1
|
Kotemul K, Chaiwut R, Putpim C, Pata S, Laopajon W, Tayapiwatana C, Kasinrerk W, Takheaw N. Evaluating the immune effector functions induced by humanized anti-CD99 antibody in eliminating T lymphoblastic leukemia/lymphoma cells. Discov Oncol 2025; 16:514. [PMID: 40214906 PMCID: PMC11992260 DOI: 10.1007/s12672-025-02281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as targeted immunotherapies with clinical effectiveness and low adverse effects for various cancers. However, antibody drugs for treating aggressive T cell malignancies, T lymphoblastic leukemia/lymphoma (T-ALL/T-LBL), are still limited. Therefore, a potential mAb for treating T-ALL/T-LBL with minimal toxicity to normal cells needs to be developed. We have previously demonstrated that our in-house produced mouse anti-human CD99 mAb MT99/3 and its humanized version, HuMT99/3, which recognize a newly identified epitope of CD99 can induce apoptosis of T-ALL/T-LBL cells without affecting non-malignant peripheral blood cells. Nevertheless, the immune effector functions activated by HuMT99/3 against T-ALL/T-LBL cells remain unexplored. In this study, we evaluated the anticancer activities of HuMT99/3 against T-ALL/T-LBL cells via immune effector functions. T-ALL/T-LBL cell lines were used as target cells, including Jurkat E6.1, MOLT-4, and SUP-T1. The results demonstrated that HuMT99/3 could mediate potent antibody-dependent cellular cytotoxicity (ADCC) activity to kill all cell lines by activating the Fc receptor CD16 on effector cells. HuMT99/3 significantly enhanced the phagocytosis of monocytes on all three malignant T cell lines through antibody-dependent cellular phagocytosis (ADCP) activity. In addition, HuMT99/3 could activate complement to destroy T-ALL cell lines through complement-dependent cytotoxicity (CDC) activity, without affecting the T-LBL cell line and normal PBMCs. Furthermore, the mAb MT99/3 significantly inhibited tumor growth in a T-ALL xenograft model. These findings provide valuable insights into the development of monoclonal antibodies targeting CD99 as promising therapeutics for T-ALL/T-LBL treatment with minimal toxicity to normal peripheral blood cells.
Collapse
Affiliation(s)
- Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Molecular and Cell Biology, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ratthakorn Chaiwut
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Sunila BG, Dhanushkumar T, Dasegowda KR, Vasudevan K, Rambabu M. Unraveling the molecular landscape of Ataxia Telangiectasia: Insights into Neuroinflammation, immune dysfunction, and potential therapeutic target. Neurosci Lett 2024; 828:137764. [PMID: 38582325 DOI: 10.1016/j.neulet.2024.137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Ataxia Telangiectasia (AT) is a genetic disorder characterized by compromised DNA repair, cerebellar degeneration, and immune dysfunction. Understanding the molecular mechanisms driving AT pathology is crucial for developing targeted therapies. METHODS In this study, we conducted a comprehensive analysis to elucidate the molecular mechanisms underlying AT pathology. Using publicly available RNA-seq datasets comparing control and AT samples, we employed in silico transcriptomics to identify potential genes and pathways. We performed differential gene expression analysis with DESeq2 to reveal dysregulated genes associated with AT. Additionally, we constructed a Protein-Protein Interaction (PPI) network to explore the interactions between proteins implicated in AT. RESULTS The network analysis identified hub genes, including TYROBP and PCP2, crucial in immune regulation and cerebellar function, respectively. Furthermore, pathway enrichment analysis unveiled dysregulated pathways linked to AT pathology, providing insights into disease progression. CONCLUSION Our integrated approach offers a holistic understanding of the complex molecular landscape of AT and identifies potential targets for therapeutic intervention. By combining transcriptomic analysis with network-based methods, we provide valuable insights into the underlying mechanisms of AT pathogenesis.
