1
|
Namata MJ, Xu J, Habyarimana E, Palakolanu SR, Wang L, Li J. Genome editing in maize and sorghum: A comprehensive review of CRISPR/Cas9 and emerging technologies. THE PLANT GENOME 2025; 18:e70038. [PMID: 40324959 PMCID: PMC12052613 DOI: 10.1002/tpg2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025]
Abstract
The increasing changes in the climate patterns across the globe have deeply affected food systems where unparalleled and unmatched challenges are created. This jeopardizes food security due to an ever-increasing population. The extreme efficiency of C4 crops as compared to C3 crops makes them incredibly significant in securing food safety. C4 crops, maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) in particular, have the ability to withstand osmotic stress induced by oxidative stress. Osmotic stress causes a series of physical changes in a plant thus facilitating reduced water uptake and photosynthesis inhibition, such as membrane tension, cell wall stiffness, and turgor changes. There has been a great advancement in plant breeding brought by introduction of clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology. This technology offers precise alterations to an organism's DNA through targeting specific genes for desired traits in a wide number of crop species. Despite its immense opportunities in plant breeding, it faces limitations such as effective delivery systems, editing efficiency, regulatory concerns, and off-target effects. Future prospects lie in optimizing next-generation techniques, such as prime editing, and developing novel genotype-independent delivery methods. Overall, the transformative role of CRISPR/Cas9 in sorghum and maize breeding underscores the need for responsible and sustainable utilization to address global food security challenges.
Collapse
Affiliation(s)
- Mercy Jocyline Namata
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Jingyi Xu
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | | | - Lihua Wang
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Jieqin Li
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| |
Collapse
|
2
|
Gondalia N, Quiroz LF, Lai L, Singh AK, Khan M, Brychkova G, McKeown PC, Chatterjee M, Spillane C. Harnessing promoter elements to enhance gene editing in plants: perspectives and advances. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1375-1395. [PMID: 40013512 PMCID: PMC12018835 DOI: 10.1111/pbi.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 02/28/2025]
Abstract
Genome-edited plants, endowed with climate-smart traits, have been promoted as tools for strengthening resilience against climate change. Successful plant gene editing (GE) requires precise regulation of the GE machinery, a process controlled by the promoters, which drives its transcription through interactions with transcription factors (TFs) and RNA polymerase. While constitutive promoters are extensively used in GE constructs, their limitations highlight the need for alternative approaches. This review emphasizes the promise of tissue/organ specific as well as inducible promoters, which enable targeted GE in a spatiotemporal manner with no effects on other tissues. Advances in synthetic biology have paved the way for the creation of synthetic promoters, offering refined control over gene expression and augmenting the potential of plant GE. The integration of these novel promoters with synthetic systems presents significant opportunities for precise and conditional genome editing. Moreover, the advent of bioinformatic tools and artificial intelligence is revolutionizing the characterization of regulatory elements, enhancing our understanding of their roles in plants. Thus, this review provides novel insights into the strategic use of promoters and promoter editing to enhance the precision, efficiency and specificity of plant GE, setting the stage for innovative crop improvement strategies.
Collapse
Affiliation(s)
- Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Avinash Kumar Singh
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Peter C. McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| | - Manash Chatterjee
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
- Viridian Seeds Ltd.CambridgeUK
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan InstituteUniversity of GalwayGalwayIreland
| |
Collapse
|
3
|
Chesnokova E, Bal N, Alhalabi G, Balaban P. Regulatory Elements for Gene Therapy of Epilepsy. Cells 2025; 14:236. [PMID: 39937026 PMCID: PMC11816724 DOI: 10.3390/cells14030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
The problem of drug resistance in epilepsy means that in many cases, a surgical treatment may be advised. But this is only possible if there is an epileptic focus, and resective brain surgery may have adverse side effects. One of the promising alternatives is gene therapy, which allows the targeted expression of therapeutic genes in different brain regions, and even in specific cell types. In this review, we provide detailed explanations of some key terms related to genetic engineering, and describe various regulatory elements that have already been used in the development of different approaches to treating epilepsy using viral vectors. We compare a few universal promoters for their strength and duration of transgene expression, and in our description of cell-specific promoters, we focus on elements driving expression in glutamatergic neurons, GABAergic neurons and astrocytes. We also explore enhancers and some other cis-regulatory elements currently used in viral vectors for gene therapy, and consider future perspectives of state-of-the-art technologies for designing new, stronger and more specific regulatory elements. Gene therapy has multiple advantages and should become more common in the future, but there is still a lot to study and invent in this field.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Natalia Bal
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| | - Ghofran Alhalabi
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia;
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia; (E.C.); (P.B.)
| |
Collapse
|
4
|
Chen J, Liu N, Qi H, Neuenkirchen N, Huang Y, Lin H. Piwi regulates the usage of alternative transcription start sites in the Drosophila ovary. Nucleic Acids Res 2025; 53:gkae1160. [PMID: 39657757 PMCID: PMC11724274 DOI: 10.1093/nar/gkae1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Alternative transcription initiation, which refers to the transcription of a gene from different transcription start sites (TSSs), is prevalent across metazoans and has important biological functions. Although transcriptional regulation has been extensively studied, the mechanism that selects one TSS over others within a gene remains elusive. Using the Cap Analysis of Gene Expression sequencing (CAGE-seq) method, we discovered that Piwi, an RNA-binding protein, regulates TSS usage in at least 87 genes. In piwi-deficient Drosophila ovaries, these genes displayed significantly altered TSS usage (ATU). The regulation of TSS usage occurred in both germline and somatic cells in ovaries, as well as in cultured ovarian somatic cells (OSCs). Correspondingly, RNA Polymerase II (Pol II) initiation and elongation at the TSSs of ATU genes were affected in germline-piwi-knockdown ovaries and piwi-knockdown OSCs. Furthermore, we identified a Facilitates Chromatin Transcription (FACT) complex component, Ssrp, that is essential for mRNA elongation, as a novel interactor of Piwi in the nucleus. Temporally controlled knockdown of ssrp affected TSS usage in ATU genes, whereas overexpression of ssrp partially rescued the TSS usage of ATU genes in piwi mutant ovaries. Thus, Piwi may interact with Ssrp to regulate TSS usage in Drosophila ovaries by affecting Pol II initiation and elongation.
Collapse
Affiliation(s)
- Jiaying Chen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Genetics, 333 Cedar St., New Haven, CT 06511, USA
| | - Na Liu
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Hongying Qi
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Yuedong Huang
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| |
Collapse
|
5
|
Ren X, Shi Y, Xiao B, Su X, Shi H, He G, Chen P, Wu D, Shi Y. Gene Doping Detection From the Perspective of 3D Genome. Drug Test Anal 2025. [PMID: 39757126 DOI: 10.1002/dta.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Since the early 20th century, the concept of doping was first introduced. To achieve better athletic performance, chemical substances were used. By the mid-20th century, it became gradually recognized that the illegal use of doping substances can seriously endangered athletes' health and compromised the fairness of sports competitions. Over the past 30 years, the World Anti-Doping Agency (WADA) has established corresponding rules and regulations to prohibit athletes from using doping substances or restrict the use of certain drugs, and isotope, chromatography, and mass spectrometry techniques were accredited to detect doping substances. With the development of gene editing technology, many genetic diseases have been effectively treated, but enabled by the same technology, doping has also the potential to pose a threat to sports in the form of gene doping. WADA has explicitly indicated gene doping in the Prohibited List as a prohibited method (M3) and approved qPCR detection. However, gene doping can easily evade detection, if the target genes' upstream regulatory elements are considered, the task became more challenging. Hi-C experiment driven 3D genome technology, through perspectives such as topologically associating domain (TAD) and chromatin loop, provides a more comprehensive and in-depth understanding of gene regulation and expression, thereby better preventing the potential use of 3D genome level gene doping. In this work, we will explore gene doping from a different perspective by analyzing recent studies on gene doping and explore related genes under 3D genome.
Collapse
Affiliation(s)
- Xinyuan Ren
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Bo Xiao
- Faculty of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianbin Su
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Yi Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Wang D, Xiao S, Shu J, Luo L, Yang M, Calonje M, He H, Song B, Zhou Y. Promoter capture Hi-C identifies promoter-related loops and fountain structures in Arabidopsis. Genome Biol 2024; 25:324. [PMID: 39741350 DOI: 10.1186/s13059-024-03465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete. RESULTS Here, we use promoter capture Hi-C to identify promoter-related loops in Arabidopsis, which shows that gene body, proximal promoter, and intergenic regions can interact with promoters, potentially functioning as distal regulatory elements or enhancers. We find that promoter-related loops mainly repress gene transcription and are associated with ordered chromatin structures, such as topologically associating domains and fountains-chromatin structures not previously identified in Arabidopsis. Cohesin binds to the center of fountains and is involved in their formation. Moreover, fountain strength is positively correlated with the number of promoter-related loops, and the maintenance of these loops is linked to H3K4me3. In atxr3 mutants, which lack the major H3K4me3 methyltransferases in Arabidopsis, the number of promoter-related loops at fountains is reduced, leading to upregulation of fountain-regulated genes. CONCLUSIONS We identify promoter-related loops associated with ordered chromatin structures and reveal the molecular mechanisms involved in fountain formation and maintenance.
