in Daily Routine Practice for Advanced Lung Adenocarcinoma Patients: A Practical Point of View Reporting a Comparative Study and Assessment of 90 Patients. Cancers (Basel) 2018; 10:cancers10040088. [PMID: 29561830 PMCID: PMC5923343 DOI: 10.3390/cancers10040088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
Background: With the integration of various targeted therapies into the clinical management of patients with advanced lung adenocarcinoma, next-generation sequencing (NGS) has become the technology of choice and has led to an increase in simultaneously interrogated genes. However, the broader adoption of NGS for routine clinical practice is still hampered by sophisticated workflows, complex bioinformatics analysis and medical interpretation. Therefore, the performance of the novel QIAGEN GeneReader NGS system was compared to an in-house ISO-15189 certified Ion PGM NGS platform. Methods: Clinical samples from 90 patients (60 Retrospectively and 30 Prospectively) with lung adenocarcinoma were sequenced with both systems. Mutations were analyzed and EGFR, KRAS, BRAF, NRAS, ALK, PIK3CA and ERBB2 genes were compared and sampling time and suitability for clinical testing were assessed. Results: Both sequencing systems showed perfect concordance for the overlapping genes. Correlation of allele frequency was r2 = 0.93 for the retrospective patients and r2 = 0.81 for the prospective patients. Hands-on time and total run time were shorter using the PGM system, while the GeneReader platform provided good traceability and up-to-date interpretation of the results. Conclusion: We demonstrated the suitability of the GeneReader NGS system in routine practice in a clinical pathology laboratory setting.
Collapse
|
15
|
Troncone G. All-in-one: The dream and reality of molecular cytopathology testing on routine lung cancer smears. Cancer Cytopathol 2018; 126:155-157. [PMID: 29364571 DOI: 10.1002/cncy.21962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Liquid Biopsy and Therapeutic Targets: Present and Future Issues in Thoracic Oncology. Cancers (Basel) 2017; 9:cancers9110154. [PMID: 29125548 PMCID: PMC5704172 DOI: 10.3390/cancers9110154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
The practice of liquid biopsy (LB) has revolutionized the care of patients with metastatic lung cancer. Many oncologists now use this approach in daily practice, applying precise procedures for the detection of activating or resistance mutations in EGFR. These tests are performed with plasma DNA and have been approved as companion diagnostic test for patients treated with tyrosine kinase inhibitors. ALK is another important target in lung cancer since it leads to treatment of patients who are positive for a rearrangement in ALK identified with tumor tissue. By analogy with EGFR, LB for detection of genomic alterations in ALK (rearrangements or mutations) has been rapidly adopted in the clinic. However, this promising approach has some limitations and has not yet been disseminated as much as the blood test targeting EGFR. In addition to these two therapeutic targets LB can be used for evaluation of the genomic status of other genes of interest of patients with lung cancer (ROS1, RET, NTRK MET, BRAF, HER2, etc.). LB can be performed to evaluate a specific target or for a more or less complex panel of genes. Considering the number of potential targets for clinical trials, techniques of next-generation sequencing of circulating DNA are on the rise. This review will provide an update on the contribution of LB to care of patients with metastatic lung cancer, including the present limits of this approach, and will consider certain perspectives.
Collapse
|
17
|
ALK in Non-Small Cell Lung Cancer (NSCLC) Pathobiology, Epidemiology, Detection from Tumor Tissue and Algorithm Diagnosis in a Daily Practice. Cancers (Basel) 2017; 9:cancers9080107. [PMID: 28805682 PMCID: PMC5575610 DOI: 10.3390/cancers9080107] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
Patients with advanced-stage non-small cell lung carcinoma (NSCLC) harboring an ALK rearrangement, detected from a tissue sample, can benefit from targeted ALK inhibitor treatment. Several increasingly effective ALK inhibitors are now available for treatment of patients. However, despite an initial favorable response to treatment, in most cases relapse or progression occurs due to resistance mechanisms mainly caused by mutations in the tyrosine kinase domain of ALK. The detection of an ALK rearrangement is pivotal and can be done using different methods, which have variable sensitivity and specificity depending, in particular, on the quality and quantity of the patient’s sample. This review will first highlight briefly some information regarding the pathobiology of an ALK rearrangement and the epidemiology of patients harboring this genomic alteration. The different methods used to detect an ALK rearrangement as well as their advantages and disadvantages will then be examined and algorithms proposed for detection in daily routine practice.
Collapse
|