Collapse
Affiliation(s)
- B G Sunila
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - K R Dasegowda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Majji Rambabu
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| |
Collapse
|
3
|
Kotemul K, Kasinrerk W, Takheaw N. CD99 tumor associated antigen is a potential target for antibody therapy of T-cell acute lymphoblastic leukemia. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:96-107. [PMID: 38468825 PMCID: PMC10925484 DOI: 10.37349/etat.2024.00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024] Open
Abstract
Monoclonal antibodies (mAbs) are an effective drug for targeted immunotherapy in several cancer types. However, so far, no antibody has been successfully developed for certain types of cancer, including T-cell acute lymphoblastic leukemia (T-ALL). T-ALL is an aggressive hematologic malignancy. T-ALL patients who are treated with chemotherapeutic drugs frequently relapse and become drug resistant. Therefore, antibody-based therapy is promising for T-ALL treatment. To successfully develop an antibody-based therapy for T-ALL, antibodies that induce death in malignant T cells but not in nonmalignant T cells are required to avoid the induction of secondary T-cell immunodeficiency. In this review, CD99 tumor associated antigen, which is highly expressed on malignant T cells and lowly expressed on nonmalignant T cells, is proposed to be a potential target for antibody therapy of T-ALL. Since certain clones of anti-CD99 mAbs induce apoptosis only in malignant T cells, these anti-CD99 mAbs might be a promising antibody drug for the treatment of T-ALL with high efficiency and low adverse effects. Moreover, over the past 25 years, many clones of anti-CD99 mAbs have been studied for their direct effects on T-ALL. These outcomes are gathered here.
Collapse
Affiliation(s)
- Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Peddi NC, Vuppalapati S, Sreenivasulu H, Muppalla SK, Reddy Pulliahgaru A. Guardians of Immunity: Advances in Primary Immunodeficiency Disorders and Management. Cureus 2023; 15:e44865. [PMID: 37809154 PMCID: PMC10560124 DOI: 10.7759/cureus.44865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Primary immunodeficiency disorders (PIDs) are a heterogeneous group of genetic conditions profoundly impacting immune function. The investigation spans various PID categories, offering insights into their distinct pathogenic mechanisms and clinical manifestations. Within the adaptive immune system, B-cell, T-cell, and combined immunodeficiencies are dissected, emphasizing their critical roles in orchestrating effective immune responses. In the realm of the innate immune system, focus is directed toward phagocytes and complement deficiencies, underscoring the pivotal roles of these components in initial defense against infections. Furthermore, the review delves into disorders of immune dysregulation, encompassing hemophagocytic lymphohistiocytosis (HLH), autoimmune lymphoproliferative syndrome (ALPS), immune dysregulation, polyendocrinopathy, enteropathy, and X-linked(IPEX), and autoimmunity polyendocrinopathy candidiasis-ectodermal dystrophy(APECED), elucidating the intricate interplay between immune tolerance and autoimmunity prevention. Diagnostic strategies for PIDs are explored, highlighting advancements in genetic and molecular techniques that enable precise identification of underlying genetic mutations and alterations in immune function. We have also outlined treatment modalities for PIDs, which often entail a multidisciplinary approach involving immunoglobulin replacement, antimicrobial prophylaxis, and, in select cases, hematopoietic stem cell transplantation. Emerging therapies, including gene therapy, hold promise for targeted interventions. In essence, this review encapsulates the complexity of PIDs, emphasizing the critical importance of early diagnosis and tailored therapeutic interventions. As research advances, a clearer understanding of these disorders emerges, fostering optimism for enhanced patient care and management in the future.
