1
|
Haider SA, Sharif R, Sharif F. Multi-Organ Denervation: The Past, Present and Future. J Clin Med 2025; 14:2746. [PMID: 40283576 PMCID: PMC12027612 DOI: 10.3390/jcm14082746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
The sympathetic division of the autonomic nervous system plays a crucial role in maintaining homeostasis, but its overactivity is implicated in various pathological conditions, including hypertension, hyperglycaemia, heart failure, and rheumatoid arthritis. Traditional pharmacotherapies often face limitations such as side effects and poor patient adherence, thus prompting the exploration of device-based multi-organ denervation as a therapeutic strategy. Crucially, this procedure can potentially offer therapeutic benefits throughout the 24 h circadian cycle, described as an "always-on" effect independent of medication compliance and pharmacokinetics. In this comprehensive review, we evaluate the evidence behind targeted multi-organ sympathetic denervation by considering the anatomy and function of the autonomic nervous system, examining the evidence linking sympathetic nervous system overactivity to various cardiometabolic and inflammatory conditions and exploring denervation studies within the literature. So far, renal denervation, developed in 2010, has shown promise in reducing blood pressure and may have broader applications for conditions including arrhythmias, glucose metabolism disorders, heart failure, chronic kidney disease and obstructive sleep apnoea. We review the existing literature surrounding the denervation of other organ systems including the hepatic and splenic arteries, as well as the pulmonary artery and carotid body, which may provide additional physiological benefits and enhance therapeutic effects if carried out simultaneously. Furthermore, we highlight the challenges and future directions for implementing multi-organ sympathetic ablation, emphasising the need for further clinical trials to establish optimal procedural technique, efficacy and safety.
Collapse
Affiliation(s)
- Syedah Aleena Haider
- Department of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Department of Cardiology, University Hospital Galway, H91 YR71 Galway, Ireland;
| | - Ruth Sharif
- Department of Cardiology, University Hospital Galway, H91 YR71 Galway, Ireland;
| | - Faisal Sharif
- Department of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Department of Cardiology, University Hospital Galway, H91 YR71 Galway, Ireland;
| |
Collapse
|
2
|
Getsy PM, Davis J, Coffee GA, Lewis THJ, Lewis SJ. Hypercapnic signaling influences hypoxic signaling in the control of breathing in C57BL6 mice. J Appl Physiol (1985) 2023; 134:1188-1206. [PMID: 36892890 PMCID: PMC10151047 DOI: 10.1152/japplphysiol.00548.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Interactions between hypoxic and hypercapnic signaling pathways, expressed as ventilatory changes occurring during and following a simultaneous hypoxic-hypercapnic gas challenge (HH-C) have not been determined systematically in mice. This study in unanesthetized male C57BL6 mice addressed the hypothesis that hypoxic (HX) and hypercapnic (HC) signaling events display an array of interactions indicative of coordination by peripheral and central respiratory mechanisms. We evaluated the ventilatory responses elicited by hypoxic (HX-C, 10%, O2, 90% N2), hypercapnic (HC-C, 5% CO2, 21%, O2, 90% N2), and HH-C (10% O2, 5%, CO2, 85% N2) challenges to determine whether ventilatory responses elicited by HH-C were simply additive of responses elicited by HX-C and HC-C, or whether other patterns of interactions existed. Responses elicited by HH-C were additive for tidal volume, minute ventilation and expiratory time, among others. Responses elicited by HH-C were hypoadditive of the HX-C and HC-C responses (i.e., HH-C responses were less than expected by simple addition of HX-C and HC-C responses) for frequency of breathing, inspiratory time and relaxation time, among others. In addition, end-expiratory pause increased during HX-C, but decreased during HC-C and HH-C, therefore showing that HC-C responses influenced the HX-C responses when given simultaneously. Return to room-air responses was additive for tidal volume and minute ventilation, among others, whereas they were hypoadditive for frequency of breathing, inspiratory time, peak inspiratory flow, apneic pause, inspiratory and expiratory drives, and rejection index. These data show that HX-C and HH-C signaling pathways interact with one another in additive and often hypoadditive processes.NEW & NOTEWORTHY We present data showing that the ventilatory responses elicited by a hypoxic gas challenge in male C57BL6 mice are markedly altered by coexposure to hypercapnic gas challenge with hypercapnic responses often dominating the hypoxic responses. These data suggest that hypercapnic signaling processes activated within brainstem regions, such as the retrotrapezoid nuclei, may directly modulate the signaling processes within the nuclei tractus solitarius resulting from hypoxic-induced increase in carotid body chemoreceptor input to these nuclei.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jesse Davis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Tristan H J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
3
|
Lazarov NE, Atanasova DY. General Morphology of the Mammalian Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:13-35. [PMID: 37946075 DOI: 10.1007/978-3-031-44757-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The carotid body (CB) is the main peripheral arterial chemoreceptor that registers the levels of pO2, pCO2 and pH in the blood and responds to their changes by regulating breathing. It is strategically located in the bifurcation of each common carotid artery. The organ consists of "glomera" composed of two cell types, glomus and sustentacular cells, interspersed by blood vessels and nerve bundles and separated by connective tissue. The neuron-like glomus or type I cells are considered as the chemosensory cells of the CB. They contain numerous cytoplasmic organelles and dense-cored vesicles that store and release neurotransmitters. They also form both conventional chemical and electrical synapses between each other and are contacted by peripheral nerve endings of petrosal ganglion neurons. The glomus cells are dually innervated by both sensory nerve fibers through the carotid sinus nerve and autonomic fibers of sympathetic origin via the ganglioglomerular nerve. The parasympathetic efferent innervation is relayed by vasomotor fibers of ganglion cells located around or inside the CB. The glial-like sustentacular or type II cells are regarded to be supporting cells although they sustain physiologic neurogenesis in the adult CB and are thus supposed to be progenitor cells as well. The CB is a highly vascularized organ and its intraorgan hemodynamics possibly plays a role in the process of chemoreception.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
4
|
Leonard EM, Nurse CA. The Carotid Body "Tripartite Synapse": Role of Gliotransmission. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:185-194. [PMID: 37322349 DOI: 10.1007/978-3-031-32371-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammals, cardiorespiratory reflexes originating in the carotid body (CB) help maintain homeostasis by matching oxygen supply to oxygen demand. CB output to the brainstem is shaped by synaptic interactions at a "tripartite synapse" consisting of chemosensory (type I) cells, abutting glial-like (type II) cells, and sensory (petrosal) nerve terminals. Type I cells are stimulated by several blood-borne metabolic stimuli, including the novel chemoexcitant lactate. During chemotransduction, type I cells depolarize and release a multitude of excitatory and inhibitory neurotransmitters/neuromodulators including ATP, dopamine (DA), histamine, and angiotensin II (ANG II). However, there is a growing appreciation that the type II cells may not be silent partners. Thus, similar to astrocytes at "tripartite synapses" in the CNS, type II cells may contribute to the afferent output by releasing "gliotransmitters" such as ATP. Here, we first consider whether type II cells can also sense lactate. Next, we review and update the evidence supporting the roles of ATP, DA, histamine, and ANG II in cross talk among the three main CB cellular elements. Importantly, we consider how conventional excitatory and inhibitory pathways, together with gliotransmission, help to coordinate activity within this network and thereby modulate afferent firing frequency during chemotransduction.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada.
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Zhao C, Li C, Zhao B, Liu Y. Expression of group II and III mGluRs in the carotid body and its role in the carotid chemoreceptor response to acute hypoxia. Front Physiol 2022; 13:1008073. [PMID: 36213225 PMCID: PMC9536148 DOI: 10.3389/fphys.2022.1008073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The carotid body (CB) contributes significantly to oxygen sensing. It is unclear, however, whether glutamatergic signaling is involved in the CB response to hypoxia. Previously, we reported that ionotropic glutamate receptors (iGluRs) and multiple glutamate transporters are present in the rat CB. Except for iGluRs, glutamate receptors also include metabotropic glutamate receptors (mGluRs), which are divided into the following groups: Group I (mGluR1/5); group II (mGluR2/3); group III (mGluR4/6/7/8). We have studied the expression of group I mGluRs in the rat CB and its physiological function response to acute hypoxia. To further elucidate the states of mGluRs in the CB, this study’s aim was to investigate the expression of group II and III mGluRs and the response of rat CB to acute hypoxia. We used reverse transcription-polymerase chain reaction (RT-PCR) to observed mRNA expression of GRM2/3/4/6/7/8 subunits by using immunostaining to show the distribution of mGluR2 and mGluR8. The results revealed that the GRM2/3/4/6/7/8 mRNAs were expressed in both rat and human CB. Immunostaining showed that mGluR2 was localized in the type I cells and mGluR8 was localized in type I and type II cells in the rat CB. Moreover, the response of CB to acute hypoxia in rats was recorded by in vitro carotid sinus nerve (CSN) discharge. Perfusion of group II mGluRs agonist or group III mGluRs agonist (LY379268 or L-SOP) was applied to examine the effect of group II and III mGluRs on rat CB response to acute hypoxia. We found that LY379268 and L-SOP inhibited hypoxia-induced enhancement of CSN activity. Based on the above findings, group II and III mGluRs appear to play an inhibitory role in the carotid chemoreceptor response to acute hypoxia.
