1
|
Priyamvada S, Jayawardena D, Anbazhagan AN, Kumar A, Saksena S, Gill RK, Borthakur A, Alrefai WA, Dudeja PK. Autophagy Regulates Putative Anion Transporter 1 Expression in Intestinal Epithelial Cells. J Cell Mol Med 2025; 29:e70513. [PMID: 40318213 PMCID: PMC12046977 DOI: 10.1111/jcmm.70513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 05/07/2025] Open
Abstract
Putative anion transporter 1 (PAT-1) is the key oxalate-secreting transporter in the intestine and therefore, maintaining its steady-state levels is critical for oxalate homeostasis. Autophagy is known to modulate the expression of intestinal solute transporters; however, its role in regulating PAT-1 has not been examined. Autophagy in Caco-2 cells was induced by either rapamycin treatment or by nutrient deprivation and assessed by conventional autophagy marker proteins. ATG7 (autophagy-related 7) protein expression was attenuated by ATG7-siRNA in Caco-2 cells or by utilising ATG7KO mice. PAT-1 protein levels in Caco-2 cells were significantly reduced by rapamycin or by nutrient deprivation at 48 and 72 h. Concomitantly, the LC3II/I ratio was increased, and p62 levels were significantly decreased, confirming the induction of autophagy. Nutrient deprivation for 6 h also caused a significant decrease in the surface levels of PAT-1. PAT-1 protein levels were increased by the siRNA-mediated ATG7 knockdown in Caco-2 cells and in the ileum of ATG7KO mice. In summary, Autophagy in intestinal epithelial cells modulates the basal levels of PAT-1 protein and may play a critical role in the maintenance of oxalate homeostasis.
Collapse
Affiliation(s)
- Shubha Priyamvada
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Arivarasu N. Anbazhagan
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Anoop Kumar
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
- Jesse Brown VA Medical CenterChicagoIllinoisUSA
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
- Jesse Brown VA Medical CenterChicagoIllinoisUSA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
- Jesse Brown VA Medical CenterChicagoIllinoisUSA
| | - Alip Borthakur
- Department of Clinical and Translational SciencesMarshall UniversityHuntingtonWest VirginiaUSA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
- Jesse Brown VA Medical CenterChicagoIllinoisUSA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
- Jesse Brown VA Medical CenterChicagoIllinoisUSA
| |
Collapse
|
2
|
Desenclos J, Forté V, Clément C, Daudon M, Letavernier E. Pathophysiology and management of enteric hyperoxaluria. Clin Res Hepatol Gastroenterol 2024; 48:102322. [PMID: 38503362 DOI: 10.1016/j.clinre.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024]
Abstract
Enteric hyperoxaluria is a metabolic disorder resulting from conditions associated with fatty acid malabsorption and characterized by an increased urinary output of oxalate. Oxalate is excessively absorbed in the gut and then excreted in urine where it forms calcium oxalate crystals, inducing kidney stones formation and crystalline nephropathies. Enteric hyperoxaluria is probably underdiagnosed and may silently damage kidney function of patients affected by bowel diseases. Moreover, the prevalence of enteric hyperoxaluria has increased because of the development of bariatric surgical procedures. Therapeutic options are based on the treatment of the underlying disease, limitation of oxalate intakes, increase in calcium salts intakes but also increase in urine volume and correction of hypocitraturia. There are few data regarding the natural evolution of kidney stone events and chronic kidney disease in these patients, and there is a need for new treatments limiting kidney injury by calcium oxalate crystallization.
