1
|
Zhang C, Zhen Y, Weng Y, Lin J, Xu X, Ma J, Zhong Y, Wang M. Research progress on the microbial metabolism and transport of polyamines and their roles in animal gut homeostasis. J Anim Sci Biotechnol 2025; 16:57. [PMID: 40234982 PMCID: PMC11998418 DOI: 10.1186/s40104-025-01193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/09/2025] [Indexed: 04/17/2025] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are aliphatic compounds ubiquitous in prokaryotes and eukaryotes. Positively charged polyamines bind to negatively charged macromolecules, such as nucleic acids and acidic phospholipids, and are involved in physiological activities including cell proliferation, differentiation, apoptosis and gene regulation. Intracellular polyamine levels are regulated by biosynthesis, catabolism and transport. Polyamines in the body originate from two primary sources: dietary intake and intestinal microbial metabolism. These polyamines are then transported into the bloodstream, through which they are distributed to various tissues and organs to exert their biological functions. Polyamines synthesized by intestinal microorganisms serve dual critical roles. First, they are essential for maintaining polyamine concentrations within the digestive tract. Second, through transcriptional and post-transcriptional mechanisms, these microbial-derived polyamines modulate the expression of genes governing key processes in intestinal epithelial cells-including proliferation, migration, apoptosis, and cell-cell interactions. Collectively, these regulatory effects help maintain intestinal epithelial homeostasis and ensure the integrity of the gut barrier. In addition, polyamines interact with the gut microbiota to maintain intestinal homeostasis by promoting microbial growth, biofilm formation, swarming, and endocytosis vesicle production, etc. Supplementation with polyamines has been demonstrated to be important in regulating host intestinal microbial composition, enhancing nutrient absorption, and improving metabolism and immunity. In this review, we will focus on recent advances in the study of polyamine metabolism and transport in intestinal microbes and intestinal epithelial cells. We then summarize the scientific understanding of their roles in intestinal homeostasis, exploring the advances in cellular and molecular mechanisms of polyamines and their potential clinical applications, and providing a rationale for polyamine metabolism as an important target for the treatment of intestinal-based diseases.
Collapse
Affiliation(s)
- Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yunan Weng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinru Xu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, China.
| |
Collapse
|
2
|
Anegkamol W, Bowonsomsarit W, Taweevisit M, Tumwasorn S, Thongsricome T, Kaewwongse M, Pitchyangkura R, Tosukhowong P, Chuaypen N, Dissayabutra T. Synbiotics as a novel therapeutic approach for hyperphosphatemia and hyperparathyroidism in chronic kidney disease rats. Sci Rep 2025; 15:7493. [PMID: 40032932 PMCID: PMC11876653 DOI: 10.1038/s41598-025-91033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
Hyperphosphatemia and secondary hyperparathyroidism (SHPT) are the common complications found in CKD that lead to severe complications including mineral bone disease (MBD), vascular calcification (VC), and cardiovascular mortality. To mitigate hyperphosphatemia, SHPT and uremic toxemia, we supplemented cisplatin-induced CKD rats with a synbiotic composed of Lactobacillus salivarius LBR228, Bifidobacterium longum BFS309, fructo-oligosaccharide and chitosan oligosaccharide, with Lactobacillus casei as a standard probiotic control. After the 12 weeks experiment, rats supplemented with the synbiotic had lower serum phosphate, calcium-phosphorus product, serum parathyroid hormone, and indoxyl sulfate levels than untreated rats. The expression of type 1 RNA and protein expression were increased in rats treated with the synbiotics. Our result showed that synbiotic treatment alleviates hyperphosphatemia and SHPT, which are the main risks of MBD and VC. The mode of the synbiotic action is hypothesized to associate with the improvement of the tight junction and gut barrier, leading to the suppression of intestinal paracellular phosphate transport. This study demonstrated the beneficial effects of synbiotic treatment in the control of serum phosphate and parathyroid hormone in an animal model with CKD.
Collapse
Affiliation(s)
- Weerapat Anegkamol
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wirin Bowonsomsarit
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thana Thongsricome
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maroot Kaewwongse
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Rath Pitchyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyaratana Tosukhowong
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Nakamura A, Matsumoto M. Role of polyamines in intestinal mucosal barrier function. Semin Immunopathol 2025; 47:9. [PMID: 39836273 PMCID: PMC11750915 DOI: 10.1007/s00281-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The intestinal epithelium is a rapidly self-renewing tissue; the rapid turnover prevents the invasion of pathogens and harmful components from the intestinal lumen, preventing inflammation and infectious diseases. Intestinal epithelial barrier function depends on the epithelial cell proliferation and junctions, as well as the state of the immune system in the lamina propria. Polyamines, particularly putrescine, spermidine, and spermine, are essential for many cell functions and play a crucial role in mammalian cellular homeostasis, such as that of cell growth, proliferation, differentiation, and maintenance, through multiple biological processes, including translation, transcription, and autophagy. Although the vital role of polyamines in normal intestinal epithelial cell growth and barrier function has been known since the 1980s, recent studies have provided new insights into this topic at the molecular level, such as eukaryotic initiation factor-5A hypusination and autophagy, with rapid advances in polyamine biology in normal cells using biological technologies. This review summarizes recent advances in our understanding of the role of polyamines in regulating normal, non-cancerous, intestinal epithelial barrier function, with a particular focus on intestinal epithelial renewal, cell junctions, and immune cell differentiation in the lamina propria.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd, 20-1 Hirai, Hinode-Machi, Nishitama-Gun, Tokyo, 190-0182, Japan.
| |
Collapse
|
4
|
Liu B, Azfar M, Legchenko E, West JA, Martin S, Van den Haute C, Baekelandt V, Wharton J, Howard L, Wilkins MR, Vangheluwe P, Morrell NW, Upton PD. ATP13A3 variants promote pulmonary arterial hypertension by disrupting polyamine transport. Cardiovasc Res 2024; 120:756-768. [PMID: 38626311 PMCID: PMC11135649 DOI: 10.1093/cvr/cvae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/23/2024] [Accepted: 02/25/2024] [Indexed: 04/18/2024] Open
Abstract
AIMS Potential loss-of-function variants of ATP13A3, the gene encoding a P5B-type transport ATPase of undefined function, were recently identified in patients with pulmonary arterial hypertension (PAH). ATP13A3 is implicated in polyamine transport but its function has not been fully elucidated. In this study, we sought to determine the biological function of ATP13A3 in vascular endothelial cells (ECs) and how PAH-associated variants may contribute to disease pathogenesis. METHODS AND RESULTS We studied the impact of ATP13A3 deficiency and overexpression in EC models [human pulmonary ECs, blood outgrowth ECs (BOECs), and human microvascular EC 1], including a PAH patient-derived BOEC line harbouring an ATP13A3 variant (LK726X). We also generated mice harbouring an Atp13a3 variant analogous to a human disease-associated variant to establish whether these mice develop PAH. ATP13A3 localized to the recycling endosomes of human ECs. Knockdown of ATP13A3 in ECs generally reduced the basal polyamine content and altered the expression of enzymes involved in polyamine metabolism. Conversely, overexpression of wild-type ATP13A3 increased polyamine uptake. Functionally, loss of ATP13A3 was associated with reduced EC proliferation, increased apoptosis in serum starvation, and increased monolayer permeability to thrombin. The assessment of five PAH-associated missense ATP13A3 variants (L675V, M850I, V855M, R858H, and L956P) confirmed loss-of-function phenotypes represented by impaired polyamine transport and dysregulated EC function. Furthermore, mice carrying a heterozygous germline Atp13a3 frameshift variant representing a human variant spontaneously developed a PAH phenotype, with increased pulmonary pressures, right ventricular remodelling, and muscularization of pulmonary vessels. CONCLUSION We identify ATP13A3 as a polyamine transporter controlling polyamine homeostasis in ECs, a deficiency of which leads to EC dysfunction and predisposes to PAH. This suggests a need for targeted therapies to alleviate the imbalances in polyamine homeostasis and EC dysfunction in PAH.
Collapse
Affiliation(s)
- Bin Liu
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Mujahid Azfar
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Ekaterina Legchenko
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, Hills Road, Cambridge CB2 0QQ, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
- Leuven Viral Vector Core, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49, Box 1023, 3000 Leuven, Belgium
| | - John Wharton
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Luke Howard
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Martin R Wilkins
- Faculty of Medicine, National Heart and Lung Institute, ICTEM Building, Imperial College, Du Cane Road, London W12 0NN, UK
| | - Peter Vangheluwe
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Nicholas W Morrell
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| | - Paul D Upton
- Section of Cardio and Respiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, Papworth Road, Cambridge CB2 0BB, UK
| |
Collapse
|
5
|
Tan B, Xiao D, Wang J, Tan B. The Roles of Polyamines in Intestinal Development and Function in Piglets. Animals (Basel) 2024; 14:1228. [PMID: 38672376 PMCID: PMC11047586 DOI: 10.3390/ani14081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The gastrointestinal tract plays crucial roles in the digestion and absorption of nutrients, as well as in maintenance of a functional barrier. The development and maturation of the intestine is important for piglets to maintain optimal growth and health. Polyamines are necessary for the proliferation and growth of enterocytes, which play a key role in differentiation, migration, remodeling and integrity of the intestinal mucosa after injury. This review elaborates the development of the structure and function of the intestine of piglets during embryonic, suckling and weaning periods, the utilization and metabolism of polyamines in the intestine, as well as the role of polyamines in intestinal development and mucosal repair. The nutritional intervention to improve intestinal development and functions by modulating polyamine metabolism in piglets is also put forward. These results may help to promote the adaption to weaning in pigs and provide useful information for the development and health of piglets.