Collapse
Affiliation(s)
| | - Sravya Vuppalapati
- General Physician, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| | - Himabindu Sreenivasulu
- General Physician, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| | - Sudheer Kumar Muppalla
- Pediatrics, People's Education Society (PES) Institute of Medical Sciences and Research, kuppam, IND
| | - Apeksha Reddy Pulliahgaru
- Pediatrics, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| |
Collapse
|
5
|
Ganesan N, Ronsmans S, Hoet P. Methods to Assess Proliferation of Stimulated Human Lymphocytes In Vitro: A Narrative Review. Cells 2023; 12:cells12030386. [PMID: 36766728 PMCID: PMC9913443 DOI: 10.3390/cells12030386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The ability to monitor lymphocyte responses is critical for developing our understanding of the immune response in humans. In the current clinical setting, relying on the metabolic incorporation of [3H] thymidine into cellular DNA via a lymphocyte proliferation test (LPT) is the only method that is routinely performed to determine cell proliferation. However, techniques that measure DNA synthesis with a radioactive material such as [3H] thymidine are intrinsically more sensitive to the different stages of the cell cycle, which could lead to over-analyses and the subsequent inaccurate interpretation of the information provided. With cell proliferation assays, the output should preferably provide a direct and accurate measurement of the number of actively dividing cells, regardless of the stimuli properties or length of exposure. In fact, an ideal technique should have the capacity to measure lymphocyte responses on both a quantitative level, i.e., cumulative magnitude of lymphoproliferative response, and a qualitative level, i.e., phenotypical and functional characterization of stimulated immune cells. There are many LPT alternatives currently available to measure various aspects of cell proliferation. Of the nine techniques discussed, we noted that the majority of these LPT alternatives measure lymphocyte proliferation using flow cytometry. Across some of these alternatives, the covalent labelling of cells with a high fluorescence intensity and low variance with minimal cell toxicity while maximizing the number of detectable cell divisions or magnitude of proliferation was achieved. Herein, we review the performance of these different LPT alternatives and address their compatibility with the [3H] thymidine LPT so as to identify the "best" alternative to the [3H] thymidine LPT.
Collapse
Affiliation(s)
- Nirosha Ganesan
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
| | - Steven Ronsmans
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Clinic for Occupational and Environmental Medicine, Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
6
|
Kim J, Scaffidi JC, Coates PT. Off the beaten track: defining the developmental path of T cells through the human thymus. Kidney Int 2020; 98:819-821. [PMID: 32574619 DOI: 10.1016/j.kint.2020.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/20/2022]
Affiliation(s)
- Juewan Kim
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Jacqueline C Scaffidi
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia 5000, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
7
|
Geraud A, Gougis P, Vozy A, Anquetil C, Allenbach Y, Romano E, Funck-Brentano E, Moslehi JJ, Johnson DB, Salem JE. Clinical Pharmacology and Interplay of Immune Checkpoint Agents: A Yin-Yang Balance. Annu Rev Pharmacol Toxicol 2020; 61:85-112. [PMID: 32871087 DOI: 10.1146/annurev-pharmtox-022820-093805] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells have a central role in immune system balance. When activated, they may lead to autoimmune diseases. When too anergic, they contribute to infection spread and cancer proliferation. Immune checkpoint proteins regulate T cell function, including cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) and its ligand (PD-L1). These nodes of self-tolerance may be exploited pharmacologically to downregulate (CTLA-4 agonists) and activate [CTLA-4 and PD-1/PD-L1 antagonists, also called immune checkpoint inhibitors (ICIs)] the immune system.CTLA-4 agonists are used to treat rheumatologic immune disorders and graft rejection. CTLA-4, PD-1, and PD-L1 antagonists are approved for multiple cancer types and are being investigated for chronic viral infections. Notably, ICIs may be associated with immune-related adverse events (irAEs), which can be highly morbid or fatal. CTLA-4 agonism has been a promising method to reverse such life-threatening irAEs. Herein, we review the clinical pharmacology of these immune checkpoint agents with a focus on their interplay in human diseases.