Collapse
Affiliation(s)
- Chenlu Zhao
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Chaohong Li
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neurorestoratology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- *Correspondence: Yuzhen Liu,
| |
Collapse
|
6
|
Gold OMS, Bardsley EN, Ponnampalam AP, Pauza AG, Paton JFR. Cellular basis of learning and memory in the carotid body. Front Synaptic Neurosci 2022; 14:902319. [PMID: 36046221 PMCID: PMC9420943 DOI: 10.3389/fnsyn.2022.902319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The carotid body is the primary peripheral chemoreceptor in the body, and critical for respiration and cardiovascular adjustments during hypoxia. Yet considerable evidence now implicates the carotid body as a multimodal sensor, mediating the chemoreflexes of a wide range of physiological responses, including pH, temperature, and acidosis as well as hormonal, glucose and immune regulation. How does the carotid body detect and initiate appropriate physiological responses for these diverse stimuli? The answer to this may lie in the structure of the carotid body itself. We suggest that at an organ-level the carotid body is comparable to a miniature brain with compartmentalized discrete regions of clustered glomus cells defined by their neurotransmitter expression and receptor profiles, and with connectivity to defined reflex arcs that play a key role in initiating distinct physiological responses, similar in many ways to a switchboard that connects specific inputs to selective outputs. Similarly, within the central nervous system, specific physiological outcomes are co-ordinated, through signaling via distinct neuronal connectivity. As with the brain, we propose that highly organized cellular connectivity is critical for mediating co-ordinated outputs from the carotid body to a given stimulus. Moreover, it appears that the rudimentary components for synaptic plasticity, and learning and memory are conserved in the carotid body including the presence of glutamate and GABAergic systems, where evidence pinpoints that pathophysiology of common diseases of the carotid body may be linked to deviations in these processes. Several decades of research have contributed to our understanding of the central nervous system in health and disease, and we discuss that understanding the key processes involved in neuronal dysfunction and synaptic activity may be translated to the carotid body, offering new insights and avenues for therapeutic innovation.
Collapse
|
7
|
Gao L, Ortega-Sáenz P, Moreno-Domínguez A, López-Barneo J. Mitochondrial Redox Signaling in O 2-Sensing Chemoreceptor Cells. Antioxid Redox Signal 2022; 37:274-289. [PMID: 35044243 DOI: 10.1089/ars.2021.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Acute responses to hypoxia are essential for the survival of mammals. The carotid body (CB), the main arterial chemoreceptor, contains glomus cells with oxygen (O2)-sensitive K+ channels, which are inhibited during hypoxia to trigger adaptive cardiorespiratory reflexes. Recent Advances: In this review, recent advances in molecular mechanisms of acute O2 sensing in CB glomus cells are discussed, with a special focus on the signaling role of mitochondria through regulating cellular redox status. These advances have been achieved thanks to the use of genetically engineered redox-sensitive green fluorescent protein (roGFP) probes, which allowed us to monitor rapid changes in ROS production in real time in different subcellular compartments during hypoxia. This methodology was used in combination with conditional knockout mice models, pharmacological approaches, and transcriptomic studies. We have proposed a mitochondria-to-membrane signaling model of acute O2 sensing in which H2O2 released in the mitochondrial intermembrane space serves as a signaling molecule to inhibit K+ channels on the plasma membrane. Critical Issues: Changes in mitochondrial reactive oxygen species (ROS) production during acute hypoxia are highly compartmentalized in the submitochondrial regions. The use of redox-sensitive probes targeted to specific compartments is essential to fully understand the role of mitochondrial ROS in acute O2 sensing. Future Directions: Further studies are needed to specify the ROS and to characterize the target(s) of ROS in chemoreceptor cells during acute hypoxia. These data may also contribute to a more complete understanding of the implication of ROS in acute responses to hypoxia in O2-sensing cells in other organs. Antioxid. Redox Signal. 37, 274-289.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
8
|
Li C, Zhao B, Zhao C, Huang L, Liu Y. Metabotropic Glutamate Receptors 1 Regulates Rat Carotid Body Response to Acute Hypoxia via Presynaptic Mechanism. Front Neurosci 2021; 15:741214. [PMID: 34675769 PMCID: PMC8524001 DOI: 10.3389/fnins.2021.741214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The carotid body (CB) plays a critical role in oxygen sensing; however, the role of glutamatergic signaling in the CB response to hypoxia remains uncertain. We previously found that functional multiple glutamate transporters and inotropic glutamate receptors (iGluRs) are expressed in the CB. The aim of this present research is to investigate the expression of group I metabotropic glutamate receptors (mGluRs) (mGluR1 and 5) in the CB and its physiological function in rat CB response to acute hypoxia. Methods: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of group I mGluRs in the human and rat CB. Immunofluorescence staining was performed to examine the cellular localization of mGluR1 in the rat CB. In vitro carotid sinus nerve (CSN) discharge recording was performed to detect the physiological function of mGluR1 in CB response to acute hypoxia. Results: We found that (1) mRNAs of mGluR1 and 5 were both expressed in the human and rat CB. (2) mGluR1 protein rather than mGluR5 protein was present in rat CB. (3) mGluR1 was distributed in type I cells of rat CB. (4) Activation of mGluR1 inhibited the hypoxia-induced enhancement of CSN activity (CSNA), as well as prolonged the latency time of CB response to hypoxia. (5) The inhibitory effect of mGluR1 activation on rat CB response to hypoxia could be blocked by GABAB receptor antagonist. Conclusion: Our findings reveal that mGluR1 in CB plays a presynaptic feedback inhibition on rat CB response to hypoxia.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chenlu Zhao
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lu Huang
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
9
|
Ventilatory responses during and following hypercapnic gas challenge are impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:20557. [PMID: 34663876 PMCID: PMC8523677 DOI: 10.1038/s41598-021-99922-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
The roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.
Collapse
|
10
|
Getsy PM, Sundararajan S, May WJ, von Schill GC, McLaughlin DK, Palmer LA, Lewis SJ. Short-term facilitation of breathing upon cessation of hypoxic challenge is impaired in male but not female endothelial NOS knock-out mice. Sci Rep 2021; 11:18346. [PMID: 34526532 PMCID: PMC8443732 DOI: 10.1038/s41598-021-97322-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
Decreases in arterial blood oxygen stimulate increases in minute ventilation via activation of peripheral and central respiratory structures. This study evaluates the role of endothelial nitric oxide synthase (eNOS) in the expression of the ventilatory responses during and following a hypoxic gas challenge (HXC, 10% O2, 90% N2) in freely moving male and female wild-type (WT) C57BL6 and eNOS knock-out (eNOS-/-) mice. Exposure to HXC caused an array of responses (of similar magnitude and duration) in both male and female WT mice such as, rapid increases in frequency of breathing, tidal volume, minute ventilation and peak inspiratory and expiratory flows, that were subject to pronounced roll-off. The responses to HXC in male eNOS-/- mice were similar to male WT mice. In contrast, several of the ventilatory responses in female eNOS-/- mice (e.g., frequency of breathing, and expiratory drive) were greater compared to female WT mice. Upon return to room-air, male and female WT mice showed similar excitatory ventilatory responses (i.e., short-term potentiation phase). These responses were markedly reduced in male eNOS-/- mice, whereas female eNOS-/- mice displayed robust post-HXC responses that were similar to those in female WT mice. Our data demonstrates that eNOS plays important roles in (1) ventilatory responses to HXC in female compared to male C57BL6 mice; and (2) expression of post-HXC responses in male, but not female C57BL6 mice. These data support existing evidence that sex, and the functional roles of specific proteins (e.g., eNOS) have profound influences on ventilatory processes, including the responses to HXC.