Collapse
Affiliation(s)
- Jordan Desenclos
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France
| | - Valentine Forté
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France
| | - Cécile Clément
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France
| | - Michel Daudon
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France; INSERM, UMR S 1155, Paris F-75020, France
| | - Emmanuel Letavernier
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, 4 rue de la Chine, Paris F-75020, France; INSERM, UMR S 1155, Paris F-75020, France; Sorbonne Université, UMR S 1155, Paris F-75020, France.
| |
Collapse
|
3
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
4
|
Li J, Huang S, Liu S, Liao X, Yan S, Liu Q. SLC26 family: a new insight for kidney stone disease. Front Physiol 2023; 14:1118342. [PMID: 37304821 PMCID: PMC10247987 DOI: 10.3389/fphys.2023.1118342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The solute-linked carrier 26 (SLC26) protein family is comprised of multifunctional transporters of substrates that include oxalate, sulphate, and chloride. Disorders of oxalate homeostasis cause hyperoxalemia and hyperoxaluria, leading to urinary calcium oxalate precipitation and urolithogenesis. SLC26 proteins are aberrantly expressed during kidney stone formation, and consequently may present therapeutic targets. SLC26 protein inhibitors are in preclinical development. In this review, we integrate the findings of recent reports with clinical data to highlight the role of SLC26 proteins in oxalate metabolism during urolithogenesis, and discuss limitations of current studies and potential directions for future research.
Collapse
Affiliation(s)
- Jialin Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sigen Huang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shengyin Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinzhi Liao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Sheng Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Quanliang Liu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Pfau A, López-Cayuqueo KI, Scherer N, Wuttke M, Wernstedt A, González Fassrainer D, Smith DE, van de Kamp JM, Ziegeler K, Eckardt KU, Luft FC, Aronson PS, Köttgen A, Jentsch TJ, Knauf F. SLC26A1 is a major determinant of sulfate homeostasis in humans. J Clin Invest 2023; 133:e161849. [PMID: 36719378 PMCID: PMC9888379 DOI: 10.1172/jci161849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfate plays a pivotal role in numerous physiological processes in the human body, including bone and cartilage health. A role of the anion transporter SLC26A1 (Sat1) for sulfate reabsorption in the kidney is supported by the observation of hyposulfatemia and hypersulfaturia in Slc26a1-knockout mice. The impact of SLC26A1 on sulfate homeostasis in humans remains to be defined. By combining clinical genetics, functional expression assays, and population exome analysis, we identify SLC26A1 as a sulfate transporter in humans and experimentally validate several loss-of-function alleles. Whole-exome sequencing from a patient presenting with painful perichondritis, hyposulfatemia, and renal sulfate wasting revealed a homozygous mutation in SLC26A1, which has not been previously described to the best of our knowledge. Whole-exome data analysis of more than 5,000 individuals confirmed that rare, putatively damaging SCL26A1 variants were significantly associated with lower plasma sulfate at the population level. Functional expression assays confirmed a substantial reduction in sulfate transport for the SLC26A1 mutation of our patient, which we consider to be novel, as well as for the additional variants detected in the population study. In conclusion, combined evidence from 3 complementary approaches supports SLC26A1 activity as a major determinant of sulfate homeostasis in humans. In view of recent evidence linking sulfate homeostasis with back pain and intervertebral disc disorder, our study identifies SLC26A1 as a potential target for modulation of musculoskeletal health.
Collapse
Affiliation(s)
- Anja Pfau
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karen I. López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center and
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center and
| | | | | | - Desiree E.C. Smith
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience and
| | - Jiddeke M. van de Kamp
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katharina Ziegeler
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich C. Luft
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter S. Aronson
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center and
- CIBSS – Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Abstract
Oxalate homeostasis is maintained through a delicate balance between endogenous sources, exogenous supply and excretion from the body. Novel studies have shed light on the essential roles of metabolic pathways, the microbiome, epithelial oxalate transporters, and adequate oxalate excretion to maintain oxalate homeostasis. In patients with primary or secondary hyperoxaluria, nephrolithiasis, acute or chronic oxalate nephropathy, or chronic kidney disease irrespective of aetiology, one or more of these elements are disrupted. The consequent impairment in oxalate homeostasis can trigger localized and systemic inflammation, progressive kidney disease and cardiovascular complications, including sudden cardiac death. Although kidney replacement therapy is the standard method for controlling elevated plasma oxalate concentrations in patients with kidney failure requiring dialysis, more research is needed to define effective elimination strategies at earlier stages of kidney disease. Beyond well-known interventions (such as dietary modifications), novel therapeutics (such as small interfering RNA gene silencers, recombinant oxalate-degrading enzymes and oxalate-degrading bacterial strains) hold promise to improve the outlook of patients with oxalate-related diseases. In addition, experimental evidence suggests that anti-inflammatory medications might represent another approach to mitigating or resolving oxalate-induced conditions.