Collapse
Affiliation(s)
- Arthur Geraud
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France; .,Department of Drug Development (DITEP), Gustave Roussy, 94805 Villejuif, France
| | - Paul Gougis
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France;
| | - Aurore Vozy
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France;
| | - Celine Anquetil
- Sorbonne Université, INSERM, Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France
| | - Yves Allenbach
- Sorbonne Université, INSERM, Department of Internal Medicine, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France
| | - Emanuela Romano
- Center for Cancer Immunotherapy, INSERM U932, Institut Curie, 75248 Paris Cedex 05, France
| | - Elisa Funck-Brentano
- Department of General and Oncologic Dermatology, Ambroise-Paré Hospital, AP-HP, EA 4340, Université Paris-Saclay, 92100 Boulogne-Billancourt, France
| | - Javid J Moslehi
- Department of Medicine, Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Douglas B Johnson
- Department of Medicine, Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Joe-Elie Salem
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France; .,Department of Medicine, Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
8
|
Azizi G, Ziaee V, Tavakol M, Alinia T, Yazdai R, Mohammadi H, Abolhassani H, Aghamohammadi A. Approach to the Management of Autoimmunity in Primary Immunodeficiency. Scand J Immunol 2017; 85:13-29. [PMID: 27862144 DOI: 10.1111/sji.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a genetically heterogeneous group of immune disorders that affect distinct elements of the immune system. PID patients are more prone to infections and non-infectious complications, particularly autoimmunity. The concomitance of immunodeficiency and autoimmunity appears to be paradoxical and leads to difficulty in the management of autoimmune complications in PID patients. Therefore, management of autoimmunity in patients with PID requires special considerations because dysregulations and dysfunctions of the immune system along with persistent inflammation impair the process of diagnosis and treatment.
Collapse
Affiliation(s)
- G Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - V Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - M Tavakol
- Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - T Alinia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - R Yazdai
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Abstract
Infections represent an ongoing challenge for immunocompromised patients. Children are particularly vulnerable because of several age-related issues that relate in part to immune prematurity. This review addresses the challenges in managing infections among immunocompromised children and highlights several general principles that guide management. Statement of novelty: This work provides important guidance to clinicians who are involved in the management of pediatric patients with an ever-expanding spectrum of immunocompromising disorders.
Collapse
|
10
|
Kim HK, Waickman AT, Castro E, Flomerfelt FA, Hawk NV, Kapoor V, Telford WG, Gress RE. Distinct IL-7 signaling in recent thymic emigrants versus mature naïve T cells controls T-cell homeostasis. Eur J Immunol 2016; 46:1669-80. [PMID: 27129922 DOI: 10.1002/eji.201546214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/22/2016] [Accepted: 04/25/2016] [Indexed: 01/23/2023]
Abstract
IL-7 is essential for T-cell survival but its availability is limited in vivo. Consequently, all peripheral T cells, including recent thymic emigrants (RTEs) are constantly competing for IL-7 to survive. RTEs are required to replenish TCR diversity and rejuvenate the peripheral T-cell pool. However, it remains unknown how RTEs successfully compete with resident mature T cells for IL-7. Moreover, RTEs express low levels of IL-7 receptors, presumably rendering them even less competitive. Here, we show that, surprisingly, RTEs are more responsive to IL-7 than mature naïve T cells as demonstrated by markedly increased STAT5 phosphorylation upon IL-7 stimulation. Nonetheless, adoptive transfer of RTE cells into lymphopenic host mice resulted in slower IL-7-induced homeostatic proliferation and diminished expansion compared to naïve donor T cells. Mechanistically, we found that IL-7 signaling in RTEs preferentially upregulated expression of Bcl-2, which is anti-apoptotic but also anti-proliferative. In contrast, naïve T cells showed diminished Bcl-2 induction but greater proliferative response to IL-7. Collectively, these data indicate that IL-7 responsiveness in RTE is designed to maximize survival at the expense of reduced proliferation, consistent with RTE serving as a subpopulation of T cells rich in diversity but not in frequency.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - Adam T Waickman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ehydel Castro
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | | | - Nga V Hawk
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - William G Telford
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, Bethesda, MD, USA
| |
Collapse
|
11
|
Azizi G, Ghanavatinejad A, Abolhassani H, Yazdani R, Rezaei N, Mirshafiey A, Aghamohammadi A. Autoimmunity in primary T-cell immunodeficiencies. Expert Rev Clin Immunol 2016; 12:989-1006. [PMID: 27063703 DOI: 10.1080/1744666x.2016.1177458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency diseases (PID) are a genetically heterogeneous group of more than 270 disorders that affect distinct components of both humoral and cellular arms of the immune system. Primary T cell immunodeficiencies affect subjects at the early age of life. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Patients with T-cell PID are prone to life-threatening infections. On the other hand, non-infectious complications such as lymphoproliferative diseases, cancers and autoimmunity seem to be associated with the primary T-cell immunodeficiencies. Autoimmune disorders of all kinds (organ specific or systemic ones) could be subjected to this class of PIDs; however, the most frequent autoimmune disorders are immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). In this review, we discuss the proposed mechanisms of autoimmunity and review the literature reported on autoimmune disorder in each type of primary T-cell immunodeficiencies.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Department of Laboratory Medicine , Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Ghanavatinejad
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Reza Yazdani
- e Department of Immunology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
THEMIS is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect Immun 2014; 83:759-68. [PMID: 25452553 DOI: 10.1128/iai.02586-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We identify an N-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Themis(I23N) homozygous mice show reduced CD4(+) and CD8(+) T lymphocyte numbers. ECM resistance in P. berghei ANKA-infected Themis(I23N) mice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMIS(I23N) protein expression is absent from mutant mice, concurrent with the decreased THEMIS(I23N) stability observed in vitro. Biochemical studies in vitro and functional complementation in vivo in Themis(I23N/+):Lck(-/+) doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses in Themis(I23N) mice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells. Themis(I23N) mice can be used to study the newly discovered association of THEMIS (6p22.33) with inflammatory bowel disease and multiple sclerosis.