Collapse
Affiliation(s)
- Bihui Tan
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Dingfu Xiao
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Bi’e Tan
- Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (B.T.); (D.X.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China
- Hunan Linxi Biological Technology Co., Ltd. Expert Workstation, Changsha 410202, China
| |
Collapse
|
6
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Dietary Leucine Improves Fish Intestinal Barrier Function by Increasing Humoral Immunity, Antioxidant Capacity, and Tight Junction. Int J Mol Sci 2023; 24:ijms24054716. [PMID: 36902147 PMCID: PMC10003359 DOI: 10.3390/ijms24054716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
This study attempted to evaluate the possible impact and mechanism of leucine (Leu) on fish intestinal barrier function. One hundred and five hybrid Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂ catfish were fed with six diets in graded levels of Leu 10.0 (control group), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g/kg diet for 56 days. Results showed that the intestinal activities of LZM, ACP, and AKP and contents of C3, C4, and IgM had positive linear and/or quadratic responses to dietary Leu levels. The mRNA expressions of itnl1, itnl2, c-LZM, g-LZM, and β-defensin increased linearly and/or quadratically (p < 0.05). The ROS, PC, and MDA contents had a negative linear and/or quadratic response, but GSH content and ASA, AHR, T-SOD, and GR activities had positive quadratic responses to dietary Leu levels (p < 0.05). No significant differences on the CAT and GPX activities were detected among treatments (p > 0.05). Increasing dietary Leu level linearly and/or quadratically increased the mRNA expressions of CuZnSOD, CAT, and GPX1α. The GST mRNA expression decreased linearly while the GCLC and Nrf2 mRNA expressions were not significantly affected by different dietary Leu levels. The Nrf2 protein level quadratically increased, whereas the Keap1 mRNA expression and protein level decreased quadratically (p < 0.05). The translational levels of ZO-1 and occludin increased linearly. No significant differences were indicated in Claudin-2 mRNA expression and protein level. The transcriptional levels of Beclin1, ULK1b, ATG5, ATG7, ATG9a, ATG4b, LC3b, and P62 and translational levels of ULK1, LC3Ⅱ/Ⅰ, and P62 linearly and quadratically decreased. The Beclin1 protein level was quadratically decreased with increasing dietary Leu levels. These results suggested that dietary Leu could improve fish intestinal barrier function by increasing humoral immunity, antioxidative capacities, and tight junction protein levels.
Collapse
|
9
|
Truzzi F, Whittaker A, D’Amen E, Valerii MC, Abduazizova V, Spisni E, Dinelli G. Spermidine-Eugenol Supplement Preserved Inflammation-Challenged Intestinal Cells by Stimulating Autophagy. Int J Mol Sci 2023; 24:ijms24044131. [PMID: 36835540 PMCID: PMC9964041 DOI: 10.3390/ijms24044131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Increases in non-communicable and auto-immune diseases, with a shared etiology of defective autophagy and chronic inflammation, have motivated research both on natural products in drug discovery fields and on the interrelationship between autophagy and inflammation. Within this framework, the tolerability and protective effects of a wheat-germ spermidine (SPD) and clove eugenol (EUG) combination supplement (SUPPL) were investigated on inflammation status (after the administration of lipopolysaccharide (LPS)) and on autophagy using human Caco-2 and NCM460 cell lines. In comparison to the LPS treatment alone, the SUPPL + LPS significantly attenuated ROS levels and midkine expression in monocultures, as well as occludin expression and mucus production in reconstituted intestinal equivalents. Over a timeline of 2-4 h, the SUPPL and SUPPL + LPS treatments stimulated autophagy LC3-11 steady state expression and turnover, as well as P62 turnover. After completely blocking autophagy with dorsomorphin, inflammatory midkine was significantly reduced in the SUPPL + LPS treatment in a non-autophagy-dependent manner. After a 24 h timeline, preliminary results showed that mitophagy receptor BNIP3L expression was significantly downregulated in the SUPPL + LPS treatment compared to the LPS alone, whereas conventional autophagy protein expression was significantly higher. The SUPPL shows promise in reducing inflammation and increasing autophagy to improve intestinal health.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2096674
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Eros D’Amen
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | | | - Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
10
|
Ma X, Xiao L, Wen SJ, Yu T, Sharma S, Chung HK, Warner B, Mallard CG, Rao JN, Gorospe M, Wang J. Small noncoding vault RNA2-1 disrupts gut epithelial barrier function via interaction with HuR. EMBO Rep 2023; 24:e54925. [PMID: 36440604 PMCID: PMC9900329 DOI: 10.15252/embr.202254925] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Vault RNAs (vtRNAs) are small noncoding RNAs and highly expressed in many eukaryotes. Here, we identified vtRNA2-1 as a novel regulator of the intestinal barrier via interaction with RNA-binding protein HuR. Intestinal mucosal tissues from patients with inflammatory bowel diseases and from mice with colitis or sepsis express increased levels of vtRNAs relative to controls. Ectopically expressed vtRNA2-1 decreases the levels of intercellular junction (IJ) proteins claudin 1, occludin, and E-cadherin and causes intestinal epithelial barrier dysfunction in vitro, whereas vtRNA2-1 silencing promotes barrier function. Increased vtRNA2-1 also decreases IJs in intestinal organoid, inhibits epithelial renewal, and causes Paneth cell defects ex vivo. Elevating the levels of tissue vtRNA2-1 in the intestinal mucosa increases the vulnerability of the gut barrier to septic stress in mice. vtRNA2-1 interacts with HuR and prevents HuR binding to claudin 1 and occludin mRNAs, thus decreasing their translation. These results indicate that vtRNA2-1 impairs intestinal barrier function by repressing HuR-facilitated translation of claudin 1 and occludin.
Collapse
Affiliation(s)
- Xiang‐Xue Ma
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Present address:
Department of Gastroenterology, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Lan Xiao
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Susan J Wen
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Ting‐Xi Yu
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Shweta Sharma
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Hee K Chung
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Bridgette Warner
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Caroline G Mallard
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Jaladanki N Rao
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Baltimore Veterans Affairs Medical CenterBaltimoreMDUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institute on Aging‐IRP, NIHBaltimoreMDUSA
| | - Jian‐Ying Wang
- Cell Biology Group, Department of SurgeryUniversity of Maryland School of MedicineBaltimoreMDUSA
- Laboratory of Genetics and GenomicsNational Institute on Aging‐IRP, NIHBaltimoreMDUSA
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
11
|
Aspalathus linearis (Rooibos) and Agmatine May Act Synergistically to Beneficially Modulate Intestinal Tight Junction Integrity and Inflammatory Profile. Pharmaceuticals (Basel) 2022; 15:ph15091097. [PMID: 36145318 PMCID: PMC9501288 DOI: 10.3390/ph15091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
In order to promote gastrointestinal health, significant increases in the prevalence of gastrointestinal disorders should be paralleled by similar surges in therapeutics research. Nutraceutical interventions may play a significant role in patient management. The current study aimed to determine the potential of Aspalathus linearis (rooibos) to prevent gastrointestinal dysregulation resulting from high-dose trace-amine (TA) exposure. Considering the substantial female bias in functional gastrointestinal disorders, and the suggested phytoestrogenicity of rooibos, the study design allowed for a comparison between the effects of an ethanol extract of green rooibos and 17β-estradiol (E2). High levels of ρ-tyramine (TYR) and agmatine (AGM), but not β-phenethylamine (PEA) or tryptamine (TRP), resulted in prostaglandin E2 (PGE2) hypersecretion, increased tight-junction protein (TJP; occludin and ZO-1) secretion and (dissimilarly) disrupted the TJP cellular distribution profile. Modulating benefits of rooibos and E2 were TA-specific. Rooibos pre-treatment generally reduced IL-8 secretion across all TA conditions and prevented PGE2 hypersecretion after exposure to both TYR and AGM, but was only able to normalise TJP levels and the distribution profile in AGM-exposed cells. In contrast, E2 pre-treatment prevented only TYR-associated PGE2 hypersecretion and TJP dysregulation. Together, the data suggest that the antioxidant and anti-inflammatory effects of rooibos, rather than phytoestrogenicity, affect benefits illustrated for rooibos.