Collapse
Affiliation(s)
- Paulina M. Getsy
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH USA
| | - Sripriya Sundararajan
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.411024.20000 0001 2175 4264Present Address: Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Walter J. May
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Graham C. von Schill
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Dylan K. McLaughlin
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Lisa A. Palmer
- grid.27755.320000 0000 9136 933XPediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Stephen J. Lewis
- grid.67105.350000 0001 2164 3847Department of Pediatrics, Biomedical Research Building BRB 319, Case Western Reserve University, 10900 Euclid Avenue Mail Stop 1714, Cleveland, OH 44106-1714 USA ,grid.67105.350000 0001 2164 3847Department of Pharmacology, Case Western Reserve University, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
11
|
Getsy PM, Sundararajan S, Lewis SJ. Carotid sinus nerve transection abolishes the facilitation of breathing that occurs upon cessation of a hypercapnic gas challenge in male mice. J Appl Physiol (1985) 2021; 131:821-835. [PMID: 34236243 DOI: 10.1152/japplphysiol.01031.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arterial pCO2 elevations increase minute ventilation via activation of chemosensors within the carotid body (CB) and brainstem. Although the roles of CB chemoafferents in the hypercapnic (HC) ventilatory response have been investigated, there are no studies reporting the role of these chemoafferents in the ventilatory responses to a HC challenge or the responses that occur upon return to room air, in freely moving mice. This study found that an HC challenge (5% CO2, 21% O2, 74% N2 for 15 min) elicited an array of responses, including increases in frequency of breathing (accompanied by decreases in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives in sham-operated (SHAM) adult male C57BL6 mice, and that return to room air elicited a brief excitatory phase followed by gradual recovery of all parameters toward baseline values over a 15-min period. The array of ventilatory responses to the HC challenge in mice with bilateral carotid sinus nerve transection (CSNX) performed 7 days previously occurred more slowly but reached similar maxima as SHAM mice. A major finding was responses upon return to room air were dramatically lower in CSNX mice than SHAM mice, and the parameters returned to baseline values within 1-2 min in CSNX mice, whereas it took much longer in SHAM mice. These findings are the first evidence that CB chemoafferents play a key role in initiating the ventilatory responses to HC challenge in C57BL6 mice and are essential for the expression of post-HC ventilatory responses.NEW & NOTEWORTHY This study presents the first evidence that carotid body chemoafferents play a key role in initiating the ventilatory responses, such as increases in frequency of breathing, tidal volume, and minute ventilation that occur in response to a hypercapnic gas challenge in freely moving C57BL6 mice. Our study also demonstrates for the first time that these chemoafferents are essential for the expression of the ventilatory responses that occur upon return to room air in these mice.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western University, Cleveland, Ohio
| | - Sripriya Sundararajan
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stephen J Lewis
- Department of Pediatrics, Case Western University, Cleveland, Ohio.,Department of Pharmacology, Case Western University, Cleveland, Ohio
| |
Collapse
|
12
|
Stocco E, Sfriso MM, Borile G, Contran M, Barbon S, Romanato F, Macchi V, Guidolin D, De Caro R, Porzionato A. Experimental Evidence of A 2A-D 2 Receptor-Receptor Interactions in the Rat and Human Carotid Body. Front Physiol 2021; 12:645723. [PMID: 33935801 PMCID: PMC8082109 DOI: 10.3389/fphys.2021.645723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) are known to be involved in the physiological response to hypoxia, and their expression/activity may be modulated by chronic sustained or intermittent hypoxia. To date, A2AR and D2R can form transient physical receptor–receptor interactions (RRIs) giving rise to a dynamic equilibrium able to influence ligand binding and signaling, as demonstrated in different native tissues and transfected mammalian cell systems. Given the presence of A2AR and D2R in type I cells, type II cells, and afferent nerve terminals of the carotid body (CB), the aim of this work was to demonstrate here, for the first time, the existence of A2AR–D2R heterodimers by in situ proximity ligation assay (PLA). Our data by PLA analysis and tyrosine hydroxylase/S100 colocalization indicated the formation of A2AR–D2R heterodimers in type I and II cells of the CB; the presence of A2AR–D2R heterodimers also in afferent terminals is also suggested by PLA signal distribution. RRIs could play a role in CB dynamic modifications and plasticity in response to development/aging and environmental stimuli, including chronic intermittent/sustained hypoxia. Exploring other RRIs will allow for a broad comprehension of the regulative mechanisms these interactions preside over, with also possible clinical implications.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Maria Martina Sfriso
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Martina Contran
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Silvia Barbon
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Filippo Romanato
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| |
Collapse
|
13
|
Getsy PM, Coffee GA, Lewis SJ. The Role of Carotid Sinus Nerve Input in the Hypoxic-Hypercapnic Ventilatory Response in Juvenile Rats. Front Physiol 2020; 11:613786. [PMID: 33391030 PMCID: PMC7773764 DOI: 10.3389/fphys.2020.613786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
In juvenile rats, the carotid body (CB) is the primary sensor of oxygen (O2) and a secondary sensor of carbon dioxide (CO2) in the blood. The CB communicates to the respiratory pattern generator via the carotid sinus nerve, which terminates within the commissural nucleus tractus solitarius (cNTS). While this is not the only peripheral chemosensory pathway in juvenile rodents, we hypothesize that it has a unique role in determining the interaction between O2 and CO2, and consequently, the response to hypoxic-hypercapnic gas challenges. The objectives of this study were to determine (1) the ventilatory responses to a poikilocapnic hypoxic (HX) gas challenge, a hypercapnic (HC) gas challenge or a hypoxic-hypercapnic (HH) gas challenge in juvenile rats; and (2) the roles of CSN chemoafferents in the interactions between HX and HC signaling in these rats. Studies were performed on conscious, freely moving juvenile (P25) male Sprague Dawley rats that underwent sham-surgery (SHAM) or bilateral transection of the carotid sinus nerves (CSNX) 4 days previously. Rats were placed in whole-body plethysmographs to record ventilatory parameters (frequency of breathing, tidal volume and minute ventilation). After acclimatization, they were exposed to HX (10% O2, 90% N2), HC (5% CO2, 21% O2, 74% N2) or HH (5% CO2, 10% O2, 85% N2) gas challenges for 5 min, followed by 15 min of room-air. The major findings were: (1) the HX, HC and HH challenges elicited robust ventilatory responses in SHAM rats; (2) ventilatory responses elicited by HX alone and HC alone were generally additive in SHAM rats; (3) the ventilatory responses to HX, HC and HH were markedly attenuated in CSNX rats compared to SHAM rats; and (4) ventilatory responses elicited by HX alone and HC alone were not additive in CSNX rats. Although the rats responded to HX after CSNX, CB chemoafferent input was necessary for the response to HH challenge. Thus, secondary peripheral chemoreceptors do not compensate for the loss of chemoreceptor input from the CB in juvenile rats.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A Coffee
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J Lewis
- Department of Pediatrics, Division of Pulmonology, Allergy and Immunology, Case Western Reserve University, Cleveland, OH, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Spiller PF, da Silva MP, Moraes DJA. Lactate does not activate the carotid body of Wistar rat. Respir Physiol Neurobiol 2020; 285:103593. [PMID: 33276092 DOI: 10.1016/j.resp.2020.103593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/06/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
The carotid body's glomus cells are the primary sensors of hypoxia in mammals. Previous studies suggested that the glomus cells' hypoxia sensitivity is mediated by lactate in mice. This molecule increases the intracellular [Ca2+] and induces exocytosis in glomus cells, activating the carotid sinus nerve (the axons of chemoreceptive petrosal neurons). On the other hand, how lactate affects the activity of carotid body of rats is still unknown. We hypothesized that lactate activates the carotid body of rats. In Wistar rats, we measured the changes in the electrical properties of isolated glomus cells and petrosal chemoreceptive neurons in in situ preparations in response to different concentrations of lactate. Superfusion of both physiological and supraphysiological concentrations of lactate did not affect the membrane conductance and potential of glomus cells. Moreover, lactate injected into the carotid body did not activate the anatomically and physiologically identified chemoreceptive petrosal neurons. We conclude that the carotid body of Wistar rats is not sensitive to lactate.
Collapse
Affiliation(s)
- Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Neurotransmitter Modulation of Carotid Body Germinal Niche. Int J Mol Sci 2020; 21:ijms21218231. [PMID: 33153142 PMCID: PMC7662800 DOI: 10.3390/ijms21218231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022] Open
Abstract
The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. Each glomerulus contains neuron-like, O2-sensing glomus cells, which are innervated by sensory fibers of the petrosal ganglion and are located in close contact with a dense network of fenestrated capillaries. In response to hypoxia, glomus cells release transmitters to activate afferent fibers impinging on the respiratory and autonomic centers to induce hyperventilation and sympathetic activation. Glomus cells are embraced by interdigitating processes of sustentacular, glia-like, type II cells. The CB has an extraordinary structural plasticity, unusual for a neural tissue, as it can grow several folds its size in subjects exposed to sustained hypoxia (as for example in high altitude dwellers or in patients with cardiopulmonary diseases). CB growth in hypoxia is mainly due to the generation of new glomeruli and blood vessels. In recent years it has been shown that the adult CB contains a collection of quiescent multipotent stem cells, as well as immature progenitors committed to the neurogenic or the angiogenic lineages. Herein, we review the main properties of the different cell types in the CB germinal niche. We also summarize experimental data suggesting that O2-sensitive glomus cells are the master regulators of CB plasticity. Upon exposure to hypoxia, neurotransmitters and neuromodulators released by glomus cells act as paracrine signals that induce proliferation and differentiation of multipotent stem cells and progenitors, thus causing CB hypertrophy and an increased sensory output. Pharmacological modulation of glomus cell activity might constitute a useful clinical tool to fight pathologies associated with exaggerated sympathetic outflow due to CB overactivation.
Collapse
|
16
|
Stocco E, Barbon S, Tortorella C, Macchi V, De Caro R, Porzionato A. Growth Factors in the Carotid Body-An Update. Int J Mol Sci 2020; 21:ijms21197267. [PMID: 33019660 PMCID: PMC7594035 DOI: 10.3390/ijms21197267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body may undergo plasticity changes during development/ageing and in response to environmental (hypoxia and hyperoxia), metabolic, and inflammatory stimuli. The different cell types of the carotid body express a wide series of growth factors and corresponding receptors, which play a role in the modulation of carotid body function and plasticity. In particular, type I cells express nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, insulin-like-growth factor-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-α and -β, interleukin-1β and -6, tumor necrosis factor-α, vascular endothelial growth factor, and endothelin-1. Many specific growth factor receptors have been identified in type I cells, indicating autocrine/paracrine effects. Type II cells may also produce growth factors and express corresponding receptors. Future research will have to consider growth factors in further experimental models of cardiovascular, metabolic, and inflammatory diseases and in human (normal and pathologic) samples. From a methodological point of view, microarray and/or proteomic approaches would permit contemporary analyses of large groups of growth factors. The eventual identification of physical interactions between receptors of different growth factors and/or neuromodulators could also add insights regarding functional interactions between different trophic mechanisms.