Collapse
Affiliation(s)
- Dingyue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Suxin Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jiayue Shu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lingxiao Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF-CSIC), Avenida Américo Vespucio 49, 41092, Seville, Spain
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Baoxing Song
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, Shandong, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
McDonald AL, Boddicker AM, Savenkova MI, Brabb IM, Qi X, Moré DD, Cunha CW, Zhao J, Duttke SH. Efficient small fragment sequencing of human, cattle, and bison miRNA, small RNA, or csRNA-seq libraries using AVITI. BMC Genomics 2024; 25:1157. [PMID: 39614157 DOI: 10.1186/s12864-024-11013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Next-Generation Sequencing (NGS) catalyzed breakthroughs across various scientific domains. Illumina's sequencing by synthesis method has long been central to NGS, but new sequencing methods like Element Biosciences' AVITI technology are emerging. AVITI is reported to offer improved signal-to-noise ratios and cost reductions. However, its reliance on rolling circle amplification, which can be affected by polymer size, raises questions about its effectiveness in sequencing small RNAs (sRNAs) such as microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), and many others. These sRNAs are crucial regulators of gene expression and involved in various biological processes. Additionally, capturing capped small RNAs (csRNA-seq) is a powerful method for mapping active or "nascent" RNA polymerase II transcription initiation in tissues and clinical samples. RESULTS Here, we report a new protocol for seamlessly sequencing short fragments on the AVITI and demonstrate that AVITI and Illumina sequencing technologies equivalently capture human, cattle (Bos taurus), and bison (Bison bison) sRNA or csRNA sequencing libraries, increasing confidence in both sequencing approaches. Additionally, analysis of generated nascent transcription start site (TSS) data for cattle and bison revealed inaccuracies in their current genome annotations, underscoring the potential and necessity to translate small and nascent RNA sequencing methodologies to livestock. CONCLUSIONS Our accelerated and optimized protocol bridges the advantages of AVITI sequencing with critical methods that rely on sequencing short fragments. This advance bolsters the utility of AVITI technology alongside traditional Illumina platforms, offering new opportunities for NGS applications.
Collapse
Affiliation(s)
- Anna L McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | | - Marina I Savenkova
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ian M Brabb
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | | - Daniela D Moré
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Cristina W Cunha
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
8
|
Karnaukhova IK, Polev DE, Krukovskaya LL, Makashov AA, Masharsky AE, Nazarenko OV, Poverennaya IV, Makeev VJ, Akulova EB, Kozlov AP. A new cancer/testis long noncoding RNA, the OTP-AS1 RNA. Sci Rep 2024; 14:28676. [PMID: 39562620 PMCID: PMC11576910 DOI: 10.1038/s41598-024-80065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024] Open
Abstract
The orthopedia homeobox (OTP) gene encodes a homeodomain-containing transcription factor involved in brain development. OTP is mapped to human chromosome 5q14.1. Earlier we described transcription in the second intron of this gene in wide variety of tumors, but among normal tissues only in testis. In GeneBank these transcripts are represented by several 300-400 nucleotide long AI267901-like ESTs. We assumed that the AI267901-like ESTs belonged to the longer transcript(s). We used the Rapid Amplification of cDNA Ends (RACE) approach and other methods to find the full-length transcript. The transcript we found was a 2436 nucleotide polyadenylated sequence in antisense to OTP gene. The corresponding gene consisted of two exons separated by an intron of 2961 bp. The first exon was found to be 91 bp long and located in the third exon of OTP. The second exon was 2345 bp long and located in the second intron of OTP. We have shown the expression of this gene in many human tumors but as few as a single sample of normal testis. The transcript lacked significant ORFs suggesting that we discovered a new antisense cancer/testis (CT) sequence OTP-AS1 (OTP-antisense RNA 1), which belongs to the class of long noncoding RNAs (lncRNAs). According to our findings we assume that OTP-AS1 and OTP genes may be a CT-coding gene/CT-ncRNA pair, or sense-antisense gene pair involved in regulatory interactions.
Collapse
Affiliation(s)
- Iuliia K Karnaukhova
- Vavilov Institute of General Genetics, Moscow, Russia
- The Biomedical Center, St. Petersburg, Russia
| | - Dmitrii E Polev
- The Biomedical Center, St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, St. Petersburg, Russia
| | | | - Andrei A Makashov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | | | | | - Irina V Poverennaya
- Vavilov Institute of General Genetics, Moscow, Russia
- Center for Brain Research, Department of Neuroimmunology, Medical University Vienna, Vienna, Austria
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Moscow, Russia
- Moscow Center for Advanced Studies, Moscow, Russia
- Cancer Research UK National Biomarker Centre University of Manchester, Manchester, M20 4BX, UK
| | | | - Andrei P Kozlov
- Vavilov Institute of General Genetics, Moscow, Russia.
- The Biomedical Center, St. Petersburg, Russia.
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| |
Collapse
|
9
|
Bhardwaj E, Pokhriyal E, Jain A, Lal M, Khari M, Jalan K, Das S. The non-canonically organized members of MIR395 gene family in Brassica juncea are associated with developmentally regulated, sulfate-stress responsive bidirectional promoters that exhibit orientation-dependent differential transcriptional activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112214. [PMID: 39127349 DOI: 10.1016/j.plantsci.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Several MICRORNA genes belonging to same family or different families are often found in homologous or non-homologous clusters. Among the various classes, head-to-head arranged genes form one of the largest categories of non-canonically organized genes. Such head-to-head arranged, non-canonically organized genes possibly share cis-regulatory region with the intergenic sequence having the potential to function as bi-directional promoter (BDP). The transcriptional regulation of head-to-head arranged genes, especially with bidirectional promoters, remains an enigma. In the past, bidirectional promoters have been characterized for a small set of protein-coding gene pairs in plants; however, to the best of our knowledge, no such study has been carried so far for MICRORNA genes. The present study thus functionally characterizes bidirectional promoters associated with members of MIR395 family, which is evolutionary conserved and is most frequently occurring cluster across plant kingdom. In Arabidopsis thaliana, the MIR395 gene family contains six members with two head-to-head arranged gene pairs- MIR395A-B and MIR395E-F. This organization was found to be conserved at seven loci for MIR395A-B, and eleven loci for MIR395E-F in five Brassica sps. Sequence analysis of the putative bidirectional promoters revealed variation in length, GC content and distribution of strict TATA-box. Comparatively higher level of conservation at both the ends of the bidirectional promoters, corresponding to ca. 250 bp upstream of 5'end of the respective MIRNA precursor, was observed. These conserved regions harbour several abiotic stress (nutrient, salt, drought) and hormone (ABA, ethylene) responsive cis-motifs. Functional characterization of putative bidirectional promoters associated with MIR395A-B and MIR395E-F from Arabidopsis and their respective orthologs from Brassica juncea (Bj_A08 MIR395A-B, Bj_B03 MIR395A-B, Bj_A07.1 MIR395E-F and Bj_A07.2 MIR395E-F) was carried out using a dual-reporter vector with β-glucuronidase (GUS) and Green Fluorescent Protein (GFP). Analysis of transcriptional regulation of the two reporter genes - GUS and GFP during developmental stages confirmed their bidirectional nature. Orientation-dependent differential reporter activity indicated asymmetric nature of the promoters. Comparison of the reporter activity amongst orthologs, paralogs and homeologs revealed regulatory diversification, an outcome expected in polyploid genomes. Interestingly, reporter gene activities driven by selected bidirectional promoters were also observed in anther and siliques apart vegetative tissues indicating role of miR395 in anther and fruit development. Finally, we evaluated the activity of reporter genes driven under transcriptional regulation of bidirectional promoters under normal and sulfate-deprived conditions which revealed asymmetric inducibility under sulfate-starvation, in agreement with the known role of miR395 in sulfate homeostasis.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Ekta Pokhriyal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Aditi Jain
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Megha Khari
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Komal Jalan
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
10
|
Poyrazlı F, Okuyan D, Köçkar F, Türkoğlu SA. Hypoxic Regulation of the KLK4 Gene in two Different Prostate Cancer Cells Treated with TGF- β. Cell Biochem Biophys 2024; 82:2797-2812. [PMID: 39026058 DOI: 10.1007/s12013-024-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
The human kallikrein-related peptidase (KLK) family which consists of 15 members is associated with prostate cancer and other cancers. It has been reported that overexpression of KLK4 in prostate cancer correlates with bone metastasis or advanced stage. Hypoxia occurs in the early stages of prostate cancer due to the accumulation of acidic metabolites or reactive oxygen species (ROS). In our study, KLK4 gene expression in hypoxic conditions in PC-3 and LNCaP cells which are treated with TGF-β was evaluated with mRNA, protein, and promoter activity levels. A chemical hypoxia model was created and confirmed at mRNA and protein level. No statistically significant cytotoxic effect of CoCl2 and TGF-β was observed in PC-3 and LNCaP cells with the MTT test. Four different truncated KLK4 gene promoter constructs were cloned in pmetLuc expression vector and basal activities of all promoter fragments were analyzed. The activities of P1 (-447/ + 657), P2 (-103/ + 657), and P3 (-267/ + 657) promoter fragments increased in hypoxic conditions except P4 (+555/ + 657), which does not contain the SMAD and HRE region. KLK4 mRNA levels in both PC-3 and LNCaP cells increased in the hypoxia and hypoxia/TGF groups compared to the non-treated groups. The stimulating effect of TGF-β is correlated with the increase in SMAD2/3 mRNA levels. KLK4 expression is up-regulated by TGF-β, especially under hypoxic conditions, and its interaction with the SMAD pathway is determined with different inhibitor experiments. HIF-1α and SMAD transcription factors bind to the KLK4 promoter showing the direct interaction of HIF-1α (-80/-52) and SMAD (+163/+194) regions with EMSA.