Collapse
|
12
|
Wang Y, He H, Chen J, Song Z, Pan X, Lan T, Wang G. Effects of glycolysis and polyamine predation on intestinal epithelial barrier in colorectal cancer. Front Oncol 2022; 12:961257. [PMID: 35912204 PMCID: PMC9337861 DOI: 10.3389/fonc.2022.961257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is the second most lethal cancer and the third most common cancer in the world, and its prognosis is severely affected by high intestinal mucosal permeability and increasing tumor burden. Studies have shown that the expression of hypoxia induce factor 1α (HIF1α) is up-regulated in a variety of tumor tissues, which is related to multiple metabolic reprogramming of tumor cells. However, the role of HIF1α in CRC tumor growth, tumor polyamine metabolism and intestinal mucosal barrier damage has not been studied. Here, we constructed different types of CRC tumor-bearing mice models by inoculating HCT116 cells with different levels of HIF1α expression (knockdown, wild type, overexpression) in the armpits of mice to explore the upstream and downstream regulators of HIF1α, the effects of HIF1α on the growth of CRC, and the CRC polyamine metabolism and its effect on the intestinal mucosal barrier. We found that with the increase of HIF1 gene expression, tumor growth was promoted and intestinal mucosal permeability was increased. The expression of glycolysis-related proteins was up-regulated, the rate-limiting enzyme ODC of polyamine synthesis was decreased, and the transfer protein of polyamine was increased. HPLC showed that the polyamine content in the tumor tissue of the overexpression group HIF1α OE was higher than that of the wild group HIF1α (+/+), and higher than that of the knockdown group HIF1α (-/-), but the content of polyamines in intestinal mucosa was the opposite. After supplementation of exogenous polyamines, the content of polyamines in intestinal mucosa and tumor tissue increased, and the damage of intestinal mucosa was alleviated. In conclusion, upon activation of the MYC/HIF1 pathway, tumor glycolysis is enhanced, tumors require more energy and endogenous polyamine synthesis is reduced. Therefore, in order to meet its growth needs, tumor will rob polyamines in the intestinal mucosa, resulting in intestinal mucosal epithelial barrier dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Tian Lan
- *Correspondence: Tian Lan, ; Guixiang Wang,
| | | |
Collapse
|
13
|
Sarsour A, Persia M. Effects of Sulfur amino acid supplementation on Broiler Chickens Exposed to Acute and Chronic Cyclic Heat Stress. Poult Sci 2022; 101:101952. [PMID: 35688032 PMCID: PMC9189208 DOI: 10.1016/j.psj.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic heat stress can result in oxidative damage from increased reactive oxygen species. One proposed method to alleviate the chronic effects of HS is the supplementation of sulfur amino acids (SAA) which can be metabolized to glutathione, an important antioxidant. Therefore, the objective of this experiment was to determine the effects of dietary SAA content on broiler chickens exposed to HS from 28 to 35 d on broiler performance, body temperature, intestinal permeability, and oxidative status. Four experimental treatments were arranged as a 2 × 2 factorial consisting of HS (6 h at 33.3°C followed by 18 h at 27.8°C from 28 to 35 d of age) and Thermoneutral (TN- 22.2°C continuously from 28 to 35 d) and 2 dietary concentrations of SAA formulated at 100% (0.95, 0.87, and 0.80% for starter, grower, and finisher diets) or 130% SAA (1.24, 1.13, and 1.04% for starter, grower, and finisher diets). A total of 648-day-old, male Ross 708 chicks were placed in 36 pens with 18 chicks/pen and 9 replicates per treatment. Data were analyzed as a 2 × 2 factorial in JMP 14 (P ≤ 0.05). No interaction effects were observed on broiler live performance (P > 0.05). As expected, HS reduced BWG by 92 g and increased FCR by 11 points from 28 to 35 d of age compared to TN, respectively (P ≤ 0.05). The supplementation of SAA had no effect on live performance (P > 0.05). Cloacal temperatures were increased by 1.7, 1.4, and 1.2°C with HS at 28, 31, and 35 d compared to TN, respectively (P ≤ 0.05) and dietary SAA did not alter cloacal temperatures. At 28 d of age, supplementation of SAA to birds exposed to HS interacted as serum FITC-dextran (an indicator of intestinal permeability) was reduced to that of the TN group (P ≤ 0.05). The interaction was lost at 31 d, but HS still increased intestinal permeability (P ≤ 0.05). By 35 d, broilers were able to adapt to the HS conditions and intestinal permeability was unaffected (P > 0.05). Potential oxidative damage was reduced by increased SAA supplementation as indicated by an improvement in the reduced glutathione to oxidized glutathione ratio of 5 and 45 % at 28 (P = 0.08) and 35 d (P ≤ 0.05). These data suggest that intestinal permeability is compromised initially and to at least three d of heat exposure before the bird can adjust. However, oxidative damage in the liver of broilers exposed to HS is more chronic, building over the entire 7 d HS period and increased dietary SAA might have some protective effects on both broiler intestinal permeability and oxidative stress responses to HS.
Collapse
|
14
|
Liu G, Xu X, Wu C, Jia G, Zhao H, Chen X, Tian G, Cai J, Wang J. Spermine protects intestinal barrier integrity through ras-related C3 botulinum toxin substrate 1/phospholipase C-γ1 signaling pathway in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:135-143. [PMID: 34977383 PMCID: PMC8683656 DOI: 10.1016/j.aninu.2021.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Weaning stress can cause tight junctions damage and intestinal permeability enhancement, which leads to intestinal imbalance and growth retardation, thereby causing damage to piglet growth and development. Spermine can reduce stress. However, the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown. This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling pathway. In vivo, 80 piglets were categorised into 4 control groups and 4 spermine groups (10 piglets per group). The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3, 6 and 9 d. In vitro, we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor α (TNF-α) challenge through Rac1/PLC-γ1 signaling pathway. The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets. The serum D-lactate content was significantly decreased after spermine supplementation (P < 0.05). The in vitro study found that 0.1 μmol/L spermine increased the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability (P < 0.05). Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-α challenge (P < 0.05). Collectively, spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Xiaomei Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
15
|
Pretorius L, Van Staden ADP, Van der Merwe JJ, Henning N, Smith C. Alterations to microbial secretome by estrogen may contribute to sex bias in irritable bowel syndrome. Inflammopharmacology 2022; 30:267-281. [PMID: 35022916 DOI: 10.1007/s10787-021-00906-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Irritable bowel syndrome (IBS) is a female predominant functional gastrointestinal disorder, underpinned by microbial dysbiosis and microinflammation. We suggest that changes in trace amine (TA) load and metabolism may link together diet, inflammation and sex in this context. METHODS The effect of E2 treatment on microbial growth and TA generation was assessed using liquid chromatography and tandem mass spectrometry methodology. To investigate the effects of TAs on the gut, WST-1, prostaglandin E2 and tight junction protein dynamics were investigated in TA treated (HT-29) colon epithelial monolayer cultures. RESULTS Differential E2-dependent alterations of the TA production capabilities of microbes were observed. Significantly, E2 treatment resulted in a 50% increase in tryptamine secretion from a probiotic microbe (p < 0.0001). Moreover, in vitro experiments indicated that TA treatment exerted type-specific effects in the gut, e.g., reducing mitochondrial functionality, even at low doses of tryptamine (p < 0.0001) and ρ-tyramine (p < 0.001). Additionally, prostaglandin E2 levels were significantly increased following ρ-tyramine and agmatine treatment (p < 0.05). In terms of functionality, all investigated TAs resulted in occludin redistribution and loss of zona occludens-1 and occludin co-localization. CONCLUSION Increases in the gastrointestinal TA load may contribute to a relatively pro-inflammatory outcome in the intestine, along with tight junction protein disruption. Additionally, fluctuating levels of endogenous E2 may modulate microbially-derived TA levels, potentially explaining exaggerating gastrointestinal symptomology in females during low E2 phases. Thus, current data warrants subsequent investigations in appropriate in vivo models to fully elucidate the role of the trace aminergic system in the sex bias observed in IBS.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anton du Preez Van Staden
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Johannes J Van der Merwe
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,LabSPACE, Midrand, South Africa
| | - Natasha Henning
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
16
|
Sahebi-Ala F, Hassanabadi A, Golian A, Rajaei-Sharifabadi H. Effects of replacement different levels and sources of methionine with betaine on jejunal morphology, duodenal mitochondrial respiration, and lipid peroxidation in heat-stressed broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1965921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fatemeh Sahebi-Ala
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Hassanabadi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abolghasem Golian
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
17
|
Wang Q, Qi Y, Shen W, Xu J, Wang L, Chen S, Hou T, Si J. The Aged Intestine: Performance and Rejuvenation. Aging Dis 2021; 12:1693-1712. [PMID: 34631215 PMCID: PMC8460310 DOI: 10.14336/ad.2021.0202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to the growing elderly population, age-related problems are gaining increasing attention from the scientific community. With senescence, the intestine undergoes a spectrum of changes and infirmities that are likely the causes of overall aging. Therefore, identification of the aged intestine and the search for novel strategies to rescue it, are required. Although progress has been made in research on some components of the aged intestine, such as intestinal stem cells, the comprehensive understanding of intestinal aging is still limited, and this restricts the in-depth search for efficient strategies. In this concise review, we discuss several aspects of intestinal aging. More emphasis is placed on the appraisal of current and potential strategies to alleviate intestinal aging, as well as future targets to rejuvenate the aged intestine.
Collapse
Affiliation(s)
- Qiwen Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yadong Qi
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Weiyi Shen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jilei Xu
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lan Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Tongyao Hou
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
18
|
Li CH, Hsu TI, Chang YC, Chan MH, Lu PJ, Hsiao M. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines 2021; 9:1265. [PMID: 34572451 PMCID: PMC8472300 DOI: 10.3390/biomedicines9091265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle and throughout human development from the embryo stage to death. In embryo development, epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm, mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve formation occurs. After the embryonic period, the human body will be subjected to ongoing mechanical stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor cells are transported through the bloodstream to secondary sites and then begin to form colonies and undergo reverse EMT, the so-called "mesenchymal-epithelial transition (MET)." This dynamic change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this manuscript, the similarities and differences between EMT and MET will be dissected from embryonic development to the stage of cancer metastasis.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Tai-I Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
19
|
Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol 2021; 11:1463-1482. [PMID: 33610769 PMCID: PMC8025057 DOI: 10.1016/j.jcmgh.2021.02.007] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
The human gastrointestinal tract (GI) harbors a diverse population of microbial life that continually shapes host pathophysiological responses. Despite readily available abundant metagenomic data, the functional dynamics of gut microbiota remain to be explored in various health and disease conditions. Microbiota generate a variety of metabolites from dietary products that influence host health and pathophysiological functions. Since gut microbial metabolites are produced in close proximity to gut epithelium, presumably they have significant impact on gut barrier function and immune responses. The goal of this review is to discuss recent advances on gut microbial metabolites in the regulation of intestinal barrier function. While the mechanisms of action of these metabolites are only beginning to emerge, they mainly point to a small group of shared pathways that control gut barrier functions. Amidst expanding technology and broadening knowledge, exploitation of beneficial microbiota and their metabolites to restore pathophysiological balance will likely prove to be an extremely useful remedial tool.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Caleb Samuel Whitley
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
20
|
Matsumoto M. Prevention of Atherosclerosis by the Induction of Microbial Polyamine Production in the Intestinal Lumen. Biol Pharm Bull 2020; 43:221-229. [PMID: 32009110 DOI: 10.1248/bpb.b19-00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low molecular weight metabolites produced by the intestinal microbiome that have been associated with health and disease as metabolites need to be constantly absorbed from the intestinal lumen and transported to intestinal epithelial cells and blood. Polyamines, especially spermidine and spermine, are bioactive chemicals which promote autophagy and suppress inflammation. The main source of exogenous polyamines is the intestinal lumen, where they are produced by intestinal microbiome. Considering the intestinal microbiome as a manufacturing plant for bioactive substances, we developed a novel hybrid putrescine biosynthesis system strategy, in which the simultaneous intake of Bifidobacterium animalis ssp. lactis LKM512 (Bifal) and arginine (Arg) upregulates the production of the putrescine, a precursor of spermidine and spermine, in the gut by controlling the bacterial metabolism beyond its vast diversity and inter-individual differences. In a clinical trial, healthy individuals with a body mass index near the maximum "healthy" range (25 kg/m3; n = 44) were randomized to consume either normal yogurt containing Bifal and Arg (Bifal + Arg YG) or placebo (normal yogurt) for 12 weeks. The change in reactive hyperemia index determined by EndoPAT from week 0 to 12 in the Bifal + Arg YG group was significantly higher than that in the placebo group, indicating that Bifal + Arg YG intake improved vascular endothelial function. In addition, the concentrations of fecal putrescine and serum spermidine in the Bifal+ Arg YG group were significantly higher than those in the placebo group. These findings suggest that consuming Bifal + Arg YG prevents or reduces atherosclerosis risk by upregulating blood spermidine levels, which subsequently induces autophagy.