Collapse
|
17
|
Badoer E. The Carotid Body a Common Denominator for Cardiovascular and Metabolic Dysfunction? Front Physiol 2020; 11:1069. [PMID: 32982794 PMCID: PMC7478291 DOI: 10.3389/fphys.2020.01069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
The carotid body is a highly vascularized organ designed to monitor oxygen levels. Reducing oxygen levels in blood results in increased activity of the carotid body cells and reflex increases in sympathetic nerve activity. A key contributor to elevated sympathetic nerve activity in neurogenic forms of hypertension is enhanced peripheral chemoreceptor activity. Hypertension commonly occurs in metabolic disorders, like obesity. Such metabolic diseases are serious global health problems. Yet, the mechanisms contributing to increased sympathetic nerve activity and hypertension in obesity are not fully understood and a better understanding is urgently required. In this review, we examine the literature that suggests that overactivity of the carotid body may also contribute to metabolic disturbances. The purine ATP is an important chemical mediator influencing the activity of the carotid body and the role of purines in the overactivity of the carotid body is explored. We will conclude with the suggestion that tonic overactivity of the carotid body may be a common denominator that contributes to the hypertension and metabolic dysfunction seen in conditions in which metabolic disease exists such as obesity or insulin resistance induced by high caloric intake. Therapeutic treatment targeting the carotid bodies may be a viable treatment since translation to the clinic could be more easily performed than expected via repurposing antagonists of purinergic receptors currently in clinical practice, and the use of other minimally invasive techniques that reduce the overactivity of the carotid bodies which may be developed for such clinical use.
Collapse
Affiliation(s)
- Emilio Badoer
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Leonard EM, Nurse CA. Expanding Role of Dopaminergic Inhibition in Hypercapnic Responses of Cultured Rat Carotid Body Cells: Involvement of Type II Glial Cells. Int J Mol Sci 2020; 21:ijms21155434. [PMID: 32751703 PMCID: PMC7432366 DOI: 10.3390/ijms21155434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/31/2022] Open
Abstract
Dopamine (DA) is a well-studied neurochemical in the mammalian carotid body (CB), a chemosensory organ involved in O2 and CO2/H+ homeostasis. DA released from receptor (type I) cells during chemostimulation is predominantly inhibitory, acting via pre- and post-synaptic dopamine D2 receptors (D2R) on type I cells and afferent (petrosal) terminals respectively. By contrast, co-released ATP is excitatory at postsynaptic P2X2/3R, though paracrine P2Y2R activation of neighboring glial-like type II cells may boost further ATP release. Here, we tested the hypothesis that DA may also inhibit type II cell function. When applied alone, DA (10 μM) had negligible effects on basal [Ca2+]i in isolated rat type II cells. However, DA strongly inhibited [Ca2+]i elevations (Δ[Ca2+]i) evoked by the P2Y2R agonist UTP (100 μM), an effect opposed by the D2/3R antagonist, sulpiride (1-10 μM). As expected, acute hypercapnia (10% CO2; pH 7.4), or high K+ (30 mM) caused Δ[Ca2+]i in type I cells. However, these stimuli sometimes triggered a secondary, delayed Δ[Ca2+]i in nearby type II cells, attributable to crosstalk involving ATP-P2Y2R interactions. Interestingly sulpiride, or DA store-depletion using reserpine, potentiated both the frequency and magnitude of the secondary Δ[Ca2+]i in type II cells. In functional CB-petrosal neuron cocultures, sulpiride potentiated hypercapnia-induced Δ[Ca2+]i in type I cells, type II cells, and petrosal neurons. Moreover, stimulation of type II cells with UTP could directly evoke Δ[Ca2+]i in nearby petrosal neurons. Thus, dopaminergic inhibition of purinergic signalling in type II cells may help control the integrated sensory output of the CB during hypercapnia.
Collapse
Affiliation(s)
- Erin M. Leonard
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 23178); Fax: +1-905-522-6066
| | | |
Collapse
|
19
|
Spiller PF, da Silva CAA, Francescato HDC, Moraes DJA. The role of carotid bodies in the generation of active inspiratory and expiratory responses to exercise in rats. Exp Physiol 2020; 105:1349-1359. [PMID: 32362040 DOI: 10.1113/ep088203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the carotid bodies' contribution to active inspiratory and expiratory response to exercise? What is the main finding and its importance? Removal of the carotid bodies reduced the active inspiratory and expiratory responses of diaphragm and abdominal internal oblique muscles, respectively, to high-intensity, but not to low-intensity, exercise in rats. Removal of the carotid bodies increased P aC O 2 and decreased arterial pH in response to high-intensity exercise. The carotid bodies contribute to the inspiratory and expiratory adjustments to high-intensity exercise in rats. ABSTRACT Exercise involves the interaction of several physiological processes, in which adjustments in pulmonary ventilation occur in response to increased O2 consumption, CO2 production and altered acid-base equilibrium. The peripheral chemoreceptors (carotid bodies; CBs) are sensitive to changes in the chemical composition of arterial blood, and their activation induces active inspiratory and expiratory responses. Herein, we tested the hypothesis that the CBs contribute to the active inspiratory and expiratory responses to exercise in rats. We performed electromyographic recordings of the diaphragm (DiaEMG ) and abdominal internal oblique (AbdEMG ) muscles in rats before and after bilateral removal of the CBs (CBX) during constant-load low-intensity and high-intensity progressive treadmill exercise. We also collected arterial blood samples for gaseous and pH analyses. Similar increases in DiaEMG frequency in both experimental conditions (before and after CBX) during low-intensity exercise were observed, without significant changes in the DiaEMG amplitude. During high-intensity exercise, lower responses of both DiaEMG frequency and DiaEMG amplitude were observed in rats after CBX. The AbdEMG phasic active expiratory response was not significant either before or after CBX during low-intensity exercise. However, CBX reduced the phasic active expiratory responses during high-intensity exercise. The blunted responses of inspiratory and expiratory adjustments to high-intensity exercise after CBX were associated with higher P aC O 2 levels and lower arterial pH values. Our data show that in rats the CBs do not participate in the inspiratory and expiratory responses to low-intensity exercise, but are involved in the respiratory compensation against the metabolic acidosis induced by high-intensity exercise.
Collapse
Affiliation(s)
- Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A A da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Heloísa D C Francescato
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
20
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
21
|
Zera T, Moraes DJA, da Silva MP, Fisher JP, Paton JFR. The Logic of Carotid Body Connectivity to the Brain. Physiology (Bethesda) 2020; 34:264-282. [PMID: 31165684 DOI: 10.1152/physiol.00057.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The carotid body has emerged as a therapeutic target for cardio-respiratory-metabolic diseases. With the expansive functions of the chemoreflex, we sought mechanisms to explain differential control of individual responses. We purport a remarkable correlation between phenotype of a chemosensory unit (glomus cell-sensory afferent) with a distinct component of the reflex response. This logic could permit differential modulation of distinct chemoreflex responses, a strategy ideal for therapeutic exploitation.
Collapse
Affiliation(s)
- Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw , Poland
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
22
|
Sobrino V, Annese V, Pardal R. Progenitor Cell Heterogeneity in the Adult Carotid Body Germinal Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:19-38. [PMID: 31016593 DOI: 10.1007/978-3-030-11096-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Somatic stem cells confer plasticity to adult tissues, permitting their maintenance, repair and adaptation to a changing environment. Adult germinal niches supporting somatic stem cells have been thoroughly characterized throughout the organism, including in central and peripheral nervous systems. Stem cells do not reside alone within their niches, but they are rather accompanied by multiple progenitor cells that not only contribute to the progression of stem cell lineage but also regulate their behavior. Understanding the mechanisms underlying these interactions within the niche is crucial to comprehend associated pathologies and to use stem cells in cell therapy. We have described a stunning germinal niche in the adult peripheral nervous system: the carotid body. This is a chemoreceptor organ with a crucial function during physiological adaptation to hypoxia. We have shown the presence of multipotent stem cells within this niche, escorted by multiple restricted progenitor cell types that contribute to niche physiology and hence organismal adaptation to the lack of oxygen. Herein, we discuss new and existing data about the nature of all these stem and progenitor cell types present in the carotid body germinal niche, discussing their role in physiology and their clinical relevance for the treatment of diverse pathologies.