Collapse
Affiliation(s)
- Fatma Poyrazlı
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey
| | - Derya Okuyan
- University of Bandırma, Susurluk Vocational Training Schools, Laboratory and Veterinary Health Program, Balikesir, Turkey
| | - Feray Köçkar
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey
| | - Sümeyye Aydoğan Türkoğlu
- University of Balikesir, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balikesir, Turkey.
| |
Collapse
|
11
|
Rodríguez-Lima O, García-Gutiérrez P, Jiménez L, Velázquez-Villegas LA, Zarain-Herzberg A, Lazzarini R, Estrada K, Landa A. Taenia solium TAF6 and TAF9 bind to a downstream promoter element present in the Tstbp1 gene core promoter. PLoS One 2024; 19:e0306633. [PMID: 39208271 PMCID: PMC11361659 DOI: 10.1371/journal.pone.0306633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Transcription regulation in cestodes has been little studied. Here, we characterize the Taenia solium TATA-binding protein (TBP) gene. We found binding sites for transcription factors such as NF1, YY1, and AP-1 in the proximal promoter. We also identified two TATA-like elements in the promoter; however, neither could bind TBP. Additionally, we mapped the transcription start site (A+1) within an initiator and identified a putative downstream promoter element (DPE) located at +27 bp relative to the transcription start site. These two elements are important and functional for gene expression. Moreover, we identified the genes encoding T. solium TBP-Associated Factor 6 (TsTAF6) and 9 (TsTAF9). A Western blot assay revealed that both factors are expressed in the parasite; electrophoretic mobility shift assays and super-shift assays revealed interactions between the DPE probe and TsTAF6-TsTAF9. Finally, we used molecular dynamics simulations to formulate an interaction model among TsTAF6, TsTAF9, and the DPE probe; we stabilized the model with interactions between the histone fold domain pair in TAFs and several pairs of nucleotides in the DPE probe. We discuss novel and interesting features of the TsTAF6-TsTAF9 complex for interaction with DPE on T. solium promoters.
Collapse
Affiliation(s)
- Oscar Rodríguez-Lima
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lucía Jiménez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Angel Zarain-Herzberg
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Lazzarini
- Departamento de Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Karel Estrada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Abraham Landa
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
12
|
Duttke SH, Guzman C, Chang M, Delos Santos NP, McDonald BR, Xie J, Carlin AF, Heinz S, Benner C. Position-dependent function of human sequence-specific transcription factors. Nature 2024; 631:891-898. [PMID: 39020164 PMCID: PMC11269187 DOI: 10.1038/s41586-024-07662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
Patterns of transcriptional activity are encoded in our genome through regulatory elements such as promoters or enhancers that, paradoxically, contain similar assortments of sequence-specific transcription factor (TF) binding sites1-3. Knowledge of how these sequence motifs encode multiple, often overlapping, gene expression programs is central to understanding gene regulation and how mutations in non-coding DNA manifest in disease4,5. Here, by studying gene regulation from the perspective of individual transcription start sites (TSSs), using natural genetic variation, perturbation of endogenous TF protein levels and massively parallel analysis of natural and synthetic regulatory elements, we show that the effect of TF binding on transcription initiation is position dependent. Analysing TF-binding-site occurrences relative to the TSS, we identified several motifs with highly preferential positioning. We show that these patterns are a combination of a TF's distinct functional profiles-many TFs, including canonical activators such as NRF1, NFY and Sp1, activate or repress transcription initiation depending on their precise position relative to the TSS. As such, TFs and their spacing collectively guide the site and frequency of transcription initiation. More broadly, these findings reveal how similar assortments of TF binding sites can generate distinct gene regulatory outcomes depending on their spatial configuration and how DNA sequence polymorphisms may contribute to transcription variation and disease and underscore a critical role for TSS data in decoding the regulatory information of our genome.
Collapse
Affiliation(s)
- Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | - Carlos Guzman
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Max Chang
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Nathaniel P Delos Santos
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Bayley R McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jialei Xie
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Aaron F Carlin
- Department of Pathology and Medicine, U.C. San Diego School of Medicine, La Jolla, CA, USA
| | - Sven Heinz
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| | - Christopher Benner
- Department of Medicine, Division of Endocrinology, U.C. San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
13
|
Cao H, Deng H, Wang Y, Liu D, Li L, Li M, Peng D, Dai J, Li J, Qiu H, Li S. The Distal Promoter of the B438L Gene of African Swine Fever Virus Is Responsible for the Transcription of the Alternatively Spliced B169L. Viruses 2024; 16:1058. [PMID: 39066221 PMCID: PMC11281499 DOI: 10.3390/v16071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The B169L protein (pB169L) of African swine fever virus (ASFV) is a structural protein with an unidentified function during the virus replication. The sequences of the B169L gene and the downstream B438L gene are separated by short intergenic regions. However, the regulatory mode of the gene transcription remains unknown. Here, we identified two distinct promoter regions and two transcription start sites (TSSs) located upstream of the open reading frame (ORF) of B438L. Using the promoter reporter system, we demonstrated that the cis activity of the ORF proximal promoter exhibited significantly higher levels compared with that of the distal promoter located in the B169L gene. Furthermore, transfection with the plasmids with two different promoters for B438L could initiate the transcription and expression of the B438L gene in HEK293T cells, and the cis activity of the ORF proximal promoter also displayed higher activities compared with the distal promoter. Interestingly, the B438L distal promoter also initiated the transcription of the alternatively spliced B169L mRNA (B169L mRNA2) encoding a truncated pB169L (tpB169L) (amino acids 92-169), and the gene transcription efficiency was increased upon mutation of the initiation codon located upstream of the alternatively spliced B169L gene. Taken together, we demonstrated that the distal promoter of B438L gene initiates the transcription of both the B438L mRNA and B169L mRNA2. Comprehensive analysis of the transcriptional regulatory mode of the B438L gene is beneficial for the understanding of the association of B438L protein and pB169L and the construction of the gene-deleted ASFV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huaji Qiu
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (H.C.); (H.D.); (Y.W.); (D.L.); (L.L.); (M.L.); (D.P.); (J.D.); (J.L.)
| | - Su Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (H.C.); (H.D.); (Y.W.); (D.L.); (L.L.); (M.L.); (D.P.); (J.D.); (J.L.)
| |
Collapse
|
14
|
Funaya S, Takahashi Y, Suzuki MG, Suzuki Y, Aoki F. H3.1/3.2 regulate the initial progression of the gene expression program. Nucleic Acids Res 2024; 52:6158-6170. [PMID: 38567720 PMCID: PMC11194095 DOI: 10.1093/nar/gkae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 06/25/2024] Open
Abstract
In mice, transcription from the zygotic genome is initiated at the mid-one-cell stage, and occurs promiscuously in many areas of the genome, including intergenic regions. Regulated transcription from selected genes is established during the two-cell stage. This dramatic change in the gene expression pattern marks the initiation of the gene expression program and is essential for early development. We investigated the involvement of the histone variants H3.1/3.2 in the regulation of changes in gene expression pattern during the two-cell stage. Immunocytochemistry analysis showed low nuclear deposition of H3.1/3.2 in the one-cell stage, followed by a rapid increase in the late two-cell stage. Where chromatin structure is normally closed between the one- and two-cell stages, it remained open until the late two-cell stage when H3.1/3.2 were knocked down by small interfering RNA. Hi-C analysis showed that the formation of the topologically associating domain was disrupted in H3.1/3.2 knockdown (KD) embryos. Promiscuous transcription was also maintained in the late two-cell stage in H3.1/3.2 KD embryos. These results demonstrate that H3.1/3.2 are involved in the initial process of the gene expression program after fertilization, through the formation of a closed chromatin structure to execute regulated gene expression during the two-cell stage.