Collapse
|
21
|
Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. The Molecular and Physiological Effects of Protein-Derived Polyamines in the Intestine. Nutrients 2020; 12:E197. [PMID: 31940783 PMCID: PMC7020012 DOI: 10.3390/nu12010197] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Consumption of a high-protein diet increases protein entry into the colon. Colonic microbiota can ferment proteins, which results in the production of protein fermentation end-products, like polyamines. This review describes the effects of polyamines on biochemical, cellular and physiological processes, with a focus on the colon. Polyamines (mainly spermine, spermidine, putrescine and cadaverine) are involved in the regulation of protein translation and gene transcription. In this, the spermidine-derived hypusination modification of EIF5A plays an important role. In addition, polyamines regulate metabolic functions. Through hypusination of EIF5A, polyamines also regulate translation of mitochondrial proteins, thereby increasing their expression. They can also induce mitophagy through various pathways, which helps to remove damaged organelles and improves cell survival. In addition, polyamines increase mitochondrial substrate oxidation by increasing mitochondrial Ca2+-levels. Putrescine can even serve as an energy source for enterocytes in the small intestine. By regulating the formation of the mitochondrial permeability transition pore, polyamines help maintain mitochondrial membrane integrity. However, their catabolism may also reduce metabolic functions by depleting intracellular acetyl-CoA levels, or through production of toxic by-products. Lastly, polyamines support gut physiology, by supporting barrier function, inducing gut maturation and increasing longevity. Polyamines thus play many roles, and their impact is strongly tissue- and dose-dependent. However, whether diet-derived increases in colonic luminal polyamine levels also impact intestinal physiology has not been resolved yet.
Collapse
Affiliation(s)
- Anna F. Bekebrede
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (A.F.B.); (J.K.)
- Animal Nutrition Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands;
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (A.F.B.); (J.K.)
| | - Walter J. J. Gerrits
- Animal Nutrition Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands;
| | - Vincent C. J. de Boer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (A.F.B.); (J.K.)
| |
Collapse
|
22
|
Ivanova ON, Snezhkina AV, Krasnov GS, Valuev-Elliston VT, Khomich OA, Khomutov AR, Keinanen TA, Alhonen L, Bartosch B, Kudryavtseva AV, Kochetkov SN, Ivanov AV. Activation of Polyamine Catabolism by N¹,N 11-Diethylnorspermine in Hepatic HepaRG Cells Induces Dedifferentiation and Mesenchymal-Like Phenotype. Cells 2018; 7:275. [PMID: 30567412 PMCID: PMC6316793 DOI: 10.3390/cells7120275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Abstract
Tumorigenesis is accompanied by the metabolic adaptation of cells to support enhanced proliferation rates and to optimize tumor persistence and amplification within the local microenvironment. In particular, cancer cells exhibit elevated levels of biogenic polyamines. Inhibitors of polyamine biosynthesis and inducers of their catabolism have been evaluated as antitumor drugs, however, their efficacy and safety remain controversial. Our goal was to investigate if drug-induced modulation of polyamine metabolism plays a role in dedifferentiation using differentiated human hepatocyte-like HepaRG cell cultures. N¹,N11-diethylnorspermine (DENSpm), a potent inducer of polyamine catabolism, triggered an epithelial-mesenchymal transition (EMT)-like dedifferentiation in HepaRG cultures, as shown by down-regulation of mature hepatocytes markers and upregulation of classical EMT markers. Albeit the fact that polyamine catabolism produces H2O2, DENSpm-induced de-differentiation was not affected by antioxidants. Use of a metabolically stable spermidine analogue showed furthermore, that spermidine is a key regulator of hepatocyte differentiation. Comparative transcriptome analyses revealed, that the DENSpm-triggered dedifferentiation of HepaRG cells was accompanied by dramatic metabolic adaptations, exemplified by down-regulation of the genes of various metabolic pathways and up-regulation of the genes involved in signal transduction pathways. These results demonstrate that polyamine metabolism is tightly linked to EMT and differentiation of liver epithelial cells.
Collapse
Affiliation(s)
- Olga N Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | | | - Olga A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69000 Lyon, France.
| | - Alexey R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Tuomo A Keinanen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Leena Alhonen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69000 Lyon, France.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
23
|
Zeitz JO, Kaltenböck S, Most E, Eder K. Effects of L‐methionine on performance, gut morphology and antioxidant status in gut and liver of piglets in relation to DL‐methionine. J Anim Physiol Anim Nutr (Berl) 2018; 103:242-250. [DOI: 10.1111/jpn.13000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Johanna O. Zeitz
- Institute of Animal Nutrition and Nutritional Physiology University of Giessen Giessen Germany
| | - Susanne Kaltenböck
- Institute of Animal Nutrition and Nutritional Physiology University of Giessen Giessen Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutritional Physiology University of Giessen Giessen Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutritional Physiology University of Giessen Giessen Germany
| |
Collapse
|
24
|
Nakamura A, Ooga T, Matsumoto M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes 2018; 10:159-171. [PMID: 30183487 PMCID: PMC6546329 DOI: 10.1080/19490976.2018.1494466] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The intestinal microbiome produces various metabolites that may harm or benefit the host. However, the production pathways of these metabolites have not been well characterised. The polyamines putrescine and spermidine required for physiological process are also produced by intestinal microbiome. The production and release of these polyamines by microbiome are poorly understood, though we have confirmed that intestinal bacteria produced putrescine from arginine. In this study, we characterised polyamine synthesis by analysing the collective metabolic functions of the intestinal microbiome. In particular, we analysed polyamines and their intermediates in faecal cultures, as well as the colonic contents of rats injected with isotope-labelled arginine through a colon catheter, using mass spectrometry. Isotope-labelled putrescine was detected in faecal cultures and colonic contents of rats injected with isotope-labelled arginine. Putrescine is produced through multiple pathways, and its extracellular intermediates are exchanged between bacterial species. Additionally, we demonstrated that the collective metabolic pathway depends on a complex exchange of metabolites released into the colonic lumen. This study demonstrates the existence of putrescine biosynthetic pathways based on the collective metabolic functions of the intestinal microbial community. Our findings provide knowledge to manipulate the levels of intestinal microbial products, including polyamines, that may modulate host health.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Tokyo, Japan
| | - Takushi Ooga
- Human Metabolome Technologies Inc., Yamagata, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Tokyo, Japan,CONTACT Mitsuharu Matsumoto Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., 20-1 Hirai, Hinode, Nishitama 190-0182, Tokyo, Japan
| |
Collapse
|
25
|
Wu YY, Li TM, Zang LQ, Liu B, Wang GX. Effects of berberine on tumor growth and intestinal permeability in HCT116 tumor-bearing mice using polyamines as targets. Biomed Pharmacother 2018; 107:1447-1453. [PMID: 30257361 DOI: 10.1016/j.biopha.2018.08.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023] Open
Abstract
The prognosis of colorectal cancer (CRC) is seriously affected by high intestinal mucosal permeability accompanied by increasing tumor load. Berberine, a natural plant-derived product, can protect the intestinal mucosal barrier and suppress tumor growth, but its effects on the intestinal mucosal barrier dysfunction of CRC have not yet been evaluated. Herein, we assessed the effects of berberine on the intestinal mucosal permeability of HCT116 tumor-bearing mice and the underlying mechanism. Berberine (6.25, 12.5, 25 mg/kg) was administered to tumor-bearing mice for 3 weeks by intraperitoneal injection, and saline was given to controls and models. Compared with the control group, tumor-bearing mice had increased intestinal mucosal permeability in the third week. Meanwhile, the body weight decreased by 4%-7%, the concentration of D-lactic acid in plasma increased, and the expressions of ZO1 and Occludin were down-regulated. The intestinal mucosa was impaired. Compared with the model group, berberine inhibited tumor growth in a dose-dependent manner (6.25, 12.5, 25 mg/kg), reduced the permeability of intestinal mucosa, and alleviated intestinal mucosal damage. HPLC showed that berberine decreased the content of polyamines in tumor tissue, whereas increased that in intestinal mucosa tissue. Western blot showed that berberine inhibited the expressions of ODC, C-MYC and HIF-1α, but up-regulated those of OAZ1 and SSAT. In short, berberine may exert antitumor effects by suppressing tumor growth and elevating the intestinal mucosal permeability.