Collapse
|
13
|
Velardi E, Tsai JJ, Holland AM, Wertheimer T, Yu VWC, Zakrzewski JL, Tuckett AZ, Singer NV, West ML, Smith OM, Young LF, Kreines FM, Levy ER, Boyd RL, Scadden DT, Dudakov JA, van den Brink MRM. Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. ACTA ACUST UNITED AC 2014; 211:2341-9. [PMID: 25332287 PMCID: PMC4235646 DOI: 10.1084/jem.20131289] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Velardi et al. show that sex steroids regulate thymopoiesis by directly modulating Notch signaling, and provide a novel clinical strategy to boost immune regeneration. Paradoxical to its importance for generating a diverse T cell repertoire, thymic function progressively declines throughout life. This process has been at least partially attributed to the effects of sex steroids, and their removal promotes enhanced thymopoiesis and recovery from immune injury. We show that one mechanism by which sex steroids influence thymopoiesis is through direct inhibition in cortical thymic epithelial cells (cTECs) of Delta-like 4 (Dll4), a Notch ligand crucial for the commitment and differentiation of T cell progenitors in a dose-dependent manner. Consistent with this, sex steroid ablation (SSA) led to increased expression of Dll4 and its downstream targets. Importantly, SSA induced by luteinizing hormone-releasing hormone (LHRH) receptor antagonism bypassed the surge in sex steroids caused by LHRH agonists, the gold standard for clinical ablation of sex steroids, thereby facilitating increased Dll4 expression and more rapid promotion of thymopoiesis. Collectively, these findings not only reveal a novel mechanism underlying improved thymic regeneration upon SSA but also offer an improved clinical strategy for successfully boosting immune function.
Collapse
Affiliation(s)
- Enrico Velardi
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Clinical and Experimental Medicine, University of Perugia, 06122 Perugia, Italy
| | - Jennifer J Tsai
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| | - Amanda M Holland
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021 MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Tobias Wertheimer
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Division of Hematology and Oncology, Department of Medicine, Freiburg University Medical Center, Albert-Ludwigs-University, 79106 Freiburg, Germany
| | - Vionnie W C Yu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 Harvard Stem Cell Institute, Cambridge, MA 02138 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Johannes L Zakrzewski
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Andrea Z Tuckett
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Natalie V Singer
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mallory L West
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Odette M Smith
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Lauren F Young
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Fabiana M Kreines
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Emily R Levy
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 Harvard Stem Cell Institute, Cambridge, MA 02138 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Jarrod A Dudakov
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | - Marcel R M van den Brink
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
14
|
Holland AM, Zakrzewski JL, Tsai JJ, Hanash AM, Dudakov JA, Smith OM, West ML, Singer NV, Brill J, Sun JC, van den Brink MRM. Extrathymic development of murine T cells after bone marrow transplantation. J Clin Invest 2012; 122:4716-26. [PMID: 23160195 DOI: 10.1172/jci60630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function.