Collapse
Affiliation(s)
- Theresa Ermer
- Department of Surgery, Division of Thoracic Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Lama Nazzal
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Maria Clarissa Tio
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sushrut Waikar
- Department of Medicine, Section of Nephrology, Boston University, Boston, MA, USA
| | - Peter S Aronson
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Felix Knauf
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Stephens CE, Whittamore JM, Hatch M. The role of NHE3 (Slc9a3) in oxalate and sodium transport by mouse intestine and regulation by cAMP. Physiol Rep 2021; 9:e14828. [PMID: 33904662 PMCID: PMC8077127 DOI: 10.14814/phy2.14828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal oxalate transport involves Cl−/HCO3− exchangers but how this transport is regulated is not currently known. NHE3 (Slc9a3), an apical Na+/H+ exchanger, is an established target for regulation of electroneutral NaCl absorption working in concert with Cl−/HCO3− exchangers. To test whether NHE3 could be involved in regulation of intestinal oxalate transport and renal oxalate handling we compared urinary oxalate excretion rates and intestinal transepithelial fluxes of 14C‐oxalate and 22Na+ between NHE3 KO and wild‐type (WT) mice. NHE3 KO kidneys had lower creatinine clearance suggesting reduced GFR, but urinary oxalate excretion rates (µmol/24 h) were similar compared to the WT but doubled when expressed as a ratio of creatinine. Intestinal transepithelial fluxes of 14C‐oxalate and 22Na+ were measured in the distal ileum, cecum, and distal colon. The absence of NHE3 did not affect basal net transport rates of oxalate or sodium across any intestinal section examined. Stimulation of intracellular cAMP with forskolin (FSK) and 3‐isobutyl‐1‐methylxanthine (IBMX) led to an increase in net oxalate secretion in the WT distal ileum and cecum and inhibition of sodium absorption in the cecum and distal colon. In NHE3 KO cecum, cAMP stimulation of oxalate secretion was impaired suggesting the possibility of a role for NHE3 in this process. Although, there is little evidence for a role of NHE3 in basal intestinal oxalate fluxes, NHE3 may be important for cAMP stimulation of oxalate in the cecum and for renal handling of oxalate.
Collapse
Affiliation(s)
- Christine E Stephens
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jonathan M Whittamore
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Witting C, Langman CB, Assimos D, Baum MA, Kausz A, Milliner D, Tasian G, Worcester E, Allain M, West M, Knauf F, Lieske JC. Pathophysiology and Treatment of Enteric Hyperoxaluria. Clin J Am Soc Nephrol 2021; 16:487-495. [PMID: 32900691 PMCID: PMC8011014 DOI: 10.2215/cjn.08000520] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Enteric hyperoxaluria is a distinct entity that can occur as a result of a diverse set of gastrointestinal disorders that promote fat malabsorption. This, in turn, leads to excess absorption of dietary oxalate and increased urinary oxalate excretion. Hyperoxaluria increases the risk of kidney stones and, in more severe cases, CKD and even kidney failure. The prevalence of enteric hyperoxaluria has increased over recent decades, largely because of the increased use of malabsorptive bariatric surgical procedures for medically complicated obesity. This systematic review of enteric hyperoxaluria was completed as part of a Kidney Health Initiative-sponsored project to describe enteric hyperoxaluria pathophysiology, causes, outcomes, and therapies. Current therapeutic options are limited to correcting the underlying gastrointestinal disorder, intensive dietary modifications, and use of calcium salts to bind oxalate in the gut. Evidence for the effect of these treatments on clinically significant outcomes, including kidney stone events or CKD, is currently lacking. Thus, further research is needed to better define the precise factors that influence risk of adverse outcomes, the long-term efficacy of available treatment strategies, and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Celeste Witting
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig B. Langman
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois,Division of Kidney Diseases, Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Dean Assimos