Collapse
Affiliation(s)
- Yan-Yan Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China; The Fifth Affiliated Hospital of Sun Yat-Sen University
| | - Tong-Ming Li
- School of Chinese Herbology, Guangzhou University of Chinese Medicine, Guangdong Province, Guangzhou, China
| | - Lin-Quan Zang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China
| | - Gui-Xiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China.
| |
Collapse
|
26
|
Kho ZY, Lal SK. The Human Gut Microbiome - A Potential Controller of Wellness and Disease. Front Microbiol 2018; 9:1835. [PMID: 30154767 PMCID: PMC6102370 DOI: 10.3389/fmicb.2018.01835] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Interest toward the human microbiome, particularly gut microbiome has flourished in recent decades owing to the rapidly advancing sequence-based screening and humanized gnotobiotic model in interrogating the dynamic operations of commensal microbiota. Although this field is still at a very preliminary stage, whereby the functional properties of the complex gut microbiome remain less understood, several promising findings have been documented and exhibit great potential toward revolutionizing disease etiology and medical treatments. In this review, the interactions between gut microbiota and the host have been focused on, to provide an overview of the role of gut microbiota and their unique metabolites in conferring host protection against invading pathogen, regulation of diverse host physiological functions including metabolism, development and homeostasis of immunity and the nervous system. We elaborate on how gut microbial imbalance (dysbiosis) may lead to dysfunction of host machineries, thereby contributing to pathogenesis and/or progression toward a broad spectrum of diseases. Some of the most notable diseases namely Clostridium difficile infection (infectious disease), inflammatory bowel disease (intestinal immune-mediated disease), celiac disease (multisystemic autoimmune disorder), obesity (metabolic disease), colorectal cancer, and autism spectrum disorder (neuropsychiatric disorder) have been discussed and delineated along with recent findings. Novel therapies derived from microbiome studies such as fecal microbiota transplantation, probiotic and prebiotics to target associated diseases have been reviewed to introduce the idea of how certain disease symptoms can be ameliorated through dysbiosis correction, thus revealing a new scientific approach toward disease treatment. Toward the end of this review, several research gaps and limitations have been described along with suggested future studies to overcome the current research lacunae. Despite the ongoing debate on whether gut microbiome plays a role in the above-mentioned diseases, we have in this review, gathered evidence showing a potentially far more complex link beyond the unidirectional cause-and-effect relationship between them.
Collapse
Affiliation(s)
- Zhi Y Kho
- School of Science, Tropical Medicine and Biology Platform, Monash University, Subang Jaya, Malaysia
| | - Sunil K Lal
- School of Science, Tropical Medicine and Biology Platform, Monash University, Subang Jaya, Malaysia
| |
Collapse
|
27
|
Asquith M, Davin S, Stauffer P, Michell C, Janowitz C, Lin P, Ensign-Lewis J, Kinchen JM, Koop DR, Rosenbaum JT. Intestinal Metabolites Are Profoundly Altered in the Context of HLA-B27 Expression and Functionally Modulate Disease in a Rat Model of Spondyloarthritis. Arthritis Rheumatol 2017; 69:1984-1995. [PMID: 28622455 PMCID: PMC5623151 DOI: 10.1002/art.40183] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 06/13/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE HLA-B27-associated spondyloarthritides are associated with an altered intestinal microbiota and bowel inflammation. We undertook this study to identify HLA-B27-dependent changes in both host and microbial metabolites in the HLA-B27/β2 -microglobulin (β2 m)-transgenic rat and to determine whether microbiota-derived metabolites could impact disease in this major model of spondyloarthritis. METHODS Cecal contents were collected from Fischer 344 33-3 HLA-B27/β2 m-transgenic rats and wild-type controls at 6 weeks (before disease) and 16 weeks (with active bowel inflammation). Metabolomic profiling was performed by high-throughput gas and liquid chromatography-based mass spectrometry. HLA-B27/β2 m-transgenic rats were treated with the microbial metabolites propionate or butyrate in drinking water for 10 weeks, and disease activity was subsequently assessed. RESULTS Our screen identified 582 metabolites, of which more than half were significantly altered by HLA-B27 expression at 16 weeks. Both microbial and host metabolites were altered, with multiple pathways affected, including those for amino acid, carbohydrate, xenobiotic, and medium-chain fatty acid metabolism. Differences were even observed at 6 weeks, with up-regulation of histidine, tyrosine, spermidine, N-acetylmuramate, and glycerate in HLA-B27/β2 m-transgenic rats. Administration of the short-chain fatty acid propionate significantly attenuated HLA-B27-associated inflammatory disease, although this was not associated with increased FoxP3+ T cell induction or with altered expression of the immunomodulatory cytokines interleukin-10 (IL-10) or IL-33 or of the tight junction protein zonula occludens 1. HLA-B27 expression was also associated with altered host expression of messenger RNA for the microbial metabolite receptors free fatty acid receptor 2 (FFAR2), FFAR3, and niacin receptor 1. CONCLUSION HLA-B27 expression profoundly impacts the intestinal metabolome, with changes evident in rats even at age 6 weeks. Critically, we demonstrate that a microbial metabolite, propionate, attenuates development of HLA-B27-associated inflammatory disease. These and other microbiota-derived bioactive mediators may provide novel treatment modalities in HLA-B27-associated spondyloarthritides.
Collapse
Affiliation(s)
- Mark Asquith
- Oregon Health and Science University, Division of Arthritis and
Rheumatic Diseases, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
| | - Sean Davin
- Oregon Health and Science University, Division of Arthritis and
Rheumatic Diseases, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
| | - Patrick Stauffer
- Oregon Health and Science University, Division of Arthritis and
Rheumatic Diseases, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
| | - Claire Michell
- Oregon Health and Science University, Division of Arthritis and
Rheumatic Diseases, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
| | - Cathleen Janowitz
- Oregon Health and Science University, Division of Arthritis and
Rheumatic Diseases, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
| | - Phoebe Lin
- Oregon Health and Science University, Casey Eye Institute, Portland,
OR, USA, 97239
| | - Joe Ensign-Lewis
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic
Center Blvd, Philadelphia, PA, USA, 19104
| | | | - Dennis R Koop
- Oregon Health and Science University, Department of Physiology and
Pharmacology, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
| | - James T. Rosenbaum
- Oregon Health and Science University, Division of Arthritis and
Rheumatic Diseases, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
- Oregon Health and Science University, Department of Physiology and
Pharmacology, 3181 SW Sam Jackson Park Rd, Portland, OR, USA, 97239
- Devers Eye Institute, 1040 Nw 22nd Ave, Suite 200, Portland, OR,
USA, 97210
| |
Collapse
|
28
|
Changes in paracellular permeability induced by Pepsin-Trypsin digested Gliadin (PTG): Role of polyamines in the Lactobacillus rhamnosus GG protective action. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
29
|
Abstract
The human gastrointestinal tract is populated by a diverse, highly mutualistic microbial flora, which is known as the microbiome. Disruptions to the microbiome have been shown to be associated with severe pathologies of the host, including metabolic disease, cancer, and inflammatory bowel disease. Mood and behavior are also susceptible to alterations in the gut microbiota. A particularly striking example of the symbiotic effects of the microbiome is the immune system, whose cells depend critically on a diverse array of microbial metabolites for normal development and behavior. This includes metabolites that are produced by bacteria from dietary components, metabolites that are produced by the host and biochemically modified by gut bacteria, and metabolites that are synthesized de novo by gut microbes. In this review, we highlight the role of the intestinal microbiome in human metabolic and inflammatory diseases and focus in particular on the molecular mechanisms that govern the gut-immune axis.
Collapse
Affiliation(s)
- Thomas Siegmund Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Chen S, Liu Y, Wang X, Wang H, Li S, Shi H, Zhu H, Zhang J, Pi D, Hu CAA, Lin X, Odle J. Asparagine improves intestinal integrity, inhibits TLR4 and NOD signaling, and differently regulates p38 and ERK1/2 signaling in weanling piglets after LPS challenge. Innate Immun 2016; 22:577-587. [PMID: 27554055 DOI: 10.1177/1753425916664124] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Asparagine (Asn), an activator of ornithine decarboxylase (ODC), stimulates cell proliferation in intestinal epithelial cells. We hypothesized that Asn can mitigate LPS-induced injury of intestinal structure and barrier function by regulating inflammatory signaling pathways. We executed the following experiment using weanling pigs for each of the groups: (1) non-challenged control; (2) LPS-challenged control; (3) LPS + 0.5% Asn; (4) LPS + 1.0% Asn. After 21-d feeding, pigs received an i.p. injection of either saline or LPS. Four h after injection, the mid-jejunum and mid-ileum samples were collected. We found that Asn restored ODC expression that was decreased by LPS treatment. Asn also restored intestinal morphology and barrier function that were impaired by LPS treatment. In addition, Asn down-regulated intestinal caspase-3 protein expression and TNF-α concentration, and decreased the mRNA expression of intestinal TLR4, TLR4 downstream signals (myeloid differentiation factor 88, IL-1 receptor-associated kinase 1 and TNF-α receptor-associated factor 6 and NOD1, NOD2 and their adaptor molecule (receptor-interacting serine/threonine-protein kinase 2). Moreover, Asn decreased p38 phosphorylation but increased ERK1/2 phosphorylation. Our results suggest that Asn improves intestinal integrity during an inflammatory insult, which appears to be related to the decrease of intestinal pro-inflammatory cytokine (via TLR4, NODs and p38) and of enterocyte apoptosis (via p38 and ERK1/2).
Collapse
Affiliation(s)
- Shaokui Chen
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yulan Liu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Xiuying Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Haibo Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Shuang Li
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Haifeng Shi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Huiling Zhu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jing Zhang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Dingan Pi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Chien-An Andy Hu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China.,2 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Xi Lin
- 3 Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Jack Odle
- 3 Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
31
|
Research Advance in Intestinal Mucosal Barrier and Pathogenesis of Crohn's Disease. Gastroenterol Res Pract 2016; 2016:9686238. [PMID: 27651792 PMCID: PMC5019909 DOI: 10.1155/2016/9686238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/07/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023] Open
Abstract
To date, the etiology and pathogenesis of Crohn's disease (CD) have not been fully elucidated. It is widely accepted that genetic, immune, and environment factors are closely related to the development of CD. As an important defensive line for human body against the environment, intestinal mucosa is able to protect the homeostasis of gut bacteria and alleviate the intestinal inflammatory and immune response. It is evident that the dysfunction of intestinal mucosa barriers plays a crucial role in CD initiation and development. Yet researches are insufficient on intestinal mucosal barrier's action in the prevention of CD onset. This article summarizes the research advances about the correlations between the disorders of intestinal mucosal barriers and CD.