Collapse
Affiliation(s)
- Satoshi Funaya
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yusuke Takahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Fugaku Aoki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
15
|
Ravi Sundar Jose Geetha A, Fischer K, Babadei O, Smesnik G, Vogt A, Platanitis E, Müller M, Farlik M, Decker T. Dynamic control of gene expression by ISGF3 and IRF1 during IFNβ and IFNγ signaling. EMBO J 2024; 43:2233-2263. [PMID: 38658796 PMCID: PMC11148166 DOI: 10.1038/s44318-024-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Type I interferons (IFN-I, including IFNβ) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.
Collapse
Affiliation(s)
- Aarathy Ravi Sundar Jose Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Georg Smesnik
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | | | - Ekaterini Platanitis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria.
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria.
| |
Collapse
|
16
|
Bell CC, Balic JJ, Talarmain L, Gillespie A, Scolamiero L, Lam EYN, Ang CS, Faulkner GJ, Gilan O, Dawson MA. Comparative cofactor screens show the influence of transactivation domains and core promoters on the mechanisms of transcription. Nat Genet 2024; 56:1181-1192. [PMID: 38769457 DOI: 10.1038/s41588-024-01749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Eukaryotic transcription factors (TFs) activate gene expression by recruiting cofactors to promoters. However, the relationships between TFs, promoters and their associated cofactors remain poorly understood. Here we combine GAL4-transactivation assays with comparative CRISPR-Cas9 screens to identify the cofactors used by nine different TFs and core promoters in human cells. Using this dataset, we associate TFs with cofactors, classify cofactors as ubiquitous or specific and discover transcriptional co-dependencies. Through a reductionistic, comparative approach, we demonstrate that TFs do not display discrete mechanisms of activation. Instead, each TF depends on a unique combination of cofactors, which influences distinct steps in transcription. By contrast, the influence of core promoters appears relatively discrete. Different promoter classes are constrained by either initiation or pause-release, which influences their dynamic range and compatibility with cofactors. Overall, our comparative cofactor screens characterize the interplay between TFs, cofactors and core promoters, identifying general principles by which they influence transcription.
Collapse
Affiliation(s)
- Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Queensland, Australia.
| | - Jesse J Balic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Laure Talarmain
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Laura Scolamiero
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
McDonald AL, Boddicker AM, Savenkova MI, Brabb IM, Qi X, Moré DD, Cunha CW, Zhao J, Duttke SH. Efficient small fragment sequencing of human, cow, and bison miRNA, small RNA or csRNA-seq libraries using AVITI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596343. [PMID: 38854037 PMCID: PMC11160585 DOI: 10.1101/2024.05.28.596343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Next-Generation Sequencing (NGS) catalyzed breakthroughs across various scientific domains. Illumina's sequencing by synthesis method has long been essential for NGS but emerging technologies like Element Biosciences' sequencing by avidity (AVITI) represent a novel approach. It has been reported that AVITI offers improved signal-to-noise ratios and cost reductions. However, the method relies on rolling circle amplification which can be impacted by polymer size, raising questions about its efficacy sequencing small RNAs (sRNA) molecules including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and others that are crucial regulators of gene expression and involved in various biological processes. In addition, capturing capped small RNAs (csRNA-seq) has emerged as a powerful method to map active or "nascent" RNA polymerase II transcription initiation in tissues and clinical samples. Here, we report a new protocol for seamlessly sequencing short DNA fragments on the AVITI and demonstrate that AVITI and Illumina sequencing technologies equivalently capture human, cattle (Bos taurus) and the bison (Bison bison) sRNA or csRNA sequencing libraries, augmenting the confidence in both approaches. Additionally, analysis of generated nascent transcription start sites (TSSs) data for cattle and bison revealed inaccuracies in their current genome annotations and highlighted the possibility and need to translate small RNA sequencing methodologies to livestock. Our accelerated and optimized protocol therefore bridges the advantages of AVITI sequencing and critical methods that rely on sequencing short DNA fragments.
Collapse
Affiliation(s)
- Anna L McDonald
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | | - Marina I Savenkova
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Ian M Brabb
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | | - Daniela D Moré
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Cristina W Cunha
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | | | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
18
|
Shu J, Jelinek J, Chen H, Zhang Y, Qin T, Li M, Liu L, Issa JPJ. Genome-wide screening and functional validation of methylation barriers near promoters. Nucleic Acids Res 2024; 52:4857-4871. [PMID: 38647050 PMCID: PMC11109949 DOI: 10.1093/nar/gkae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
CpG islands near promoters are normally unmethylated despite being surrounded by densely methylated regions. Aberrant hypermethylation of these CpG islands has been associated with the development of various human diseases. Although local genetic elements have been speculated to play a role in protecting promoters from methylation, only a limited number of methylation barriers have been identified. In this study, we conducted an integrated computational and experimental investigation of colorectal cancer methylomes. Our study revealed 610 genes with disrupted methylation barriers. Genomic sequences of these barriers shared a common 41-bp sequence motif (MB-41) that displayed homology to the chicken HS4 methylation barrier. Using the CDKN2A (P16) tumor suppressor gene promoter, we validated the protective function of MB-41 and showed that loss of such protection led to aberrant hypermethylation. Our findings highlight a novel sequence signature of cis-acting methylation barriers in the human genome that safeguard promoters from silencing.
Collapse
Affiliation(s)
- Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yan Zhang
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Taichun Qin
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ming Li
- Phoenix VA Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| |
Collapse
|
19
|
Dudnyk K, Cai D, Shi C, Xu J, Zhou J. Sequence basis of transcription initiation in the human genome. Science 2024; 384:eadj0116. [PMID: 38662817 PMCID: PMC11223672 DOI: 10.1126/science.adj0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/28/2024] [Indexed: 05/03/2024]
Abstract
Transcription initiation is a process that is essential to ensuring the proper function of any gene, yet we still lack a unified understanding of sequence patterns and rules that explain most transcription start sites in the human genome. By predicting transcription initiation at base-pair resolution from sequences with a deep learning-inspired explainable model called Puffin, we show that a small set of simple rules can explain transcription initiation at most human promoters. We identify key sequence patterns that contribute to human promoter activity, each activating transcription with distinct position-specific effects. Furthermore, we explain the sequence basis of bidirectional transcription at promoters, identify the links between promoter sequence and gene expression variation across cell types, and explore the conservation of sequence determinants of transcription initiation across mammalian species.
Collapse
Affiliation(s)
- Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Donghong Cai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Chenlai Shi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Jian Xu
- Center of Excellence for Leukemia Studies (CELS), Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| |
Collapse
|
20
|
Luthra I, Jensen C, Chen XE, Salaudeen AL, Rafi AM, de Boer CG. Regulatory activity is the default DNA state in eukaryotes. Nat Struct Mol Biol 2024; 31:559-567. [PMID: 38448573 DOI: 10.1038/s41594-024-01235-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Genomes encode for genes and non-coding DNA, both capable of transcriptional activity. However, unlike canonical genes, many transcripts from non-coding DNA have limited evidence of conservation or function. Here, to determine how much biological noise is expected from non-genic sequences, we quantify the regulatory activity of evolutionarily naive DNA using RNA-seq in yeast and computational predictions in humans. In yeast, more than 99% of naive DNA bases were transcribed. Unlike the evolved transcriptome, naive transcripts frequently overlapped with opposite sense transcripts, suggesting selection favored coherent gene structures in the yeast genome. In humans, regulation-associated chromatin activity is predicted to be common in naive dinucleotide-content-matched randomized DNA. Here, naive and evolved DNA have similar co-occurrence and cell-type specificity of chromatin marks, challenging these as indicators of selection. However, in both yeast and humans, extreme high activities were rare in naive DNA, suggesting they result from selection. Overall, basal regulatory activity seems to be the default, which selection can hone to evolve a function or, if detrimental, repress.