- Department of Urology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Michelle A. Baum
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Dawn Milliner
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Greg Tasian
- Department of Surgery, Division of Urology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine Worcester
- Department of Medicine, University of Chicago, Chicago, Illinois
| | | | | | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - John C. Lieske
- Allena Pharmaceuticals, Inc., Newton, Massachusetts,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The gut-kidney axis plays a critical role in oxalate homeostasis, and better understanding of oxalate transport regulatory mechanisms is essential for developing novel therapies. RECENT FINDINGS Oxalate potentially contributes to chronic kidney disease (CKD) progression, CKD - and end stage renal disease (ESRD)-associated cardiovascular diseases, polycystic kidney disease (PKD) progression, and/or poor renal allograft survival, emphasizing the need for plasma and urinary oxalate lowering therapies. One promising strategy would be to enhance the bowel's ability to secrete oxalate, which might be facilitated by the following findings. Oxalobacter formigenes (O. formigenes)-derived factors recapitulate O. formigenes colonization effects by reducing urinary oxalate excretion in hyperoxaluric mice by inducing colonic oxalate secretion. Protein kinase A activation stimulates intestinal oxalate transport by enhancing the surface expression of the oxalate transporter SLC26A6 (A6). Glycosylation also stimulates A6-mediated oxalate transport. The colon adapts to chronic acidosis in rats through increased colonic oxalate secretion as previously reported in CKD rats, and A6-mediated enteric oxalate secretion is critical in reducing the body oxalate burden in CKD mice. Intestinal oxalate transport is negatively regulated by proinflammatory cytokines and cholinergic, purinergic, and adenosinergic signaling. SUMMARY These findings could facilitate the development of novel therapeutics for hyperoxalemia, hyperoxaluria, and related disorders if similar regulatory mechanisms are confirmed in humans.
Collapse
Affiliation(s)
- Altayeb E Alshaikh
- University of Chicago Pritzker School of Medicine
- University of Chicago, Chicago, Illinois, USA
| | - Hatim A Hassan
- University of Chicago Pritzker School of Medicine
- University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
The anion exchanger PAT-1 (Slc26a6) does not participate in oxalate or chloride transport by mouse large intestine. Pflugers Arch 2020; 473:95-106. [PMID: 33205229 DOI: 10.1007/s00424-020-02495-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 01/20/2023]
Abstract
The membrane-bound transport proteins responsible for oxalate secretion across the large intestine remain unidentified. The apical chloride/bicarbonate (Cl-/HCO3-) exchanger encoded by Slc26a6, known as PAT-1 (putative anion transporter 1), is a potential candidate. In the small intestine, PAT-1 makes a major contribution to oxalate secretion but whether this role extends into the large intestine has not been directly tested. Using the PAT-1 knockout (KO) mouse, we compared the unidirectional absorptive ([Formula: see text]) and secretory ([Formula: see text]) flux of oxalate and Cl- across cecum, proximal colon, and distal colon from wild-type (WT) and KO mice in vitro. We also utilized the non-specific inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) to confirm a role for PAT-1 in WT large intestine and (in KO tissues) highlight any other apical anion exchangers involved. Under symmetrical, short-circuit conditions the cecum and proximal colon did not transport oxalate on a net basis, whereas the distal colon supported net secretion. We found no evidence for the participation of PAT-1, or indeed any other DIDS-sensitive transport mechanism, in oxalate or Cl- by the large intestine. Most unexpectedly, mucosal DIDS concurrently stimulated [Formula: see text] and [Formula: see text] by 25-68% across each segment without impacting net transport. For the colon, these changes were directly proportional to increased transepithelial conductance suggesting this response was the result of bidirectional paracellular flux. In conclusion, PAT-1 does not contribute to oxalate or Cl- transport by the large intestine, and we urge caution when using DIDS with mouse colonic epithelium.