Collapse
|
32
|
Ghisalberti CA, Borzì RM, Cetrullo S, Flamigni F, Cairo G. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine. Front Pharmacol 2016; 7:147. [PMID: 27375482 PMCID: PMC4892113 DOI: 10.3389/fphar.2016.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Carlo A Ghisalberti
- Department of Biomedical Sciences for Health, University of MilanMilan, Italy; TixupharmaMilan, Italy
| | - Rosa M Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna Bologna, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan Milan, Italy
| |
Collapse
|
33
|
Wang J, Li GR, Tan BE, Xiong X, Kong XF, Xiao DF, Xu LW, Wu MM, Huang B, Kim SW, Yin YL. Oral administration of putrescine and proline during the suckling period improves epithelial restitution after early weaning in piglets. J Anim Sci 2016; 93:1679-88. [PMID: 26020189 DOI: 10.2527/jas.2014-8230] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polyamines are necessary for normal integrity and the restitution after injury of the gastrointestinal epithelium. The objective of this study was to investigate the effects of oral administration of putrescine and proline during the suckling period on epithelial restitution after early weaning in piglets. Eighteen neonatal piglets (Duroc × Landrace × Large Yorkshire) from 3 litters (6 piglets per litter) were assigned to 3 groups, representing oral administration with an equal volume of saline (control), putrescine (5 mg/kg BW), and proline (25 mg/kg BW) twice daily from d 1 to weaning at 14 d of age. Plasma and intestinal samples were obtained 3 d after weaning. The results showed that oral administration of putrescine or proline increased the final BW and ADG of piglets compared with the control (P < 0.05). Proline treatment decreased plasma D-lactate concentration but increased the villus height in the jejunum and ileum, as well as the percentage of proliferating cell nuclear antigen (PCNA) positive cells and alkaline phosphatase (AKP) activity in the jejunal mucosa (P < 0.05). The protein expressions for zonula occludens (ZO-1), occludin, and claudin-3 (P < 0.05) but not mRNA were increased in the jejunum of putrescine- and proline-treated piglets compared with those of control piglets. The voltage-gated K+ channel (Kv) 1.1 protein expression in the jejunum of piglets administrated with putrescine and the Kv1.5 mRNA and Kv1.1 protein levels in the ileum of piglets administrated with proline were greater than those in control piglets (P < 0.05). These findings indicate that polyamine or its precursor could improve mucosal proliferation, intestinal morphology, as well as tight junction and potassium channel protein expressions in early-weaned piglets, with implications for epithelial restitution and barrier function after stress injury.
Collapse
|
34
|
Rogers AC, McDermott FD, Mohan HM, O'Connell PR, Winter DC, Baird AW. The effects of polyamines on human colonic mucosal function. Eur J Pharmacol 2015; 764:157-163. [PMID: 26144376 DOI: 10.1016/j.ejphar.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023]
Abstract
Electrogenic ion transport in human colon is a surrogate marker for colonic mucosal function, and may be manipulated by a variety of hormonal, neural, immune and paracrine mediators. Polyamines are present in vast quantities in the colonic lumen and appear to be integral to cellular function. This study explores some of the mechanisms of polyamine action on colonic tissue through study of their effects on differential secretory pathways, as well as examining their actions on intracellular cAMP and Ca(2+) accumulation. Human colonic mucosa was mounted in Ussing chambers and treated with polyamines (spermine, spermidine and putrescine) with changes in ion transport recorded. In separate experiments colonic crypts were treated with polyamines and intracellular cAMP levels determined by ELISA and intracellular calcium concentrations were quantified by fluorescent imaging. Polyamines at physiological concentrations (1mM) exert no effects on basal mucosal chloride secretion or transepithelial electrical resistance. Polyamines inhibit electrogenic ion secretion as stimulated by forskolin (cAMP-mediated), but not carbachol (Ach-mediated). All the polyamines used in this study inhibited intracellular cAMP accumulation, according to potency (spermine>spermidine>putrescine). Spermine increased intracellular Ca(2+) in a PKC-dependent manner, likely due to its effects on the extracellular calcium-sensing receptor (CaSR). Polyamines act to prevent cAMP-mediated Cl(-) hypersecretion in the colon, acting through CaSR to inhibit PKC-mediated [Ca(2+)]i release from intracellular stores.
Collapse
Affiliation(s)
- Ailín C Rogers
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; School of Veterinary Medicine and Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland.
| | - Frank D McDermott
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; School of Veterinary Medicine and Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Helen M Mohan
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; School of Veterinary Medicine and Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - P Ronan O'Connell
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Desmond C Winter
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Alan W Baird
- School of Veterinary Medicine and Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
35
|
Barilli A, Rotoli BM, Visigalli R, Ingoglia F, Cirlini M, Prandi B, Dall'Asta V. Gliadin-mediated production of polyamines by RAW264.7 macrophages modulates intestinal epithelial permeability in vitro. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1779-86. [PMID: 26047680 DOI: 10.1016/j.bbadis.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/28/2015] [Accepted: 06/01/2015] [Indexed: 01/22/2023]
Abstract
Celiac disease (CD) is an immune-mediated enteropathy sustained by dietary gluten in susceptible individuals, and characterized by a complex interplay between adaptive and innate responses against gluten peptides (PTG). In a recent contribution we have demonstrated that the treatment with PTG induces the expression and activity of arginase in both murine macrophages and human monocytes from healthy subjects, thus suggesting a role for arginine and its metabolites in gluten-triggered response of these cells. Here we further explore this field, by addressing the effects of PTG on polyamine synthesis and release in murine RAW264.7 macrophages, and how they affect epithelial permeability of Caco-2 monolayers. Results obtained show a massive production and release of putrescine by macrophages upon incubation with gluten peptides; this, in turn, causes a decrease in TEER in epithelial cells, indicating that PTG-driven secretion of polyamines by macrophages has a role in the modulation of intestinal permeability in vitro. At a molecular level, putrescine production appears referable to the activation of C/EBPβ transcription factor, which is known to be responsible for arginase induction in activated macrophages and is a crucial mediator of inflammation. Whether these pathways are stimulated also in vivo deserves to be further investigated, as well as their role in gluten-driven cellular and intestinal defects typical of CD patients.
Collapse
Affiliation(s)
- Amelia Barilli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, SBiBiT, Università degli Studi di Parma, Via Volturno 39, 43125 Parma, Italy
| | - Bianca Maria Rotoli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, SBiBiT, Università degli Studi di Parma, Via Volturno 39, 43125 Parma, Italy
| | - Rossana Visigalli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, SBiBiT, Università degli Studi di Parma, Via Volturno 39, 43125 Parma, Italy
| | - Filippo Ingoglia
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, SBiBiT, Università degli Studi di Parma, Via Volturno 39, 43125 Parma, Italy
| | - Martina Cirlini
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy
| | - Barbara Prandi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parco Area delle Scienze 49/A, 43124 Parma, Italy
| | - Valeria Dall'Asta
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, SBiBiT, Università degli Studi di Parma, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
36
|
Leocádio PCL, Antunes MM, Teixeira LG, Leonel AJ, Alvarez-Leite JI, Machado DCC, Generoso SV, Cardoso VN, Correia MITD. L-arginine pretreatment reduces intestinal mucositis as induced by 5-FU in mice. Nutr Cancer 2015; 67:486-93. [PMID: 25803482 DOI: 10.1080/01635581.2015.1004730] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Beneficial effects of L-arginine on immune responses and bowel function have been reported. Mucositis is a side effect of chemotherapy treatment that affects approximately 40% of patients. This complication is characterized by inflammation that affects the gastrointestinal tract, increasing permeability and causing abdominal pain, nausea, vomiting, and diarrhea, which worsen the patient's nutritional status and increases morbimortality. The aim of this study was to evaluate the effect of pretreating with 2% L-arginine supplementation in water on mucositis as induced by 5-fluorouracil (5-FU; a single dose of 200 mg/kg body weight) in Swiss male mice. The effect of L-arginine on weight, intestinal permeability, morphology, and the histopathological score of the small intestine (from 0 to 12), oxidative stress, myeloperoxidase (MPO), and N-acetylglucosaminidase (NAG) activities were evaluated. Intestinal length improvement was observed, in addition to the partial recovery of the mucosal architecture. L-arginine attenuated the histopathological score and MPO activity. There was also an improvement in intestinal permeability, despite weight loss after 5-FU administration. In conclusion, L-arginine can positively impact intestinal mucositis by promoting partial mucosal recovery, reducing inflammation and improving intestinal permeability.
Collapse
Affiliation(s)
- Paola C L Leocádio
- a Postgraduate Program in Food Science , Faculty of Pharmacy, UFMG , Belo Horizonte , MG , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Walsh MF, Hermann R, Lee JH, Chaturvedi L, Basson MD. Schlafen 3 Mediates the Differentiating Effects of Cdx2 in Rat IEC-Cdx2L1 Enterocytes. J INVEST SURG 2015; 28:202-207. [PMID: 26268420 PMCID: PMC4771065 DOI: 10.3109/08941939.2015.1005780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM Mature, differentiated enterocytes are essential for normal gut function and critical to recovery from pathological conditions. Little is known about the factors that regulate intestinal epithelial cell differentiation in the adult intestine. The transcription factor, Cdx2, involved in enterocytic differentiation, remains expressed in the adult. Since we have implicated Slfn3 in differentiation in vivo and in vitro, we examined whether it also mediated differentiation in the IEC-Cdx2-L1 cell model of differentiation. MATERIALS AND METHODS IEC-Cdx2-L1 cells, permanently transfected with Cdx2 under the control of isopropyl-β-D-thiogalactoside (IPTG), were stimulated to differentiate by 16-day exposure to IPTG. Transcript levels of Cdx2, Slfn 3, and villin were determined by quantitative reverse transcriptase-polymerase chain reaction of mRNA isolated from IPTG-treated and control cells. Slfn3 expression was lowered with specific siRNA to investigate the role of Slfn3 in Cdx2-driven villin expression in IPTG-differentiated cells. RESULTS Slfn3 and villin expression were significantly greater in IPTG-treated cells. Slfn3 siRNA lowered Slfn3 expression and abolished the IPTG-induced rise in villin expression (p < .05 by ANOVA); Cdx2 expression was unaffected by Slfn3 siRNA. DISCUSSION The data indicate that the presence of Slfn3 is required for Cdx2 to induce villin expression, and thus differentiation. However, Slfn3 must also promote differentiation of Cdx2 independently since IEC-6 cells that do not normally express Cdx2 can be differentiated by a variety of Slfn3-dependent mechanisms.