Collapse
Affiliation(s)
- Ishika Luthra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cassandra Jensen
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinyi E Chen
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Asfar Lathif Salaudeen
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdul Muntakim Rafi
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl G de Boer
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Zhao S, Li Y, Chen G, Wang X, Chen N, Wu X. Genome-wide chromatin interaction profiling reveals a vital role of super-enhancers and rearrangements in host enhancer contacts during BmNPV infection. Genome Res 2023; 33:1958-1974. [PMID: 37871969 PMCID: PMC10760458 DOI: 10.1101/gr.277931.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
As influential regulatory elements in the genome, enhancers control gene expression under specific cellular conditions, and such connections are dynamic under different conditions. However, because of the lack of a genome-wide enhancer-gene connection map, the roles and regulatory pattern of enhancers were poorly investigated in insects, and the dynamic changes of enhancer contacts and functions under different conditions remain elusive. Here, combining Hi-C, ATAC-seq, and H3K27ac ChIP-seq data, we generate the genome-wide enhancer-gene map of silkworm and identify super-enhancers with a role in regulating the expression of vital genes related to cell state maintenance through a sophisticated interaction network. Additionally, a radical attenuation of chromatin interactions is found after infection of Bombyx mori nucleopolyhedrovirus (BmNPV), the main pathogen of silkworm, which directly rearranges the enhancer contacts. Such a rearrangement disturbs the intrinsic enhancer-gene connections in several antiviral genes, resulting in reduced expression of these genes, which accelerates viral infection. Overall, our results reveal the regulatory role of super-enhancers and shed new light on the mechanisms and dynamic changes of the genome-wide enhancer regulatory network.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Yuedong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xingyang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
22
|
Chen Z, Chen HX, Hou HT, Yin XY, Yang Q, He GW. Identification and Functional Verification of CITED2 Gene Promoter Region in Patients with Patent Ductus Arteriosus. Int J Mol Sci 2023; 24:16204. [PMID: 38003393 PMCID: PMC10671043 DOI: 10.3390/ijms242216204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Patent ductus arteriosus (PDA) is a common congenital heart disease. CITED2 plays an important role in the development of the heart, and genetic variants in its coding region are significantly associated with cardiac malformations. However, the role of variants in the promoter region of CITED2 in the development of PDA remains unclear. We extracted the peripheral blood of 646 subjects (including 353 PDA patients and 293 unrelated healthy controls) for sequencing. We identified 13 promoter variants of the CITED2 gene (including 2 novel heterozygous variants). Of the 13 variants, 10 were found only in PDA patients. In mouse cardiomyocytes (HL-1) and rat cardiac myocytes (RCM), the transcriptional activity of the CITED2 gene promoter was significantly changed by the variants (p < 0.05). The results of the experiments of electrophoretic mobility indicated that these variants may affect the transcription of the CITED2 gene by influencing the binding ability of transcription factors. These results, combined with the JASPAR database analysis, showed that the destruction/production of transcription factor binding sites due to the variants in the promoter region of the CITED2 gene may directly or indirectly affect the binding ability of transcription factors. Our results suggest for the first time that variants at the CITED2 promoter region may cause low expression of CITED2 protein related to the formation of PDA.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China; (Z.C.); (H.-X.C.); (H.-T.H.); (X.-Y.Y.); (Q.Y.)
| |
Collapse
|
23
|
Kharytonchyk S, Burnett C, GC K, Telesnitsky A. Transcription start site heterogeneity and its role in RNA fate determination distinguish HIV-1 from other retroviruses and are mediated by core promoter elements. J Virol 2023; 97:e0081823. [PMID: 37681957 PMCID: PMC10537674 DOI: 10.1128/jvi.00818-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5´ isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively, the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogeneous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic comparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site. IMPORTANCE Retroviruses use RNA both to encode their proteins and to serve in place of DNA as their genomes. A recent surprising discovery was that the genomic RNAs and messenger RNAs of HIV-1 are not identical but instead differ subtly on one of their ends. These differences enable the functional separation of HIV-1 RNAs into genome and messenger roles. In this report, we examined a broad collection of HIV-1-related viruses and discovered that each produced only one end class of RNA, and thus must differ from HIV-1 in how they specify RNA fates. By comparing regulatory signals, we generated virus variants that pinpointed the determinants of HIV-1 RNA fates, as well as HIV-1 variants that produced only one or the other functional class of RNA. Competition and replication assays confirmed that HIV-1 has evolved to rely on the coordinated actions of both its RNA forms.
Collapse
Affiliation(s)
- Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Keshav GC
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Li Z, Jin J, Long W, Wei L. PLPMpro: Enhancing promoter sequence prediction with prompt-learning based pre-trained language model. Comput Biol Med 2023; 164:107260. [PMID: 37557052 DOI: 10.1016/j.compbiomed.2023.107260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023]
Abstract
The promoter region, positioned proximal to the transcription start sites, exerts control over the initiation of gene transcription by modulating the interaction with RNA polymerase. Consequently, the accurate recognition of promoter regions represents a critical focus within the bioinformatics domain. Although some methods leveraging pre-trained language models (PLMs) for promoter prediction have been proposed, the full potential of such PLMs remains largely untapped. In this study, we introduce PLPMpro, a model that capitalizes on prompt-learning and the pre-trained language model to enhance the prediction of promoter sequences. PLPMpro effectively harnesses the prompt learning paradigm to fully exploit the inherent capacities of the PLM, resulting in substantial improvements in prediction performance. Experiment results unequivocally demonstrate the efficacy of prompt learning in bolstering the capabilities of the pre-trained model. Consequently, PLPMpro surpasses both typical pre-trained model-based methods for promoter prediction and typical deep learning methods. Furthermore, we conduct various experiments to meticulously scrutinize the effects of different prompt learning settings and different numbers of soft modules on the model performance. More importantly, the interpretation experiment reveals that the pre-trained model captures biological semantics. Collectively, this research imparts a novel perspective on the optimal utilization of PLMs for addressing biological problems.
Collapse
Affiliation(s)
- Zhongshen Li
- School of Software, Shandong University, Jinan 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Junru Jin
- School of Software, Shandong University, Jinan 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Wentao Long
- School of Software, Shandong University, Jinan 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China.
| |
Collapse
|
25
|
Zaytsev K, Fedorov A, Korotkov E. Classification of Promoter Sequences from Human Genome. Int J Mol Sci 2023; 24:12561. [PMID: 37628742 PMCID: PMC10454140 DOI: 10.3390/ijms241612561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
We have developed a new method for promoter sequence classification based on a genetic algorithm and the MAHDS sequence alignment method. We have created four classes of human promoters, combining 17,310 sequences out of the 29,598 present in the EPD database. We searched the human genome for potential promoter sequences (PPSs) using dynamic programming and position weight matrices representing each of the promoter sequence classes. A total of 3,065,317 potential promoter sequences were found. Only 1,241,206 of them were located in unannotated parts of the human genome. Every other PPS found intersected with either true promoters, transposable elements, or interspersed repeats. We found a strong intersection between PPSs and Alu elements as well as transcript start sites. The number of false positive PPSs is estimated to be 3 × 10-8 per nucleotide, which is several orders of magnitude lower than for any other promoter prediction method. The developed method can be used to search for PPSs in various eukaryotic genomes.
Collapse
Affiliation(s)
- Konstantin Zaytsev
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey Fedorov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Eugene Korotkov
- Institute of Bioengineering, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
26
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
27
|
Wang X, Liu H, Yu Z, Zhu W, Zhang L, Wang B. Characterization of wheat Wrab18 gene promoter and expression analysis under abiotic stress. Mol Biol Rep 2023; 50:5777-5789. [PMID: 37219670 DOI: 10.1007/s11033-023-08485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Promoters play key roles in plant gene expression in complex and varied natural environments. The type and amount of cis-acting elements in the promoter sequence tend to indicate the response of genes to induction factors. WRAB18 is a group III member of the late embryogenesis abundant (LEA) protein family that performs multiple functions in plant stress physiology. To elucidate the particularly biological effects of WRAB18 on stress, exploration of its promoter sequence is necessary. METHODS AND RESULTS In this study, the full-length and promoter sequences of Wrab18 were isolated from the Zhengyin 1 cultivar of Triticum aestivum. The gene sequences and cis-acting elements in the promoter were analyzed using the Plant Promoter Database and bioinformatics methods. The results showed that Wrab18 possessed one intron with 100 bp, the promoter sequence contained various stress-related cis-acting elements, and the functionality of the promoter was checked using green fluorescent protein (GFP) marker protein expression by transient assay in Nicotiana benthamiana. Furthermore, based on promoter prediction analysis, quantitative real-time fluorescent PCR results confirmed the response of gene expression levels to stress factors. CONCLUSIONS In summary, the promoter sequence of Wrab18 plays a role in plant stress responses, contains multiple cis-acting elements, and provides insights into the role of WRAB18 in plant resilience to stress. This study has guiding significance for further studies of gene function and mechanism of action, and lays a theoretical foundation for improving wheat quality.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, P. R. China
| | - Hao Liu
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Zhengyang Yu
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Weining Zhu
- College of Life Sciences, Northwest University, Xi'an, Shannxi, P. R. China
| | - Linsheng Zhang
- College of Life Sciences, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, Yangling, Shannxi, P. R. China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, P. R. China.
| |
Collapse
|
28
|
Dudnyk K, Shi C, Zhou J. Sequence basis of transcription initiation in human genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546584. [PMID: 37425823 PMCID: PMC10327147 DOI: 10.1101/2023.06.27.546584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Transcription initiation is an essential process for ensuring proper function of any gene, however, a unified understanding of sequence patterns and rules that determine transcription initiation sites in human genome remains elusive. By explaining transcription initiation at basepair resolution from sequence with a deep learning-inspired explainable modeling approach, here we show that simple rules can explain the vast majority of human promoters. We identified key sequence patterns that contribute to human promoter function, each activating transcription with a distinct position-specific effect curve that likely reflects its mechanism of promoting transcription initiation. Most of these position-specific effects have not been previously characterized, and we verified them using experimental perturbations of transcription factors and sequences. We revealed the sequence basis of bidirectional transcription at promoters and links between promoter selectivity and gene expression variation across cell types. Additionally, by analyzing 241 mammalian genomes and mouse transcription initiation site data, we showed that the sequence determinants are conserved across mammalian species. Taken together, we provide a unified model of the sequence basis of transcription initiation at the basepair level that is broadly applicable across mammalian species, and shed new light on basic questions related to promoter sequence and function.