Collapse
Affiliation(s)
- Verónica Sobrino
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Valentina Annese
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ricardo Pardal
- Dpto. de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
23
|
Tse A, Lee AK, Takahashi N, Gong A, Kasai H, Tse FW. Strong stimulation triggers full fusion exocytosis and very slow endocytosis of the small dense core granules in carotid glomus cells. J Neurogenet 2018; 32:267-278. [PMID: 30484390 DOI: 10.1080/01677063.2018.1497629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chemosensory glomus cells of the carotid bodies release transmitters, including ATP and dopamine mainly via the exocytosis of small dense core granules (SDCGs, vesicular diameter of ∼100 nm). Using carbon-fiber amperometry, we showed previously that with a modest uniform elevation in cytosolic Ca2+ concentration ([Ca2+]i of ∼0.5 µM), SDCGs of rat glomus cells predominantly underwent a "kiss-and-run" mode of exocytosis. Here, we examined whether a larger [Ca2+]i rise influenced the mode of exocytosis. Activation of voltage-gated Ca2+ channels by a train of voltage-clamped depolarizations which elevated [Ca2+]i to ∼1.6 μM increased the cell membrane capacitance by ∼2.5%. At 30 s after such a stimulus, only 5% of the added membrane was retrieved. Flash photolysis of caged-Ca2+ (which elevated [Ca2+]i to ∼16 μM) increased cell membrane capacitance by ∼13%, and only ∼30% of the added membrane was retrieved at 30 s after the UV flash. When exocytosis and endocytosis were monitored using the two-photon excitation and extracellular polar tracer (TEP) imaging of FM1-43 fluorescence in conjunction with photolysis of caged Ca2+, almost uniform exocytosis was detected over the cell's entire surface and it was followed by slow endocytosis. Immunocytochemistry showed that the cytoplasmic densities of dynamin I, II and clathrin (key proteins that mediate endocytosis) in glomus cells were less than half of those in adrenal chromaffin cells, suggesting that a lower expression of endocytotic machinery may underlie the slow endocytosis in glomus cells. An analysis of the relative change in the signals from two fluorescent dyes that simultaneously monitored the addition of vesicular volume and plasma membrane surface area, suggested that with an intense stimulus, SDCGs of glomus cells underwent full fusion without any significant "compound" exocytosis. Therefore, during a severe hypoxic challenge, glomus granules undergo full fusion for a more complete release of transmitters.
Collapse
Affiliation(s)
- Amy Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Andy K Lee
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Noriko Takahashi
- b Department of Physiology , Kitasato University School of Medicine , Sagamihara , Japan
| | - Alex Gong
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Haruo Kasai
- c Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine , The University of Tokyo , Bunkyo-ku , Japan.,d International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo , Bunkyo-ku , Japan
| | - Frederick W Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| |
Collapse
|
24
|
Leonard EM, Zhang M, Nurse CA. Evidence for protein kinase involvement in the 5-HT-[Ca 2+ ] i -pannexin-1 signalling pathway in type II glial cells of the rat carotid body. Exp Physiol 2018; 104:244-253. [PMID: 30456914 DOI: 10.1113/ep087411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/19/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The mammalian carotid body (CB) is a peripheral chemoreceptor organ involved in O2 and CO2 /H+ homeostasis. Recent studies suggest that 5-HT, released from CB receptor cells, can stimulate adjacent glial-like type II cells, leading to an increase in intracellular Ca2+ (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. The aim of this study was to elucidate the role of protein kinases in the 5-HT-[Ca2+ ]i -Panx-1 signalling pathway. What is the main finding and its importance? Src family kinase and protein kinase A, acting downstream from Δ[Ca2+ ]i , played central roles in 5-HT-mediated Panx-1 channel activation. This provides new insight into mechanisms regulating CB excitation, especially in pathophysiological conditions. ABSTRACT Chemoreceptor (type I) cells of the rodent carotid body (CB) synthesize and release several neurotransmitters/neuromodulators, including 5-hydroxytryptamine (5-HT), implicated in enhanced CB excitation after exposure to chronic intermittent hypoxia, e.g. sleep apnoea. However, recent studies suggest that 5-HT can robustly stimulate adjacent glial-like type II cells via ketanserin-sensitive 5-HT2 receptors, leading to intracellular Ca2+ elevation (Δ[Ca2+ ]i ) and activation of ATP-permeable pannexin-1 (Panx-1) channels. Using dissociated rat CB cultures, we investigated the role of protein kinases in the intracellular signalling pathways in type II cells. In isolated type II cells, 5-HT activated a Panx-1-like inward current (I5-HT ) that was reversibly inhibited by the Src family kinase inhibitor PP2 (1 μm), but not by its inactive analogue, PP3 (1 μm). Moreover, I5-HT was reversibly inhibited (>90%) by H89 (1 μm), a protein kinase A blocker, whereas the protein kinase C blocker GF109203X (2 μm) was largely ineffective. In contrast, the P2Y2R agonist UTP (100 μm) activated Panx-1-like currents that were reversibly inhibited (∼60%) by either H89 or GF109203X. Using fura-2 spectrofluorimetry, the 5-HT-induced Δ[Ca2+ ]i was unaffected by PP2, H89 and GF109293X, suggesting that the kinases acted downstream of the Ca2+ rise. Given that intracellular Ca2+ chelation was previously shown to block receptor-mediated Panx-1 current activation in type II cells, these data suggest that CB neuromodulators use overlapping, but not necessarily identical, signalling pathways to activate Panx-1 channels and release ATP, a CB excitatory neurotransmitter. In conclusion, these studies provide new mechanistic insight into 5-HT signalling in the CB that has pathophysiological relevance.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Moraes DJA, da Silva MP, Spiller PF, Machado BH, Paton JFR. Purinergic plasticity within petrosal neurons in hypertension. Am J Physiol Regul Integr Comp Physiol 2018; 315:R963-R971. [PMID: 29949411 DOI: 10.1152/ajpregu.00142.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The carotid bodies are peripheral chemoreceptors and contribute to the homeostatic maintenance of arterial levels of O2, CO2, and [H+]. They have attracted much clinical interest recently because of the realization that aberrant signaling in these organs is associated with several pathologies including hypertension. Herein, we describe data suggesting that sympathetic overactivity in neurogenic hypertension is, at least in part, dependent on carotid body tonicity and hyperreflexia that is related to changes in the electrophysiological properties of chemoreceptive petrosal neurons. We present results showing critical roles for both ATP levels in the carotid bodies and expression of P2X3 receptors in petrosal chemoreceptive, but not baroreceptive, terminals in the etiology of carotid body tonicity and hyperreflexia. We discuss mechanisms that may underlie the changes in electrophysiological properties and P2X3 receptor expression in chemoreceptive petrosal neurons, as well as factors affecting ATP release by cells within the carotid bodies. Our findings support the notion of targeting the carotid bodies to reduce sympathetic outflow and arterial pressure, emphasizing the potential clinical importance of modulating purinergic transmission to treat pathologies associated with carotid body dysfunction but, importantly, sparing physiological chemoreflex function.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Julian F R Paton
- Cardiovascular Autonomic Research Cluster, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
26
|
Porzionato A, Stocco E, Guidolin D, Agnati L, Macchi V, De Caro R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front Physiol 2018; 9:697. [PMID: 29930516 PMCID: PMC6000251 DOI: 10.3389/fphys.2018.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In the carotid body (CB), a wide series of neurotransmitters and neuromodulators have been identified. They are mainly produced and released by type I cells and act on many different ionotropic and metabotropic receptors located in afferent nerve fibers, type I and II cells. Most metabotropic receptors are G protein-coupled receptors (GPCRs). In other transfected or native cells, GPCRs have been demonstrated to establish physical receptor–receptor interactions (RRIs) with formation of homo/hetero-complexes (dimers or receptor mosaics) in a dynamic monomer/oligomer equilibrium. RRIs modulate ligand binding, signaling, and internalization of GPCR protomers and they are considered of relevance for physiology, pharmacology, and pathology of the nervous system. We hypothesize that RRI may also occur in the different structural elements of the CB (type I cells, type II cells, and afferent fibers), with potential implications in chemoreception, neuromodulation, and tissue plasticity. This ‘working hypothesis’ is supported by literature data reporting the contemporary expression, in type I cells, type II cells, or afferent terminals, of GPCRs which are able to physically interact with each other to form homo/hetero-complexes. Functional data about cross-talks in the CB between different neurotransmitters/neuromodulators also support the hypothesis. On the basis of the above findings, the most significant homo/hetero-complexes which could be postulated in the CB include receptors for dopamine, adenosine, ATP, opioids, histamine, serotonin, endothelin, galanin, GABA, cannabinoids, angiotensin, neurotensin, and melatonin. From a methodological point of view, future studies should demonstrate the colocalization in close proximity (less than 10 nm) of the above receptors, through biophysical (i.e., bioluminescence/fluorescence resonance energy transfer, protein-fragment complementation assay, total internal reflection fluorescence microscopy, fluorescence correlation spectroscopy and photoactivated localization microscopy, X-ray crystallography) or biochemical (co-immunoprecipitation, in situ proximity ligation assay) methods. Moreover, functional approaches will be able to show if ligand binding to one receptor produces changes in the biochemical characteristics (ligand recognition, decoding, and trafficking processes) of the other(s). Plasticity aspects would be also of interest, as development and environmental stimuli (chronic continuous or intermittent hypoxia) produce changes in the expression of certain receptors which could potentially invest the dynamic monomer/oligomer equilibrium of homo/hetero-complexes and the correlated functional implications.