Collapse
Affiliation(s)
- Mary F Walsh
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | |
Collapse
|
38
|
Xiao L, Wang JY. RNA-binding proteins and microRNAs in gastrointestinal epithelial homeostasis and diseases. Curr Opin Pharmacol 2014; 19:46-53. [PMID: 25063919 DOI: 10.1016/j.coph.2014.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
The epithelium of gastrointestinal (GI) mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through strict regulation of cell proliferation and apoptosis. Epithelial cells originate from a small number of pluripotent stem cells, which divide to either renew themselves or become committed crypt cells. RNA-binding proteins (RBPs) and microRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are recently shown to modulate GI mucosal growth and repair after injury. Here we highlight the roles of RBPs HuR, CUG-binding protein 1, AU-binding factor 1, and several GI epithelial-specific miRNAs in gut mucosal homeostasis and diseases and also further analyze the mechanisms through which RBPs and miRNAs modulate the stability and translation of target mRNAs.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, USA; Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, USA; Department of Pathology, University of Maryland School of Medicine, USA; Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
39
|
Chung HK, Rao JN, Zou T, Liu L, Xiao L, Gu H, Turner DJ, Yang P, Wang JY. Jnk2 deletion disrupts intestinal mucosal homeostasis and maturation by differentially modulating RNA-binding proteins HuR and CUGBP1. Am J Physiol Cell Physiol 2014; 306:C1167-75. [PMID: 24740539 DOI: 10.1152/ajpcell.00093.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Homeostasis and maturation of the mammalian intestinal epithelium are preserved through strict regulation of cell proliferation, apoptosis, and differentiation, but the exact mechanism underlying this process remains largely unknown. c-Jun NH2-terminal kinase 2 (JNK2) is highly expressed in the intestinal mucosa, and its activation plays an important role in proliferation and also mediates apoptosis in cultured intestinal epithelial cells (IECs). Here, we investigated the in vivo function of JNK2 in the regulation of intestinal epithelial homeostasis and maturation by using a targeted gene deletion approach. Targeted deletion of the jnk2 gene increased cell proliferation within the crypts in the small intestine and disrupted mucosal maturation as indicated by decreases in the height of villi and the villus-to-crypt ratio. JNK2 deletion also decreased susceptibility of the intestinal epithelium to apoptosis. JNK2-deficient intestinal epithelium was associated with an increase in the level of the RNA-binding protein HuR and with a decrease in the abundance of CUG-binding protein 1 (CUGBP1). In studies in vitro, JNK2 silencing protected intestinal epithelial cell-6 (IEC-6) cells against apoptosis and this protection was prevented by inhibiting HuR. Ectopic overexpression of CUGBP1 repressed IEC-6 cell proliferation, whereas CUGBP1 silencing enhanced cell growth. These results indicate that JNK2 is essential for maintenance of normal intestinal epithelial homeostasis and maturation under biological conditions by differentially modulating HuR and CUGBP1.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hui Gu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
40
|
Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 2014; 4:4548. [PMID: 24686447 PMCID: PMC4070089 DOI: 10.1038/srep04548] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Prevention of quality of life (QOL) deterioration is associated with the inhibition of geriatric diseases and the regulation of brain function. However, no substance is known that prevents the aging of both body and brain. It is known that polyamine concentrations in somatic tissues (including the brain) decrease with increasing age, and polyamine-rich foods enhance longevity in yeast, worms, flies, and mice, and protect flies from age-induced memory impairment. A main source of exogenous polyamines is the intestinal lumen, where they are produced by intestinal bacteria. We found that arginine intake increased the concentration of putrescine in the colon and increased levels of spermidine and spermine in the blood. Mice orally administered with arginine in combination with the probiotic bifidobacteria LKM512 long-term showed suppressed inflammation, improved longevity, and protection from age-induced memory impairment. This study shows that intake of arginine and LKM512 may prevent aging-dependent declines in QOL via the upregulation of polyamines.
Collapse
|
41
|
Yang H, Rao JN, Wang JY. Posttranscriptional Regulation of Intestinal Epithelial Tight Junction Barrier by RNA-binding Proteins and microRNAs. Tissue Barriers 2014; 2:e28320. [PMID: 24843843 PMCID: PMC4022605 DOI: 10.4161/tisb.28320] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/16/2014] [Accepted: 02/21/2014] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial tight junctions (TJs) are a specialized structure that determines the cell polarity and prevents the diffusion of toxins, allergens, and pathogens from the lumen into the tissue. TJs are highly dynamic and its constituent protein complexes undergo continuously remodeling and turnover under tight regulation by numerous extracellular and intracellular factors. RNA-binding proteins (RBPs) and microRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in many aspects of cellular physiology. An increasing body of evidence indicates that RBPs including HuR and CUG-binding protein 1 and miRNAs such as miR-192 modulate the stability and translation of mRNAs encoding TJ proteins and play an important role in the control of intestinal epithelial TJ barrier function. In this mini-review article, we highlight the changes in TJ expression and intestinal epithelial TJ barrier function after activation or inactivation of RBPs and miRNAs and further analyze in some detail the mechanisms through which the stability and translation of TJ mRNAs are regulated by RBPs and miRNAs.
Collapse
Affiliation(s)
- Hong Yang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jaladanki N Rao
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| | - Jian-Ying Wang
- Cell Biology Group; Department of Surgery; University of Maryland School of Medicine; Baltimore, MD USA ; Department of Pathology; University of Maryland School of Medicine; Baltimore, MD USA ; Baltimore Veterans Affairs Medical Center; Baltimore, MD USA
| |
Collapse
|
42
|
Orlando A, Linsalata M, Notarnicola M, Tutino V, Russo F. Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines. BMC Microbiol 2014; 14:19. [PMID: 24483336 PMCID: PMC3911798 DOI: 10.1186/1471-2180-14-19] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/27/2014] [Indexed: 12/22/2022] Open
Abstract
Background Celiac disease is characterized by enhanced intestinal paracellular permeability due to alterations of function and expression of tight junction (TJ) proteins including ZO-1, Claudin-1 and Occludin. Polyamines are pivotal in the control of intestinal barrier function and are also involved in the regulation of intercellular junction proteins. Different probiotic strains may inhibit gliadin-induced toxic effects and the Lactobacillus rhamnosus GG (L.GG) is effective in the prevention and treatment of gastrointestinal diseases. Aims of the study were to establish in epithelial Caco-2 cells whether i) gliadin affects paracellular permeability and polyamine profile; ii) co-administration of viable L.GG, heat-killed L.GG (L.GG-HK) or its conditioned medium (L.GG-CM) preserves the intestinal epithelial barrier integrity. Additionally, the effects of L.GG on TJ protein expression were tested in presence or absence of polyamines. Results Administration of gliadin (1 mg/ml) to Caco-2 cells for 6 h caused a significant alteration of paracellular permeability as demonstrated by the rapid decrease in transepithelial resistance with a concomitant zonulin release. These events were followed by a significant increase in lactulose paracellular transport and a slight lowering in ZO-1 and Occludin expression without affecting Claudin-1. Besides, the single and total polyamine content increased significantly. The co-administration of viable L.GG (108 CFU/ml), L.GG-HK and L.GG-CM with gliadin significantly restored barrier function as demonstrated by transepithelial resistance, lactulose flux and zonulin release. Viable L.GG and L.GG-HK, but not L.GG-CM, led to a significant reduction in the single and total polyamine levels. Additionally, only the co-administration of viable L.GG with gliadin significantly increased ZO-1, Claudin-1 and Occludin gene expression compared to control cells. When Caco-2 cells treated with viable L.GG and gliadin were deprived in the polyamine content by α-Difluoromethylornithine, the expression of TJ protein mRNAs was not significantly different from that in controls or cells treated with gliadin alone. Conclusions Gliadin modifies the intestinal paracellular permeability and significantly increases the polyamine content in Caco-2 cells. Concomitant administration of L.GG is able to counteract these effects. Interestingly, the presence of cellular polyamines is necessary for this probiotic to exert its capability in restoring paracellular permeability by affecting the expression of different TJ proteins.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute for Digestive Diseases I,R,C,C,S, "Saverio de Bellis", via Turi 27, I-70013 Castellana Grotte, BA, Italy.
| |
Collapse
|
43
|
Ramani D, De Bandt JP, Cynober L. Aliphatic polyamines in physiology and diseases. Clin Nutr 2013; 33:14-22. [PMID: 24144912 DOI: 10.1016/j.clnu.2013.09.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023]
Abstract
Aliphatic polyamines are a family of polycationic molecules derived from decarboxylation of the amino acid ornithine that classically comprise three molecules: putrescine, spermidine and spermine. In-cell polyamine homeostasis is tightly controlled at key steps of cell metabolism. Polyamines are involved in an array of cellular functions from DNA stabilization, and regulation of gene expression to ion channel function and, particularly, cell proliferation. As such, aliphatic polyamines play an essential role in rapidly dividing cells such as in the immune system and digestive tract. Because of their role in cell proliferation, polyamines are also involved in carcinogenesis, prompting intensive research into polyamine metabolism as a target in cancer therapy. More recently, another aliphatic polyamine, agmatine, the decarboxylated derivative of arginine, has been identified as a neurotransmitter in mammals, and investigations have focused on its effects in the CNS, notably as a neuroprotector in brain injury.