Collapse
Affiliation(s)
- Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Chenlai Shi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, Texas, United States of America
| |
Collapse
|
29
|
Ni X, Liu Z, Guo J, Zhang G. Development of Terminator-Promoter Bifunctional Elements for Application in Saccharomyces cerevisiae Pathway Engineering. Int J Mol Sci 2023; 24:9870. [PMID: 37373018 DOI: 10.3390/ijms24129870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of a genetic circuit requires the substitution and redesign of different promoters and terminators. The assembly efficiency of exogenous pathways will also decrease significantly when the number of regulatory elements and genes is increased. We speculated that a novel bifunctional element with promoter and terminator functions could be created via the fusion of a termination signal with a promoter sequence. In this study, the elements from a Saccharomyces cerevisiae promoter and terminator were employed to design a synthetic bifunctional element. The promoter strength of the synthetic element is apparently regulated through a spacer sequence and an upstream activating sequence (UAS) with a ~5-fold increase, and the terminator strength could be finely regulated by the efficiency element, with a ~5-fold increase. Furthermore, the use of a TATA box-like sequence resulted in the adequate execution of both functions of the TATA box and the efficiency element. By regulating the TATA box-like sequence, UAS, and spacer sequence, the strengths of the promoter-like and terminator-like bifunctional elements were optimally fine-tuned with ~8-fold and ~7-fold increases, respectively. The application of bifunctional elements in the lycopene biosynthetic pathway showed an improved pathway assembly efficiency and higher lycopene yield. The designed bifunctional elements effectively simplified pathway construction and can serve as a useful toolbox for yeast synthetic biology.
Collapse
Affiliation(s)
- Xiaoxia Ni
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhengyang Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jintang Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Genlin Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
30
|
Kharytonchyk S, Burnett C, Gc K, Telesnitsky A. Transcription start site heterogeneity and its role in RNA fate determination distinguish HIV-1 from other retroviruses and are mediated by core promoter elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541776. [PMID: 37292892 PMCID: PMC10245945 DOI: 10.1101/2023.05.22.541776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
HIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5' isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogenous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs. Phylogenetic csomparisons and chimeric viruses' properties provided evidence that this mechanism of RNA fate determination was an innovation of the HIV-1 lineage, with determinants mapping to core promoter elements. Fine-tuning differences between HIV-1 and HIV-2, which uses a unique TSS, implicated purine residue positioning plus a specific TSS-adjacent dinucleotide in specifying multiplicity of TSS usage. Based on these findings, HIV-1 expression constructs were generated that differed from the parental strain by only two point mutations yet each expressed only one of HIV-1's two RNAs. Replication defects of the variant with only the presumptive founder TSS were less severe than those for the virus with only the secondary start site.
Collapse
Affiliation(s)
- Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Keshav Gc
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620, USA
| |
Collapse
|
31
|
Xiao C, Xue S, Pan Y, Liu X, Huang M. Overexpression of genes by stress-responsive promoters increases protein secretion in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2023; 39:203. [PMID: 37209206 DOI: 10.1007/s11274-023-03646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Recombinant proteins produced by cell factories are now widely used in various fields. Many efforts have been made to improve the secretion capacity of cell factories to meet the increasing demand for recombinant proteins. Recombinant protein production usually causes cell stress in the endoplasmic reticulum (ER). The overexpression of key genes possibly removes limitations in protein secretion. However, inappropriate gene expression may have negative effects. There is a need for dynamic control of genes adapted to cellular status. In this study, we constructed and characterized synthetic promoters that were inducible under ER stress conditions in Saccharomyces cerevisiae. The unfolded protein response element UPRE2, responding to stress with a wide dynamic range, was assembled with various promoter core regions, resulting in UPR-responsive promoters. Synthetic responsive promoters regulated gene expression by responding to stress level, which reflected the cellular status. The engineered strain using synthetic responsive promoters P4UPRE2 - TDH3 and P4UPRE2 - TEF1 for co-expression of ERO1 and SLY1 had 95% higher α-amylase production compared with the strain using the native promoters PTDH3 and PTEF1. This work showed that UPR-responsive promoters were useful in the metabolic engineering of yeast strains for tuning genes to support efficient protein production.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Songlyu Xue
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
32
|
McQuarrie DWJ, Read AM, Stephens FHS, Civetta A, Soller M. Indel driven rapid evolution of core nuclear pore protein gene promoters. Sci Rep 2023; 13:8035. [PMID: 37198214 DOI: 10.1038/s41598-023-34985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Nuclear pore proteins (Nups) prominently are among the few genes linked to speciation from hybrid incompatibility in Drosophila. These studies have focused on coding sequence evolution of Nup96 and Nup160 and shown evidence of positive selection driving nucleoporin evolution. Intriguingly, channel Nup54 functionality is required for neuronal wiring underlying the female post-mating response induced by male-derived sex-peptide. A region of rapid evolution in the core promoter of Nup54 suggests a critical role for general transcriptional regulatory elements at the onset of speciation, but whether this is a general feature of Nup genes has not been determined. Consistent with findings for Nup54, additional channel Nup58 and Nup62 promoters also rapidly accumulate insertions/deletions (indels). Comprehensive examination of Nup upstream regions reveals that core Nup complex gene promoters accumulate indels rapidly. Since changes in promoters can drive changes in expression, these results indicate an evolutionary mechanism driven by indel accumulation in core Nup promoters. Compensation of such gene expression changes could lead to altered neuronal wiring, rapid fixation of traits caused by promoter changes and subsequently the rise of new species. Hence, the nuclear pore complex may act as a nexus for species-specific changes via nucleo-cytoplasmic transport regulated gene expression.
Collapse
Affiliation(s)
- David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam M Read
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Frannie H S Stephens
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
33
|
Lodha M, Muchsin I, Jürges C, Juranic Lisnic V, L'Hernault A, Rutkowski AJ, Prusty BK, Grothey A, Milic A, Hennig T, Jonjic S, Friedel CC, Erhard F, Dölken L. Decoding murine cytomegalovirus. PLoS Pathog 2023; 19:e1010992. [PMID: 37172056 DOI: 10.1371/journal.ppat.1010992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/24/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023] Open
Abstract
The genomes of both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) were first sequenced over 20 years ago. Similar to HCMV, the MCMV genome had initially been proposed to harbor ≈170 open reading frames (ORFs). More recently, omics approaches revealed HCMV gene expression to be substantially more complex comprising several hundred viral ORFs. Here, we provide a state-of-the art reannotation of lytic MCMV gene expression based on integrative analysis of a large set of omics data. Our data reveal 365 viral transcription start sites (TiSS) that give rise to 380 and 454 viral transcripts and ORFs, respectively. The latter include >200 small ORFs, some of which represented the most highly expressed viral gene products. By combining TiSS profiling with metabolic RNA labelling and chemical nucleotide conversion sequencing (dSLAM-seq), we provide a detailed picture of the expression kinetics of viral transcription. This not only resulted in the identification of a novel MCMV immediate early transcript encoding the m166.5 ORF, which we termed ie4, but also revealed a group of well-expressed viral transcripts that are induced later than canonical true late genes and contain an initiator element (Inr) but no TATA- or TATT-box in their core promoters. We show that viral upstream ORFs (uORFs) tune gene expression of longer viral ORFs expressed in cis at translational level. Finally, we identify a truncated isoform of the viral NK-cell immune evasin m145 arising from a viral TiSS downstream of the canonical m145 mRNA. Despite being ≈5-fold more abundantly expressed than the canonical m145 protein it was not required for downregulating the NK cell ligand, MULT-I. In summary, our work will pave the way for future mechanistic studies on previously unknown cytomegalovirus gene products in an important virus animal model.
Collapse
Affiliation(s)
- Manivel Lodha
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Christopher Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Anne L'Hernault
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Andrzej J Rutkowski
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Bhupesh K Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Andrea Milic
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
34
|
Salgado-Blanco D, Flores-Saldaña DSM, Jaimes-Miranda F, López-Urías F. Electronic and magnetic properties of TATA-DNA sequence driven by chemical functionalization. J Comput Chem 2023; 44:1199-1207. [PMID: 36704941 DOI: 10.1002/jcc.27079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/08/2023] [Indexed: 01/28/2023]
Abstract
The TATA box is a promoter sequence able to interact directly with the components of the basal transcription initiation machinery. We investigate the changes in the electronic and magnetic properties of a TATA-DNA sequence when functionalized with different chemical groups; using the first-principles density functional theory specifically, the TATA-DNA sequences were functionalized with methyl groups (CH3 , methylation), amino groups (NH2 , amination), imine groups (NH, imination), chloroamine groups (NCl2 , chloramination), H-adatom (hydrogenation), and Cl-adatom (chlorination). The functional groups were anchored at nitrogen atoms from adenine and oxygen atoms from thymine at sites pointed as reactive regions. We demonstrated that chemical functionalization induces significant changes in charge transfer, hydrogen bond distance, and hydrogen bond energy. The hydrogenation and imination increased the hydrogen bond energy. Results also revealed that the chemical functionalization of DNA molecules exhibit a ferromagnetic ground state, reaching magnetization up to 4.665 μB and complex magnetic ordering. We further demonstrated that the functionalization could induce tautomerism (proton migration in the base pair systems). The present study provides a theoretical basis for understanding the functionalization further into DNA molecules and visualizing possible future applications.