Collapse
Affiliation(s)
| | - Elena Stocco
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Luigi Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | | |
Collapse
|
27
|
Porzionato A, Macchi V, Stecco C, De Caro R. The Carotid Sinus Nerve-Structure, Function, and Clinical Implications. Anat Rec (Hoboken) 2018; 302:575-587. [PMID: 29663677 DOI: 10.1002/ar.23829] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/24/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Interest has been renewed in the anatomy and physiology of the carotid sinus nerve (CSN) and its targets (carotid sinus and carotid body, CB), due to recent proposals of surgical procedures for a series of common pathologies, such as carotid sinus syndrome, hypertension, heart failure, and insulin resistance. The CSN originates from the glossopharyngeal nerve soon after its appearance from the jugular foramen. It shows frequent communications with the sympathetic trunk (usually at the level of the superior cervical ganglion) and the vagal nerve (main trunk, pharyngeal branches, or superior laryngeal nerve). It courses on the anterior aspect of the internal carotid artery to reach the carotid sinus, CB, and/or intercarotid plexus. In the carotid sinus, type I (dynamic) carotid baroreceptors have larger myelinated A-fibers; type II (tonic) baroreceptors show smaller A- and unmyelinated C-fibers. In the CB, afferent fibers are mainly stimulated by acetylcholine and ATP, released by type I cells. The neurons are located in the petrosal ganglion, and centripetal fibers project on to the solitary tract nucleus: chemosensory inputs to the commissural subnucleus, and baroreceptor inputs to the commissural, medial, dorsomedial, and dorsolateral subnuclei. The baroreceptor component of the CSN elicits sympatho-inhibition and the chemoreceptor component stimulates sympatho-activation. Thus, in refractory hypertension and heart failure (characterized by increased sympathetic activity), baroreceptor electrical stimulation, and CB removal have been proposed. Instead, denervation of the carotid sinus has been proposed for the "carotid sinus syndrome." Anat Rec, 302:575-587, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Carla Stecco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| |
Collapse
|
28
|
Leonard EM, Salman S, Nurse CA. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia. Front Physiol 2018; 9:225. [PMID: 29615922 PMCID: PMC5864924 DOI: 10.3389/fphys.2018.00225] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O2 availability (hypoxia) and elevated CO2/H+ (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Shaima Salman
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
29
|
Nurse CA, Leonard EM, Salman S. Role of glial-like type II cells as paracrine modulators of carotid body chemoreception. Physiol Genomics 2018. [PMID: 29521602 DOI: 10.1152/physiolgenomics.00142.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO2 (hypoxemia) and elevated CO2/H+ (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca2+-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca2+, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca2+ signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Erin M Leonard
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Shaima Salman
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
30
|
Sobrino V, González-Rodríguez P, Annese V, López-Barneo J, Pardal R. Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Rep 2018; 19:embr.201744598. [PMID: 29335248 DOI: 10.15252/embr.201744598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023] Open
Abstract
Unlike other neural peripheral organs, the adult carotid body (CB) has a remarkable structural plasticity, as it grows during acclimatization to hypoxia. The CB contains neural stem cells that can differentiate into oxygen-sensitive glomus cells. However, an extended view is that, unlike other catecholaminergic cells of the same lineage (sympathetic neurons or chromaffin cells), glomus cells can divide and thus contribute to CB hypertrophy. Here, we show that O2-sensitive mature glomus cells are post-mitotic. However, we describe an unexpected population of pre-differentiated, immature neuroblasts that express catecholaminergic markers and contain voltage-dependent ion channels, but are unresponsive to hypoxia. Neuroblasts are quiescent in normoxic conditions, but rapidly proliferate and differentiate into mature glomus cells during hypoxia. This unprecedented "fast neurogenesis" is stimulated by ATP and acetylcholine released from mature glomus cells. CB neuroblasts, which may have evolved to facilitate acclimatization to hypoxia, could contribute to the CB oversensitivity observed in highly prevalent human diseases.
Collapse
Affiliation(s)
- Verónica Sobrino
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
31
|
Molecular Characterization of Equilibrative Nucleoside Transporters in the Rat Carotid Body and Their Regulation by Chronic Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:43-50. [DOI: 10.1007/978-3-319-91137-3_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Dos Santos E, Sacramento JF, Melo BF, Conde SV. Carotid Body Dysfunction in Diet-Induced Insulin Resistance Is Associated with Alterations in Its Morphology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:103-108. [DOI: 10.1007/978-3-319-91137-3_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Conde SV, Monteiro EC, Sacramento JF. Purines and Carotid Body: New Roles in Pathological Conditions. Front Pharmacol 2017; 8:913. [PMID: 29311923 PMCID: PMC5733106 DOI: 10.3389/fphar.2017.00913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2017] [Indexed: 01/28/2023] Open
Abstract
It is known that adenosine and adenosine-5′-triphosphate (ATP) are excitatory mediators involved in carotid body (CB) hypoxic signaling. The CBs are peripheral chemoreceptors classically defined by O2, CO2, and pH sensors. When hypoxia activates the CB, it induces the release of neurotransmitters from chemoreceptor cells leading to an increase in the action potentials frequency at the carotid sinus nerve (CSN). This increase in the firing frequency of the CSN is integrated in the brainstem to induce cardiorespiratory compensatory responses. In the last decade several pathologies, as, hypertension, diabetes, obstructive sleep apnea and heart failure have been associated with CB overactivation. In the first section of the present manuscript we review in a concise manner fundamental aspects of purine metabolism. The second section is devoted to the role of purines on the hypoxic response of the CB, providing the state-of-the art for the presence of adenosine and ATP receptors in the CB; for the role of purines at presynaptic level in CB chemoreceptor cells, as well as, its metabolism and regulation; at postsynaptic level in the CSN activity; and on the ventilatory responses to hypoxia. Recently, we have showed that adenosine is involved in CB hypersensitization during chronic intermittent hypoxia (CIH), which mimics obstructive sleep apnea, since caffeine, a non-selective adenosine receptor antagonist that inhibits A2A and A2B adenosine receptors, decreased CSN chemosensory activity in animals subjected to CIH. Apart from this involvement of adenosine in CB sensitization in sleep apnea, it was recently found that P2X3 ATP receptor in the CB contributes to increased chemoreflex hypersensitivity and hypertension in spontaneously hypertension rats. Therefore the last section of this manuscript is devoted to review the recent findings on the role of purines in CB-mediated pathologies as hypertension, diabetes and sleep apnea emphasizing the potential clinical importance of modulating purines levels and action to treat pathologies associated with CB dysfunction.
Collapse
Affiliation(s)
- Silvia V Conde
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Emilia C Monteiro
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
34
|
Salman S, Vollmer C, McClelland GB, Nurse CA. Characterization of ectonucleotidase expression in the rat carotid body: regulation by chronic hypoxia. Am J Physiol Cell Physiol 2017. [PMID: 28637679 DOI: 10.1152/ajpcell.00328.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carotid body (CB) chemoreflex maintains blood Po2 and Pco2/H+ homeostasis and displays sensory plasticity during exposure to chronic hypoxia. Purinergic signaling via P1 and P2 receptors plays a pivotal role in shaping the afferent discharge at the sensory synapse containing catecholaminergic chemoreceptor (type I) cells, glial-like type II cells, and sensory (petrosal) nerve endings. However, little is known about the family of ectonucleotidases that control synaptic nucleotide levels. Using quantitative PCR (qPCR), we first compared expression levels of ectonucleoside triphosphate diphosphohydrolases (NTPDases1,2,3,5,6) and ecto-5'-nucleotidase (E5'Nt/CD73) mRNAs in juvenile rat CB vs. brain, petrosal ganglia, sympathetic (superior cervical) ganglia, and a sympathoadrenal chromaffin (MAH) cell line. In whole CB extracts, qPCR revealed a high relative expression of surface-located members NTPDase1,2 and E5'Nt/CD73, compared with low NTPDase3 expression. Immunofluorescence staining of CB sections or dissociated CB cultures localized NTPDase2,3 and E5'Nt/CD73 protein to the periphery of type I clusters, and in association with sensory nerve fibers and/or isolated type II cells. Interestingly, in CBs obtained from rats reared under chronic hypobaric hypoxia (~60 kPa, equivalent to 4,300 m) for 5-7 days, in addition to the expected upregulation of tyrosine hydroxylase and VEGF mRNAs, there was a significant upregulation of NTPDase3 and E5'Nt/CD73 mRNA, but a downregulation of NTPDase1 and NTPDase2 relative to normoxic controls. We conclude that NTPDase1,2,3 and E5'Nt/CD73 are the predominant surface-located ectonucleotidases in the rat CB and suggest that their differential regulation during chronic hypoxia may contribute to CB plasticity via control of synaptic ATP, ADP, and adenosine pools.