Collapse
Affiliation(s)
- Amanda M Holland
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
From murine to human nude/SCID: the thymus, T-cell development and the missing link. Clin Dev Immunol 2012; 2012:467101. [PMID: 22474479 PMCID: PMC3303720 DOI: 10.1155/2012/467101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/09/2011] [Indexed: 11/17/2022]
Abstract
Primary immunodeficiencies (PIDs) are disorders of the immune system, which lead to increased susceptibility to infections. T-cell defects, which may affect T-cell development/function, are approximately 11% of reported PIDs. The pathogenic mechanisms are related to molecular alterations not only of genes selectively expressed in hematopoietic cells but also of the stromal component of the thymus that represents the primary lymphoid organ for T-cell differentiation. With this regard, the prototype of athymic disorders due to abnormal stroma is the Nude/SCID syndrome, first described in mice in 1966. In man, the DiGeorge Syndrome (DGS) has long been considered the human prototype of a severe T-cell differentiation defect. More recently, the human equivalent of the murine Nude/SCID has been described, contributing to unravel important issues of the T-cell ontogeny in humans. Both mice and human diseases are due to alterations of the FOXN1, a developmentally regulated transcription factor selectively expressed in skin and thymic epithelia.
Collapse
|
16
|
Janik DK, Lindau-Shepard B, Comeau AM, Pass KA. A multiplex immunoassay using the Guthrie specimen to detect T-cell deficiencies including severe combined immunodeficiency disease. Clin Chem 2010; 56:1460-5. [PMID: 20660143 DOI: 10.1373/clinchem.2010.144329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Severe combined immunodeficiency (SCID) fulfills many of the requirements for addition to a newborn screening panel. Two newborn screening SCID pilot studies are now underway using the T-cell receptor excision circle (TREC) assay, a molecular technique. Here we describe an immunoassay with CD3 as a marker for T cells and CD45 as a marker for total leukocytes that can be used with the Guthrie specimen. METHODS The multiplexing capabilities of the Luminex platform were used. Antibody pairs were used to capture and detect CD3 and CD45 from a single 3-mm punch of the Guthrie specimen. The assay for each biomarker was developed separately in identical buffers and then combined to create a multiplex assay. RESULTS Using calibrators made from known amounts of leukocytes, a detection limit of 0.25 x 10(6) cells/mL for CD3 and 0.125 x 10(6) cells/mL for CD45 was obtained. Affinity tests showed no cross-reactivity between the antibodies to CD3 and CD45. The multiplex assay was validated against 8 coded specimens of known clinical status and linked to results from the TREC assay that had identified them. All were correctly identified by the CD345 assay. CONCLUSIONS The performance parameters of the CD345 assay met the performance characteristics generally accepted for immunoassays. Our assay classifications of positive specimens concur with previous TREC results. This CD345 assay warrants evaluation as a viable alternative or complement to the TREC assay as a primary screening tool for detecting T-cell immunodeficiencies, including SCID, in Guthrie specimens.
Collapse
Affiliation(s)
- David K Janik
- Biggs Laboratory, Wadsworth Center, Department of Health, NYS, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
17
|
Roelandt PR, Blockmans D. Common variable immunodeficiency (CVID): case report and review of the literature. Acta Clin Belg 2009; 64:355-60. [PMID: 19810426 DOI: 10.1179/acb.2009.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Common variable immunodeficiency (CVID) is an immunodeficiency disease characterized by diminished ability to produce immunoglobulins. CVID has an estimated incidence of 1:10,000 to 1:200,000 (male:female 1:1) and usually presents in the second and third decade, although it also has a peak of incidence in childhood. The exact pathophysiology remains unclear. CVID can be associated with autoimmune, granulomatous and gastrointestinal diseases and patients have a predisposition to malignancies (especially non-Hodgkin lymphoma). Since different organ systems can be affected, all clinicians need to be aware of this entity, especially when confronted with patients with recurrent infections and/or multiple autoimmune diseases.
Collapse
Affiliation(s)
- Ph R Roelandt
- University Hospital Leuven, Department of General Internal Medicine, Herestraat 49, 3000 Leuven, Belgium.
| | | |
Collapse
|