Collapse
Affiliation(s)
- Daniel Salgado-Blanco
- Cátedra-Conacyt, Centro Nacional de Supercómputo, IPICyT, San Luis Potosí, Mexico
- División de Materiales Avanzados, IPICyT, San Luis Potosí, Mexico
| | - Diana S M Flores-Saldaña
- Engineering in Nanotechnologies and Energies, San Luis Potosí Autonomous University, San Luis Potosí, Mexico
| | | | | |
Collapse
|
35
|
Chen DM, Dong R, Kachuri L, Hoffmann T, Jiang Y, Berndt SI, Shelley JP, Schaffer KR, Machiela MJ, Freedman ND, Huang WY, Li SA, Lilja H, Van Den Eeden SK, Chanock S, Haiman CA, Conti DV, Klein RJ, Mosley JD, Witte JS, Graff RE. Transcriptome-Wide Association Analysis Identifies Novel Candidate Susceptibility Genes for Prostate-Specific Antigen Levels in Men Without Prostate Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.04.23289526. [PMID: 37205487 PMCID: PMC10187439 DOI: 10.1101/2023.05.04.23289526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Deciphering the genetic basis of prostate-specific antigen (PSA) levels may improve their utility to screen for prostate cancer (PCa). We thus conducted a transcriptome-wide association study (TWAS) of PSA levels using genome-wide summary statistics from 95,768 PCa-free men, the MetaXcan framework, and gene prediction models trained in Genotype-Tissue Expression (GTEx) project data. Tissue-specific analyses identified 41 statistically significant (p < 0.05/12,192 = 4.10e-6) associations in whole blood and 39 statistically significant (p < 0.05/13,844 = 3.61e-6) associations in prostate tissue, with 18 genes associated in both tissues. Cross-tissue analyses that combined associations across 45 tissues identified 155 genes that were statistically significantly (p < 0.05/22,249 = 2.25e-6) associated with PSA levels. Based on conditional analyses that assessed whether TWAS associations were attributable to a lead GWAS variant, we found 20 novel genes (11 single-tissue, 9 cross-tissue) that were associated with PSA levels in the TWAS. Of these novel genes, five showed evidence of colocalization (colocalization probability > 0.5): EXOSC9, CCNA2, HIST1H2BN, RP11-182L21.6, and RP11-327J17.2. Six of the 20 novel genes are not known to impact PCa risk. These findings yield new hypotheses for genetic factors underlying PSA levels that should be further explored toward improving our understanding of PSA biology.
Collapse
Affiliation(s)
- Dorothy M. Chen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ruocheng Dong
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - John P. Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kerry R. Schaffer
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Shengchao A. Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Hans Lilja
- Departments of Pathology and Laboratory Medicine, Surgery, Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Translational Medicine, Lund University, Malmö, 21428, Sweden
| | | | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - David V. Conti
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Robert J. Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan D. Mosley
- Departments of Internal Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
- Departments of Biomedical Data Science and Genetics (by courtesy), Stanford University, Stanford, CA, 94305, USA
| | - Rebecca E. Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
36
|
McKerrow W, Kagermazova L, Doudican N, Frazzette N, Kaparos E, Evans SA, Rocha A, Sedivy JM, Neretti N, Carucci J, Boeke J, Fenyö D. LINE-1 retrotransposon expression in cancerous, epithelial and neuronal cells revealed by 5' single-cell RNA-Seq. Nucleic Acids Res 2023; 51:2033-2045. [PMID: 36744437 PMCID: PMC10018344 DOI: 10.1093/nar/gkad049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
LINE-1 retrotransposons are sequences capable of copying themselves to new genomic loci via an RNA intermediate. New studies implicate LINE-1 in a range of diseases, especially in the context of aging, but without an accurate understanding of where and when LINE-1 is expressed, a full accounting of its role in health and disease is not possible. We therefore developed a method-5' scL1seq-that makes use of a widely available library preparation method (10x Genomics 5' single cell RNA-seq) to measure LINE-1 expression in tens of thousands of single cells. We recapitulated the known pattern of LINE-1 expression in tumors-present in cancer cells, absent from immune cells-and identified hitherto undescribed LINE-1 expression in human epithelial cells and mouse hippocampal neurons. In both cases, we saw a modest increase with age, supporting recent research connecting LINE-1 to age related diseases.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Nicole Doudican
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Nicholas Frazzette
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Efiyenia Ismini Kaparos
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Shane A Evans
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Nicola Neretti
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - John Carucci
- Ronald O. Perelman Department of Dermatology, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn,NY11201, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
37
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
38
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
39
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
40
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 PMCID: PMC12061055 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
41
|
Khan A, Nasim N, Pudhuvai B, Koul B, Upadhyay SK, Sethi L, Dey N. Plant Synthetic Promoters: Advancement and Prospective. AGRICULTURE 2023; 13:298. [DOI: 10.3390/agriculture13020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Native/endogenous promoters have several fundamental limitations in terms of their size, Cis-elements distribution/patterning, and mode of induction, which is ultimately reflected in their insufficient transcriptional activity. Several customized synthetic promoters were designed and tested in plants during the past decade to circumvent such constraints. Such synthetic promoters have a built-in capacity to drive the expression of the foreign genes at their maximum amplitude in plant orthologous systems. The basic structure and function of the promoter has been discussed in this review, with emphasis on the role of the Cis-element in regulating gene expression. In addition to this, the necessity of synthetic promoters in the arena of plant biology has been highlighted. This review also provides explicit information on the two major approaches for developing plant-based synthetic promoters: the conventional approach (by utilizing the basic knowledge of promoter structure and Cis-trans interaction) and the advancement in gene editing technology. The success of plant genetic manipulation relies on the promoter efficiency and the expression level of the transgene. Therefore, advancements in the field of synthetic promoters has enormous potential in genetic engineering-mediated crop improvement.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Noohi Nasim
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Lini Sethi
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
42
|
Huang T, Li J, Zhao H, Ngamphiw C, Tongsima S, Kantaputra P, Kittitharaphan W, Wang SM. Core promoter in TNBC is highly mutated with rich ethnic signature. Brief Funct Genomics 2023; 22:9-19. [PMID: 36307127 PMCID: PMC9853936 DOI: 10.1093/bfgp/elac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
The core promoter plays an essential role in regulating transcription initiation by controlling the interaction between transcriptional factors and sequence motifs in the core promoter. Although mutation in core promoter sequences is expected to cause abnormal gene expression leading to pathogenic consequences, limited supporting evidence showed the involvement of core promoter mutation in diseases. Our previous study showed that the core promoter is highly polymorphic in worldwide human ethnic populations in reflecting human history and adaptation. Our recent characterization of the core promoter in triple-negative breast cancer (TNBC), a subtype of breast cancer, in a Chinese TNBC cohort revealed the wide presence of core promoter mutation in TNBC. In the current study, we analyzed the core promoter in a Thai TNBC cohort. We also observed rich core promoter mutation in the Thai TNBC patients. We compared the core promoter mutations between Chinese and Thai TNBC cohorts. We observed substantial differences of core promoter mutation in TNBC between the two cohorts, as reflected by the mutation spectrum, mutation-effected gene and functional category, and altered gene expression. Our study confirmed that the core promoter in TNBC is highly mutable, and is highly ethnic-specific.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - San Ming Wang
- Corresponding author: S.M. Wang, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China. Tel.: +(853) 8822-4836; E-mail:
| |
Collapse
|
43
|
Sharma M, Bhushan S, Sharma D, Kaul S, Dhar MK. A Brief Review of Plant Cell Transfection, Gene Transcript Expression, and Genotypic Integration for Enhancing Compound Production. Methods Mol Biol 2023; 2575:153-179. [PMID: 36301475 DOI: 10.1007/978-1-0716-2716-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.
Collapse
Affiliation(s)
- Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, India.