Collapse
|
12
|
Neumeier LI, Thomson RB, Reichel M, Eckardt KU, Aronson PS, Knauf F. Enteric Oxalate Secretion Mediated by Slc26a6 Defends against Hyperoxalemia in Murine Models of Chronic Kidney Disease. J Am Soc Nephrol 2020; 31:1987-1995. [PMID: 32660969 DOI: 10.1681/asn.2020010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/01/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND A state of oxalate homeostasis is maintained in patients with healthy kidney function. However, as GFR declines, plasma oxalate (Pox) concentrations start to rise. Several groups of researchers have described augmentation of oxalate secretion in the colon in models of CKD, but the oxalate transporters remain unidentified. The oxalate transporter Slc26a6 is a candidate for contributing to the extrarenal clearance of oxalate via the gut in CKD. METHODS Feeding a diet high in soluble oxalate or weekly injections of aristolochic acid induced CKD in age- and sex-matched wild-type and Slc26a6 -/- mice. qPCR, immunohistochemistry, and western blot analysis assessed intestinal Slc26a6 expression. An oxalate oxidase assay measured fecal and Pox concentrations. RESULTS Fecal oxalate excretion was enhanced in wild-type mice with CKD. This increase was abrogated in Slc26a6 -/- mice associated with a significant elevation in plasma oxalate concentration. Slc26a6 mRNA and protein expression were greatly increased in the intestine of mice with CKD. Raising Pox without inducing kidney injury did not alter intestinal Slc26a6 expression, suggesting that changes associated with CKD regulate transporter expression rather than elevations in Pox. CONCLUSIONS Slc26a6-mediated enteric oxalate secretion is critical in decreasing the body burden of oxalate in murine CKD models. Future studies are needed to address whether similar mechanisms contribute to intestinal oxalate elimination in humans to enhance extrarenal oxalate clearance.
Collapse
Affiliation(s)
- Laura I Neumeier
- Department of Nephrology and Hypertension, Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert B Thomson
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| | - Martin Reichel
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter S Aronson
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Felix Knauf
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut .,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Whittamore JM. The teleost fish intestine is a major oxalate-secreting epithelium. J Exp Biol 2020; 223:jeb216895. [PMID: 32122927 DOI: 10.1242/jeb.216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022]
Abstract
Oxalate is a common constituent of kidney stones, but the mechanism of its transport across epithelia is not well understood. With prior research on the role of the intestine focused on mammals, the present study considered oxalate handling by teleost fish. Given the osmotic challenge of seawater (SW), marine teleosts have limited scope for urinary oxalate excretion relative to freshwater (FW) taxa. The marine teleost intestine was hypothesized as the principal route for oxalate elimination, thus demanding epithelial secretion. To test this, intestinal 14C-oxalate flux was compared between FW- and SW-acclimated sailfin molly (Poecilia latipinna). In SW, oxalate was secreted at remarkable rates (367.90±22.95 pmol cm-2 h-1), which were similar following FW transfer (387.59±27.82 pmol cm-2 h-1), implying no regulation by salinity. Nevertheless, this ability to secrete oxalate at rates 15-19 times higher than the mammalian small intestine supports this proposal of the teleost gut as a major, previously unrecognized excretory pathway.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, P.O. Box 100275, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Arvans D, Alshaikh A, Bashir M, Weber C, Hassan H. Activation of the PKA signaling pathway stimulates oxalate transport by human intestinal Caco2-BBE cells. Am J Physiol Cell Physiol 2020; 318:C372-C379. [PMID: 31825656 PMCID: PMC7052606 DOI: 10.1152/ajpcell.00135.