Collapse
Affiliation(s)
- Shaima Salman
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Cathy Vollmer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Murali S, Zhang M, Nurse CA. Evidence that 5-HT stimulates intracellular Ca 2+ signalling and activates pannexin-1 currents in type II cells of the rat carotid body. J Physiol 2017; 595:4261-4277. [PMID: 28332205 DOI: 10.1113/jp273473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS 5-HT is a neuromodulator released from carotid body (CB) chemoreceptor (type I) cells and facilitates the sensory discharge following chronic intermittent hypoxia (CIH). In the present study, we show that, in addition to type I cells, adjacent glial-like type II cells express functional, ketanserin-sensitive 5-HT2 receptors, and their stimulation increases cytoplasmic Ca2+ derived from intracellular stores. In type II cells, 5-HT activated a ketanserin-sensitive inward current (I5-HT ) that was similar to that (IUTP ) activated by the P2Y2R agonist, UTP. As previously shown for IUTP , I5-HT was inhibited by BAPTA-AM and carbenoxolone (5 μm), a putative blocker of ATP-permeable pannexin (Panx)-1 channels; IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide channel blocker, 10 Panx peptide. Paracrine stimulation of type II cells by 5-HT, leading to ATP release via Panx-1 channels, may contribute to CB excitability, especially in pathophysiological conditions associated with CIH (e.g. obstructive sleep apnoea). ABSTRACT Carotid body (CB) chemoreceptor (type I) cells can synthesize and release 5-HT and increased autocrine-paracrine 5-HT2 receptor signalling contributes to sensory long-term facilitation during chronic intermittent hypoxia (CIH). However, recent studies suggest that adjacent glial-like type II cells can respond to CB paracrine signals by elevating intracellular calcium (Δ[Ca2+ ]i ) and activating carbenoxolone-sensitive, ATP-permeable, pannexin (Panx)-1-like channels. In the present study, using dissociated rat CB cultures, we found that 5-HT induced Δ[Ca2+ ]i responses in a subpopulation of type I cells, as well as in most (∼67%) type II cells identified by their sensitivity to the P2Y2 receptor agonist, UTP. The 5-HT-induced Ca2+ response in type II cells was dose-dependent (EC50 ∼183 nm) and largely inhibited by the 5-HT2A receptor blocker, ketanserin (1 μm), and also arose mainly from intracellular stores. 5-HT also activated an inward current (I5-HT ) in type II cells (EC50 ∼200 nm) that was reversibly inhibited by ketanserin (1-10 nm), the Ca2+ chelator BAPTA-AM (5 μm), and low concentrations of carbenoxolone (5 μm), a putative Panx-1 channel blocker. I5-HT reversed direction at approximately -11 mV and was indistinguishable from the UTP-activated current (IUTP ). Consistent with a role for Panx-1 channels, IUTP was reversibly inhibited by the specific Panx-1 mimetic peptide blocker 10 Panx (100 μm), although not by its scrambled control peptide (sc Panx). Because ATP is an excitatory CB neurotransmitter, it is possible that the contribution of enhanced 5-HT signalling to the increased sensory discharge during CIH may occur, in part, by a boosting of ATP release from type II cells via Panx-1 channels.
Collapse
Affiliation(s)
| | - Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Rajani V, Zhang Y, Revill A, Funk G. The role of P2Y1 receptor signaling in central respiratory control. Respir Physiol Neurobiol 2016; 226:3-10. [DOI: 10.1016/j.resp.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
|
37
|
Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation. Mol Aspects Med 2016; 47-48:90-108. [DOI: 10.1016/j.mam.2015.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
|
38
|
López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 2016; 310:C629-42. [PMID: 26764048 DOI: 10.1152/ajpcell.00265.2015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxygen (O2) is fundamental for cell and whole-body homeostasis. Our understanding of the adaptive processes that take place in response to a lack of O2(hypoxia) has progressed significantly in recent years. The carotid body (CB) is the main arterial chemoreceptor that mediates the acute cardiorespiratory reflexes (hyperventilation and sympathetic activation) triggered by hypoxia. The CB is composed of clusters of cells (glomeruli) in close contact with blood vessels and nerve fibers. Glomus cells, the O2-sensitive elements in the CB, are neuron-like cells that contain O2-sensitive K(+)channels, which are inhibited by hypoxia. This leads to cell depolarization, Ca(2+)entry, and the release of transmitters to activate sensory fibers terminating at the respiratory center. The mechanism whereby O2modulates K(+)channels has remained elusive, although several appealing hypotheses have been postulated. Recent data suggest that mitochondria complex I signaling to membrane K(+)channels plays a fundamental role in acute O2sensing. CB activation during exposure to low Po2is also necessary for acclimatization to chronic hypoxia. CB growth during sustained hypoxia depends on the activation of a resident population of stem cells, which are also activated by transmitters released from the O2-sensitive glomus cells. These advances should foster further studies on the role of CB dysfunction in the pathogenesis of highly prevalent human diseases.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
39
|
Murali S, Nurse CA. Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body. J Physiol 2015; 594:391-406. [PMID: 26537220 DOI: 10.1113/jp271494] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Carotid body chemoreceptors are organized in clusters containing receptor type I and contiguous glial-like type II cells. While type I cells depolarize and release ATP during chemostimulation, the role of type II cells which express purinergic P2Y2 receptors (P2Y2Rs) and ATP-permeable pannexin-1 (Panx-1) channels, is unclear. Here, we show that in isolated rat chemoreceptor clusters, type I cell depolarization induced by hypoxia, hypercapnia, or high K(+) caused delayed intracellular Ca(2+) elevations (Δ[Ca(2+)]i) in nearby type II cells that were inhibited by the P2Y2R blocker suramin, or by the nucleoside hydrolase apyrase. Likewise, stimulation of P2Y2Rs on type II cells caused a delayed, secondary Δ[Ca(2+)]i in nearby type I cells that was inhibited by blockers of Panx-1 channels, adenosine A2A receptors and 5'-ectonucleotidase. We propose that reciprocal crosstalk between type I and type II cells contributes to sensory processing in the carotid body via purinergic signalling pathways. ABSTRACT The mammalian carotid body (CB) is excited by blood-borne stimuli including hypoxia and acid hypercapnia, leading to respiratory and cardiovascular reflex responses. This chemosensory organ consists of innervated clusters of receptor type I cells, ensheathed by processes of adjacent glial-like type II cells. ATP is a major excitatory neurotransmitter released from type I cells and type II cells express purinergic P2Y2 receptors (P2Y2Rs), the activation of which leads to the opening of ATP-permeable, pannexin-1 (Panx-1) channels. While these properties support crosstalk between type I and type II cells during chemotransduction, direct evidence is lacking. To address this, we first exposed isolated rat chemoreceptor clusters to acute hypoxia, isohydric hypercapnia, or the depolarizing stimulus high K(+), and monitored intracellular [Ca(2+)] using Fura-2. As expected, these stimuli induced intracellular [Ca(2+)] elevations (Δ[Ca(2+)]i) in type I cells. Interestingly, however, there was often a delayed, secondary Δ[Ca(2+)]i in nearby type II cells that was reversibly inhibited by the P2Y2R antagonist suramin, or by the nucleoside hydrolase apyrase. By contrast, type II cell stimulation with the P2Y2R agonist uridine-5'-triphosphate (100 μm) often led to a delayed, secondary Δ[Ca(2+)]i response in nearby type I cells that was reversibly inhibited by the Panx-1 blocker carbenoxolone (5 μm). This Δ[Ca(2+)]i response was also strongly inhibited by blockers of either the adenosine A2A receptor (SCH 58261) or of the 5'-ectonucleotidase (AOPCP), suggesting it was due to adenosine arising from breakdown of ATP released through Panx-1 channels. Collectively, these data strongly suggest that purinergic signalling mechanisms mediate crosstalk between CB chemoreceptor and glial cells during chemotransduction.
Collapse
Affiliation(s)
- Sindhubarathi Murali
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
40
|
Vasin MV, Ushakov IB, Antipov VV. Potential Role of Catecholamine Response to Acute Hypoxia in the Modification of the Effects of Radioprotectors. Bull Exp Biol Med 2015; 159:597-600. [PMID: 26459484 DOI: 10.1007/s10517-015-3022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 11/24/2022]
Abstract
Involvement of hormonal response (catecholamine release) to acute hypoxia induced by radioprotectors in modification of their radioprotective properties was studied in experiments on outbred mature female albino mice, female albino rats, and dogs of both sexes. The response intensity was evaluated by the reduction of radioprotective and toxic properties of indralin (a α1-adrenoceptor agonist and a radioprotector). The radioprotective effect of indralin was measured using lethal doses of whole-body γ-irradiation ((60)Co) and its acute toxicity was assessed by LD50. It was found that repeated administration of indralin with 30-60-min intervals was followed by weakening of its radioprotective effect. Similar sensitization effect of indralin was observed after pretreatment with cystamine and epinephrine. Comparison of the severity of sensitization after administration of epinephrine and cystamine in the dose providing radioprotective effect showed that the potential aminothiol-induced release of catecholamines can provide optimal long-term radioprotective effect of epinephrine.