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
44
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
45
|
Ru W, Koga T, Wang X, Guo Q, Gearhart MD, Zhao S, Murphy M, Kawakami H, Corcoran D, Zhang J, Zhu Z, Yao X, Kawakami Y, Xu C. Structural studies of SALL family protein zinc finger cluster domains in complex with DNA reveal preferential binding to an AATA tetranucleotide motif. J Biol Chem 2022; 298:102607. [PMID: 36257403 PMCID: PMC9672407 DOI: 10.1016/j.jbc.2022.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The Spalt-like 4 transcription factor (SALL4) plays an essential role in controlling the pluripotent property of embryonic stem cells via binding to AT-rich regions of genomic DNA, but structural details on this binding interaction have not been fully characterized. Here, we present crystal structures of the zinc finger cluster 4 (ZFC4) domain of SALL4 (SALL4ZFC4) bound with different dsDNAs containing a conserved AT-rich motif. In the structures, two zinc fingers of SALL4ZFC4 recognize an AATA tetranucleotide. We also solved the DNA-bound structures of SALL3ZFC4 and SALL4ZFC1. These structures illuminate a common preference for the AATA tetranucleotide shared by ZFC4 of SALL1, SALL3, and SALL4. Furthermore, our cell biology experiments demonstrate that the DNA-binding activity is essential for SALL4 function as DNA-binding defective mutants of mouse Sall4 failed to repress aberrant gene expression in Sall4-/- mESCs. Thus, these analyses provide new insights into the mechanisms of action underlying SALL family proteins in controlling cell fate via preferential targeting to AT-rich sites within genomic DNA during cell differentiation.
Collapse
Affiliation(s)
- Wenwen Ru
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoyang Wang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Qiong Guo
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shidong Zhao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Mark Murphy
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jiahai Zhang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Zhongliang Zhu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
46
|
Han BY, Liu Z, Hu X, Ling H. HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms. Cell Death Dis 2022; 13:940. [PMID: 36347834 PMCID: PMC9643420 DOI: 10.1038/s41419-022-05376-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Triple-negative breast cancer (TNBC) is a great detriment to women's health due to the lack of effective therapeutic targets. In this study, we employed an integrated genetic screen to identify a pivotal oncogenic factor, heterogeneous nuclear ribonucleoprotein U (HNRNPU), which is required for the progression of TNBC. We elucidated the pro-oncogenic role of HNRNPU, which can induce the proliferation and migration of TNBC cells via its association with DEAD box helicase 5 (DDX5) protein. Elevated levels of the HNRNPU-DDX5 complex prohibited the intron retention of minichromosome maintenance protein 10 (MCM10) pre-mRNA, decreased nonsense-mediated mRNA decay, and activated Wnt/β-catenin signalling; on the other hand, HNRNPU-DDX5 is located in the transcriptional start sites (TSS) of LIM domain only protein 4 (LMO4) and its upregulation promoted the transcription of LMO4, consequently activating PI3K-Akt-mTOR signalling. Our data highlight the synergetic effects of HNRNPU in RNA transcription and splicing in regulating cancer progression and suggest that HNRNPU may act as a potential molecular target in the treatment of TNBC.
Collapse
Affiliation(s)
- Bo-yue Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhebin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hong Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
47
|
Wanarska M, Krajewska-Przybyszewska E, Wicka-Grochocka M, Cieśliński H, Pawlak-Szukalska A, Białkowska AM, Turkiewicz M, Florczak T, Gromek E, Krysiak J, Filipowicz N. A New Expression System Based on Psychrotolerant Debaryomyces macquariensis Yeast and Its Application to the Production of Cold-Active β-d-Galactosidase from Paracoccus sp. 32d. Int J Mol Sci 2022; 23:ijms231911691. [PMID: 36232994 PMCID: PMC9569826 DOI: 10.3390/ijms231911691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Yeasts provide attractive host/vector systems for heterologous gene expression. The currently used yeast-based expression platforms include mesophilic and thermotolerant species. A eukaryotic expression system working at low temperatures could be particularly useful for the production of thermolabile proteins and proteins that tend to form insoluble aggregates. For this purpose, an expression system based on an Antarctic psychrotolerant yeast Debaryomyces macquariensis strain D50 that is capable of growing at temperatures ranging from 0 to 30 °C has been developed. The optimal physical culture conditions for D. macquariensis D50 in a fermenter are as follows: temperature 20 °C, pH 5.5, aeration rate of 1.5 vvm, and a stirring speed of 300 rpm. Four integrative plasmid vectors equipped with an expression cassette containing the constitutive GAP promoter and CYC1 transcriptional terminator from D. macquariensis D50 were constructed and used to clone and express a gene-encoding cold-active β-d-galactosidase of Paracoccus sp. 32d. The yield was 1150 U/L of recombinant yeast culture. Recombinant D. macquariensis D50 strains were mitotically stable under both selective and non-selective conditions. The D. macquariensis D50 host/vector system has been successfully utilized for the synthesis of heterologous thermolabile protein, and it can be an alternative to other microbial expression systems.
Collapse
Affiliation(s)
- Marta Wanarska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
- Correspondence:
| | - Ewelina Krajewska-Przybyszewska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Monika Wicka-Grochocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Hubert Cieśliński
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Pawlak-Szukalska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Marianna Turkiewicz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Tomasz Florczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Ewa Gromek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Joanna Krysiak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-573 Lodz, Poland
| | - Natalia Filipowicz
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
48
|
Comprehensive characterization of Cysteine-rich protein-coding genes of Giardia lamblia and their role during antigenic variation. Genomics 2022; 114:110462. [PMID: 35998788 DOI: 10.1016/j.ygeno.2022.110462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
Giardia lamblia encodes several families of cysteine-rich proteins, including the Variant-specific Surface Proteins (VSPs) involved in the process of antigenic variation. Their characteristics, definition and relationships are still controversial. An exhaustive analysis of the Cys-rich families including organization, features, evolution and levels of expression was performed, by combining pattern searches and predictions with massive sequencing techniques. Thus a new classification for Cys-rich proteins, genes and pseudogenes that better describes their involvement in Giardia's biology is presented. Moreover, three novel characteristics exclusive to the VSP genes, comprising an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation is presented as well as the finding that High Cysteine Membrane Proteins, upregulated under stress, may protect the parasite during VSP switching. These results allow better interpretation of previous reports providing the basis for further studies of the biology of this early-branching eukaryote.
Collapse
|
49
|
Kim HM, Park SH, Park SY, Ma SH, Do JH, Kim AY, Jeon MJ, Shim JS, Joung YH. Identification of essential element determining fruit-specific transcriptional activity in the tomato HISTIDINE DECARBOXYLASE A gene promoter. PLANT CELL REPORTS 2022; 41:1721-1731. [PMID: 35739429 DOI: 10.1007/s00299-022-02886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In SlHDC-A promoter, SlHDC-A core-ES is an essential region for fruit-specific expression and interacts with GATA, HSF and AP1. Triplication of essential region was proposed as a minimal fruit-specific promoter. In plant biotechnology, fruit-specific promoter is an important tool for the improvement and utilization of tomato fruit. To expand our understanding on fruit-specific expression, it is necessary to determine the promoter region involved in fruit-specific transcriptional activity and transcriptional regulations of the promoter. In previous study, we isolated a fruit-specific SlHDC-A core promoter specifically expressed during tomato ripening stages. In this study, we identified SlHDC-A promoter region (SlHDC-A core-ES) that is essential for fruit-specific expression of the SlHDC-A. To understand the molecular mechanisms of fruit-specific expression of the SlHDC-A promoter, we first identified the putative transcription factor binding elements in the SlHDC-A core promoter region and corresponding putative transcription factors which are highly expressed during fruit maturation. Yeast one hybrid analysis confirmed that GATA, HSF, and AP1 interact with the SlHDC-A core-ES promoter region. Further transactivation analysis revealed that expression of the three transcription factors significantly activated expression of a reporter gene driven by SlHDC-A core-ES promoter. These results suggest that GATA, HSF, and AP1 are involved in the fruit-specific expression of SlHDC-A promoter. Furthermore, the synthetic promoter composed of three tandem repeats of SlHDC-A core-ES showed relatively higher activity than the constitutive 35S promoter in the transgenic tomato fruits at the orange stage. Taken together, we propose a new synthetic promoter that is specifically expressed during fruit ripening stage.
Collapse
Affiliation(s)
- Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Se Hee Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ah Young Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
50
|
Database of Potential Promoter Sequences in the Capsicum annuum Genome. BIOLOGY 2022; 11:biology11081117. [PMID: 35892972 PMCID: PMC9332048 DOI: 10.3390/biology11081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
In this study, we used a mathematical method for the multiple alignment of highly divergent sequences (MAHDS) to create a database of potential promoter sequences (PPSs) in the Capsicum annuum genome. To search for PPSs, 20 statistically significant classes of sequences located in the range from −499 to +100 nucleotides near the annotated genes were calculated. For each class, a position–weight matrix (PWM) was computed and then used to identify PPSs in the C. annuum genome. In total, 825,136 PPSs were detected, with a false positive rate of 0.13%. The PPSs obtained with the MAHDS method were tested using TSSFinder, which detects transcription start sites. The databank of the found PPSs provides their coordinates in chromosomes, the alignment of each PPS with the PWM, and the level of statistical significance as a normal distribution argument, and can be used in genetic engineering and biotechnology.
Collapse
|