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Most kidney stones are composed of calcium oxalate, and small increases in urine oxalate enhance the stone risk. The mammalian intestine plays a crucial role in oxalate homeostasis, and we had recently reported that Oxalobacter-derived factors stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells through PKA activation. We therefore evaluated whether intestinal oxalate transport is directly regulated by activation of the PKA signaling pathway. To this end, PKA was activated with forskolin and IBMX (F/I). F/I significantly stimulated (3.7-fold) [14C]oxalate transport by C2 cells [≥49% of which is mediated by the oxalate transporter SLC26A6 (A6)], an effect completely blocked by the PKA inhibitor H89, indicating that it is PKA dependent. PKA stimulation of intestinal oxalate transport is not cell line specific, since F/I similarly stimulated oxalate transport by the human intestinal T84 cells. F/I significantly increased (2.5-fold) A6 surface protein expression by use of immunocytochemistry. Assessing [14C]oxalate transport as a function of increasing [14C]oxalate concentration in the flux medium showed that the observed stimulation is due to a F/I-induced increase (1.8-fold) in Vmax and reduction (2-fold) in Km. siRNA knockdown studies showed that significant components of the observed stimulation are mediated by A6 and SLC26A2 (A2). Besides enhancing A6 surface protein expression, it is also possible that the observed stimulation is due to PKA-induced enhanced A6 and/or A2 transport activity in view of the reduced Km. We conclude that PKA activation positively regulates oxalate transport by intestinal epithelial cells and that PKA agonists might therapeutically impact hyperoxalemia, hyperoxaluria, and related kidney stones.
Collapse
Affiliation(s)
- Donna Arvans
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Altayeb Alshaikh
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Mohamed Bashir
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Christopher Weber
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Hatim Hassan
- Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Hatch M. Induction of enteric oxalate secretion by Oxalobacter formigenes in mice does not require the presence of either apical oxalate transport proteins Slc26A3 or Slc26A6. Urolithiasis 2019; 48:1-8. [PMID: 31201468 DOI: 10.1007/s00240-019-01144-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
Abstract
Oxalobacter sp. promotion of enteric oxalate excretion, correlating with reductions in urinary oxalate excretion, was previously reported in rats and mice, but the mechanistic basis for this affect has not been described. The main objective of the present study was to determine whether the apical oxalate transport proteins, PAT1 (slc26a6) and DRA (slc26a3), are involved in mediating the Oxalobacter-induced net secretory flux across colonized mouse cecum and distal colon. We measured unidirectional and net fluxes of oxalate across tissues removed from colonized PAT1 and DRA knockout (KO) mice and also across two double knockout (dKO) mouse models with primary hyperoxaluria, type 1 (i.e., deficient in alanine-glyoxylate aminotransferase; AGT KO), including PAT1/AGT dKO and DRA/AGT dKO mice compared to non-colonized mice. In addition, urinary oxalate excretion was measured before and after the colonization procedure. The results demonstrate that Oxalobacter can induce enteric oxalate excretion in the absence of either apical oxalate transporter and urinary oxalate excretion was reduced in all colonized genotypes fed a 1.5% oxalate-supplemented diet. We conclude that there are other, as yet unidentified, oxalate transporters involved in mediating the directional changes in oxalate transport across the Oxalobacter-colonized mouse large intestine.
Collapse
Affiliation(s)
- Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
16
|
Stevens JS, Al-Awqati Q. Lactate dehydrogenase 5: identification of a druggable target to reduce oxaluria. J Clin Invest 2019; 129:2201-2204. [PMID: 31107247 DOI: 10.1172/jci128709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Excessive excretion of oxalate in the urine results in the formation of calcium oxalate crystals and subsequent kidney stone formation. Severe forms of hyperoxaluria, including genetic forms and those that result from ethylene glycol poisoning, can result in end-stage renal disease. Therapeutic interventions are limited and often rely on dietary intervention. In this issue of the JCI, Le Dudal and colleagues demonstrate that the lactate dehydrogenase 5 inhibitor (LDH5) stiripentol reduces urinary oxalate excretion. Importantly, stiripentol treatment of a single individual with primary hyperoxaluria reduced the urinary oxalate excretion. Together, these results support further evaluation of LDH5 as a therapeutic target for hyperoxaluria.
Collapse
|