Collapse
Affiliation(s)
- M V Vasin
- State Scientific Centre Institute of Medical and Biological Problems, Russian Academy of Sciences, Moscow, Russia.
| | - I B Ushakov
- State Scientific Centre Institute of Medical and Biological Problems, Russian Academy of Sciences, Moscow, Russia
| | - V V Antipov
- State Scientific Centre Institute of Medical and Biological Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Tissue Dynamics of the Carotid Body Under Chronic Hypoxia: A Computational Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:25-39. [DOI: 10.1007/978-3-319-18440-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Kim D, Kang D. Role of K₂p channels in stimulus-secretion coupling. Pflugers Arch 2014; 467:1001-11. [PMID: 25476848 DOI: 10.1007/s00424-014-1663-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 11/30/2022]
Abstract
Two-pore domain K(+) (K2P) channels are involved in a variety of physiological processes by virtue of their high basal activity and sensitivity to various biological stimuli. One of these processes is secretion of hormones and transmitters in response to stimuli such as hypoxia, acidosis, and receptor agonists. The rise in intracellular [Ca(2+)] ([Ca(2+)]i) that is critical for the secretory event can be achieved by several mechanisms: (a) inhibition of resting (background) K(+) channels, (b) activation of Na(+)/Ca(2+)-permeable channels, and (c) release of Ca(2+) from intracellular stores. Here, we discuss the role of TASK and TREK in stimulus-secretion mechanisms in carotid body chemoreceptor cells and adrenal medullary/cortical cells. Studies show that stimuli such as hypoxia and acidosis cause cell depolarization and transmitter/hormone secretion by inhibition of TASK or TREK. Subsequent elevation of [Ca(2+)]i produced by opening of voltage-dependent Ca(2+) channels then activates a Na(+)-permeable cation channel, presumably to help sustain the depolarization and [Ca(2+)]i. Agonists such as angiotensin II may elevate [Ca(2+)]i via multiple mechanisms involving both inhibition of TASK/TREK and Ca(2+) release from internal stores to cause aldosterone secretion. Thus, inhibition of resting (background) K(+) channels and subsequent activation of voltage-gated Ca(2+) channels and Na(+)-permeable non-selective cation channels may be a common ionic mechanism that lead to hormone and transmitter secretion.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA,
| | | |
Collapse
|
43
|
Guidolin D, Porzionato A, Tortorella C, Macchi V, De Caro R. Fractal analysis of the structural complexity of the connective tissue in human carotid bodies. Front Physiol 2014; 5:432. [PMID: 25414672 PMCID: PMC4220644 DOI: 10.3389/fphys.2014.00432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 12/20/2022] Open
Abstract
The carotid body (CB) may undergo different structural changes during perinatal development, aging, or in response to environmental stimuli. In the previous literature, morphometric approaches to evaluate these changes have considered quantitative first order parameters, such as volumes or densities, while changes in spatial disposition and/or complexity of structural components have not yet been considered. In the present study, different strategies for addressing morphological complexity of CB, apart from the overall amount of each tissue component, were evaluated and compared. In particular, we considered the spatial distribution of connective tissue in the carotid bodies of young control subjects, young opiate-related deaths and aged subjects, through analysis of dispersion (Morisita's index), gray level co-occurrence matrix (entropy, angular second moment, variance, correlation), and fractal analysis (fractal dimension, lacunarity). Opiate-related deaths and aged subjects showed a comparable increase in connective tissue with respect to young controls. However, the Morisita's index (p < 0.05), angular second moment (p < 0.05), fractal dimension (p < 0.01), and lacunarity (p < 0.01) permitted to identify significant differences in the disposition of the connective tissue between these two series. A receiver operating characteristic (ROC) curve was also calculated to evaluate the efficiency of each parameter. The fractal dimension and lacunarity, with areas under the ROC curve of 0.9651 (excellent accuracy) and 0.8835 (good accuracy), respectively, showed the highest discriminatory power. They evidenced higher level of structural complexity in the carotid bodies of opiate-related deaths than old controls, due to more complex branching of intralobular connective tissue. Further analyses will have to consider the suitability of these approaches to address other morphological features of the CB, such as different cell populations, vascularization, and innervation.
Collapse
Affiliation(s)
- Diego Guidolin
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova Padova, Italy
| | - Cinzia Tortorella
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova Padova, Italy
| |
Collapse
|
44
|
Murali S, Zhang M, Nurse CA. Angiotensin II mobilizes intracellular calcium and activates pannexin-1 channels in rat carotid body type II cells via AT1 receptors. J Physiol 2014; 592:4747-62. [PMID: 25172944 DOI: 10.1113/jphysiol.2014.279299] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sindhubarathi Murali
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada, L8S 4K1
| | - Min Zhang
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada, L8S 4K1
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
45
|
Kåhlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 2014; 99:1089-98. [PMID: 24887113 DOI: 10.1113/expphysiol.2014.078873] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies on experimental animals established that the carotid bodies are sensory organs for detecting arterial blood O2 levels and that the ensuing chemosensory reflex is a major regulator of cardiorespiratory functions during hypoxia. However, little information is available on the human carotid body responses to hypoxia. The present study was performed on human carotid bodies obtained from surgical patients undergoing elective head and neck cancer surgery. Our results show that exposing carotid body slices to hypoxia for a period as brief as 5 min markedly facilitates the release of ACh and ATP. Furthermore, prolonged hypoxia for 1 h induces an increased release of interleukin (IL)-1β, IL-4, IL-6, IL-8 and IL-10. Immunohistochemical analysis revealed that type 1 cells of the human carotid body express an array of cytokine receptors as well as hypoxia-inducible factor-1α and hypoxia-inducible factor-2α. Taken together, these results demonstrate that ACh and ATP are released from the human carotid body in response to hypoxia, suggesting that these neurotransmitters, as in several experimental animal models, play a role in hypoxic signalling also in the human carotid body. The finding that the human carotid body releases cytokines in response to hypoxia adds to the growing body of information suggesting that the carotid body may play a role in detecting inflammation, providing a link between the immune system and the nervous system.
Collapse
Affiliation(s)
- Jessica Kåhlin
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Britt Nordlander
- Department of Otorhinolaryngology (ENT), Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nanduri Prabhakar
- Institute for Integrative Physiology & Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
46
|
Abstract
Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H(+) (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
47
|
Porzionato A, Macchi V, De Caro R, Di Giulio C. Inflammatory and immunomodulatory mechanisms in the carotid body. Respir Physiol Neurobiol 2013; 187:31-40. [PMID: 23485800 DOI: 10.1016/j.resp.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Evidence is available about the role of inflammatory/immunological factors in the physiology and plasticity of the carotid body, with potential clinical implications in obstructive sleep apnea syndrome and sudden infant death syndrome. In humans, lymphomonocytic aggregations (chronic carotid glomitis) have been reported in aging and opiate addiction. Glomus cells produce prostaglandin E2 and the cytokines interleukin 1β, interleukin 6 and TNF-α, with corresponding receptors. These factors modulate glomus cell excitability, catecholamine release and/or chemoreceptor discharge. The above cytokines are up-regulated in chronic sustained or intermittent hypoxia, and prevention of these changes, with ibuprofen or dexamethasone, may modulate hypoxia-induced changes in carotid body chemosensitivity. The main transcription factors considered to be involved are NF-kB and HIFs. Circulating immunogens (lipopolysaccharide) and cytokines may also affect peripheral arterial chemoreception, with the carotid body exerting an immunosensing function.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
48
|
De Caro R, Macchi V, Sfriso MM, Porzionato A. Structural and neurochemical changes in the maturation of the carotid body. Respir Physiol Neurobiol 2013; 185:9-19. [DOI: 10.1016/j.resp.2012.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/16/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
|
49
|
Piskuric NA, Nurse CA. Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J Physiol 2012; 591:415-22. [PMID: 23165772 DOI: 10.1113/jphysiol.2012.234377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mammals, peripheral arterial chemoreceptors monitor blood chemicals (e.g. O(2), CO(2), H(+), glucose) and maintain homeostasis via initiation of respiratory and cardiovascular reflexes. Whereas chemoreceptors in the carotid bodies (CBs), located bilaterally at the carotid bifurcation, control primarily respiratory functions, those in the more diffusely distributed aortic bodies (ABs) are thought to regulate mainly cardiovascular functions. Functionally, CBs sense partial pressure of O(2) ( ), whereas ABs are considered sensors of O(2) content. How these organs, with essentially a similar complement of chemoreceptor cells, differentially process these two different types of signals remains enigmatic. Here, we review evidence that implicates ATP as a central mediator during information processing in the CB. Recent data allow an integrative view concerning its interactions at purinergic P2X and P2Y receptors within the chemosensory complex that contains elements of a 'quadripartite synapse'. We also discuss recent studies on the cellular physiology of ABs located near the aortic arch, as well as immunohistochemical evidence suggesting the presence of pathways for P2X receptor signalling. Finally, we present a hypothetical 'quadripartite model' to explain how ATP, released from red blood cells during hypoxia, could contribute to the ability of ABs to sense O(2) content.
Collapse
Affiliation(s)
- Nikol A Piskuric
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
50
|
Carroll JL, Kim I. Carotid chemoreceptor "resetting" revisited. Respir Physiol Neurobiol 2012; 185:30-43. [PMID: 22982216 DOI: 10.1016/j.resp.2012.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022]
Abstract
Carotid body (CB) chemoreceptors transduce low arterial O(2) tension into increased action potential activity on the carotid sinus nerves, which contributes to resting ventilatory drive, increased ventilatory drive in response to hypoxia, arousal responses to hypoxia during sleep, upper airway muscle activity, blood pressure control and sympathetic tone. Their sensitivity to O(2) is low in the newborn and increases during the days or weeks after birth to reach adult levels. This postnatal functional maturation of the CB O(2) response has been termed "resetting" and it occurs in every mammalian species studied to date. The O(2) environment appears to play a key role; the fetus develops in a low O(2) environment throughout gestation and initiation of CB "resetting" after birth is modulated by the large increase in arterial oxygen tension occurring at birth. Although numerous studies have reported age-related changes in various components of the O(2) transduction cascade, how the O(2) environment shapes normal CB prenatal development and postnatal "resetting" remains unknown. Viewing CB "resetting" as environment-driven (developmental) phenotypic plasticity raises important mechanistic questions that have received little attention. This review examines what is known (and not known) about mechanisms of CB functional maturation, with a focus on the role of the O(2) environment.
Collapse
Affiliation(s)
- John L Carroll
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR 72202, United States.
| | | |
Collapse
|