Collapse
Affiliation(s)
- D Ramani
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France
| | - J P De Bandt
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France.
| | - L Cynober
- EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes University, Sorbonne Paris Cité, and Clinical Chemistry Department, Hopitaux Universitaires Paris Centre, APHP, Paris, France
| |
Collapse
|
44
|
Penrose HM, Marchelletta RR, Krishnan M, McCole DF. Spermidine stimulates T cell protein-tyrosine phosphatase-mediated protection of intestinal epithelial barrier function. J Biol Chem 2013; 288:32651-32662. [PMID: 24022492 DOI: 10.1074/jbc.m113.475962] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The gene locus encoding protein-tyrosine phosphatase non-receptor type 2 (PTPN2) has been associated with inflammatory bowel disease. Expression of the PTPN2 gene product, T cell protein-tyrosine phosphatase (TCPTP), in intestinal epithelial cells has been shown to play an important role in the protection of epithelial barrier function during periods of inflammation by acting as a negative regulator of the proinflammatory cytokine IFN-γ. Therefore, agents that increase the activity of TCPTP are of general interest as modifiers of inflammatory signaling events. A previous study demonstrated that the small molecule spermidine is a selective activator of TCPTP in vitro. The aim of this study was to investigate whether activation of TCPTP by spermidine was capable of alleviating IFN-γ-induced, proinflammatory signaling and barrier dysfunction in human intestinal epithelial cells. Studies revealed that treatment of T84 and HT29/cl.19A colonocytes with spermidine increased both TCPTP protein levels and enzymatic activity, correlating with a decrease in the phosphorylation of the signal transducers and activators of transcription 1 and 3, downstream mediators of IFN-γ signaling, upon coadministration of spermidine to IFN-γ-treated cells. On a functional level, spermidine protected barrier function in the setting of inflammation, restricting the decrease in transepithelial electrical resistance and the increase in epithelial permeability induced by IFN-γ in coincubation experiments. These data implicate spermidine as a potential therapeutic agent to treat conditions associated with elevated IFN-γ signaling and a faulty mucosal barrier.
Collapse
Affiliation(s)
- Harrison M Penrose
- the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Ronald R Marchelletta
- the Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Moorthy Krishnan
- From the Division of Biomedical Sciences, University of California, Riverside, California 92521
| | - Declan F McCole
- From the Division of Biomedical Sciences, University of California, Riverside, California 92521.
| |
Collapse
|
45
|
Zhang Z, Shan QW, Wang LL, lv ZL, Jiang L, Huang YE. Effect of Bifidobacterium triple viable capsule on intestinal mucosal barrier function in rats with fatty liver induced by a high-fat diet. Shijie Huaren Xiaohua Zazhi 2013; 21:130-137. [DOI: 10.11569/wcjd.v21.i2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the potential preventive effect of Bifidobacterium triple viable capsule (Bifico) on intestinal microflora and the expression of IL-17 and occludin proteins in ileum mucosa in rats with non-alcoholic fatty liver disease NAFLD induced by a high-fat diet.
METHODS: Thirty-four male Sprague-Dawley rats were divided into three groups and were given a high-fat diet (group Ⅰ, n = 12), a high-fat diet and Bifico (group Ⅱ, n = 12), and an ordinary diet (group Ⅲ, n = 10). Rats of group Ⅱ were given Bifico gavage, while the other two groups were given the same amount of normal saline. Seventeen weeks later, the rats were killed for having a liver biopsy to confirm whether NAFLD was successfully induced. The 16S RNA method was used to detect the numbers of three main types of bacteria in the intestinal tract. The ultrastructure of ileum tissue was observed by electron microscopy, and the expression of occludin and IL-17 proteins was detected by immunohistochemistry.
RESULTS: Compared to group Ⅲ, there was a significant increase in the number of Escherichia coli, Lactobacillus, and Bifidobacteria, and expression of occludin in groups Ⅰ and Ⅱ (all P < 0.05). There was no significant difference in the number of Lactobacillus and expression of occludin between groups Ⅰ and Ⅱ. The expression of IL-17 differed significantly between the three groups (all P < 0.05). Electron microscopy indicated that intestinal epithelial cells in rats given a high-fat diet showed a series of pathological injuries (e.g., hydropsia and necrosis), and the use of Bifico could relieve intestinal epithelial injury.
CONCLUSION: Bifico exerts a preventive effect on non-alcoholic fatty liver disease induced by a high-fat in rats possibly by protecting the intestinal mucosal barrier.
Collapse
|
46
|
Wang N, Wang G, Hao J, Ma J, Wang Y, Jiang X, Jiang H. Curcumin ameliorates hydrogen peroxide-induced epithelial barrier disruption by upregulating heme oxygenase-1 expression in human intestinal epithelial cells. Dig Dis Sci 2012; 57:1792-801. [PMID: 22392462 DOI: 10.1007/s10620-012-2094-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 02/10/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disruption of epithelial tight junctions (TJ) followed by loss of barrier function is of crucial importance in the pathogenesis of a variety of gastrointestinal disorders. Heme oxygenase-1 (HO-1), which can be induced by curcumin (Cur), provides protection against various forms of oxidative stress. AIMS The protective effect of Cur on oxidative stress-induced intestinal barrier disruption in human intestinal epithelial cells was elucidated in this study. METHODS H(2)O(2)-induced Caco-2 enterocytic monolayers were incubated in the presence or absence of Cur and/or zinc protoporphyrin (ZnPP). The trans-epithelial electrical resistance (TEER) and the flux of sodium fluorescein in the filter-grown Caco-2 cell monolayers were measured. The expression and localization of the TJ protein occludin and zonula occluden-1 (ZO-1) were evaluated by western blot and immunofluorescence microscopy. The mRNA and protein levels of HO-1 were analyzed by real-time PCR and western blot. RESULTS Cur attenuated H(2)O(2)-induced disruption of paracellular permeability (TEER 52.02 ± 10.15% vs 22.71 ± 3.11%; sodium fluorescein flux 12.41 ± 2.19% vs 32.00 ± 4.97%, P < 0.05) and induced HO-1 mRNA (6.64 ± 0.48 vs 3.22 ± 0.28, P < 0.05) and protein (291.00 ± 9.17% vs 99.00 ± 10.00%, P < 0.05) expression in Caco-2 cells. After administration of H(2)O(2), occludin and ZO-1 proteins were restored by Cur (occludin 175.67 ± 29.50% vs 53.67 ± 24.19%, P < 0.05; ZO-1 139.67 ± 33.71% vs 36.00 ± 15.88%, P < 0.05) and this effect was blocked by HO-1 inhibitor, ZnPP (occludin 54.67 ± 10.02% vs 168.33 ± 36.47%, P < 0.05; ZO-1 50.00 ± 15.13% vs 117.67 ± 38.81%, P < 0.05). CONCLUSION Cur protects human intestinal epithelial cells against H(2)O(2)-induced disruption of TJ and barrier dysfunction via the HO-1 pathway.
Collapse
Affiliation(s)
- Na Wang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Modification of secondary head-forming activity of microinjected ∆β-catenin mRNA by co-injected spermine and spermidine in Xenopus early embryos. Amino Acids 2011; 42:791-801. [DOI: 10.1007/s00726-011-0996-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/26/2011] [Indexed: 11/25/2022]
|
48
|
Matsumoto M, Kurihara S. Probiotics-induced increase of large intestinal luminal polyamine concentration may promote longevity. Med Hypotheses 2011; 77:469-72. [PMID: 21745717 DOI: 10.1016/j.mehy.2011.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/06/2011] [Indexed: 11/27/2022]
Abstract
Many mechanisms contribute to senescence, such as telomere shortening in replicative cells, cumulative damage to DNA leading to genomic instability, and oxidative damage to molecules by reactive oxygen species (ROS). These include chronic low-grade inflammation (inflammageing), a major risk factor for ageing and age-related diseases, such as Alzheimer's disease and type II diabetes. Furthermore, the prevention of inflammageing seems to be one of the most effective approaches to increase longevity. Here, I discuss the rationale and recent evidence for probiotic-induced upregulation of intestinal luminal polyamine (PA) production in the extension of lifespan by preventing inflammageing.
Collapse
Affiliation(s)
- Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., 20-1 Hirai, Hinode-cho, Nishitama-gun, Tokyo 190-0182, Japan.
| | | |
Collapse
|
49
|
Yu TX, Wang PY, Rao JN, Zou T, Liu L, Xiao L, Gorospe M, Wang JY. Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Res 2011; 39:8472-87. [PMID: 21745814 PMCID: PMC3201881 DOI: 10.1093/nar/gkr567] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Occludin is a transmembrane tight junction (TJ) protein that plays an important role in TJ assembly and regulation of the epithelial barrier function, but the mechanisms underlying its post-transcriptional regulation are unknown. The RNA-binding protein HuR modulates the stability and translation of many target mRNAs. Here, we investigated the role of HuR in the regulation of occludin expression and therefore in the intestinal epithelial barrier function. HuR bound the 3′-untranslated region of the occludin mRNA and enhanced occludin translation. HuR association with the occludin mRNA depended on Chk2-dependent HuR phosphorylation. Reduced HuR phosphorylation by Chk2 silencing or by reduction of Chk2 through polyamine depletion decreased HuR-binding to the occludin mRNA and repressed occludin translation, whereas Chk2 overexpression enhanced (HuR/occludin mRNA) association and stimulated occludin expression. In mice exposed to septic stress induced by cecal ligation and puncture, Chk2 levels in the intestinal mucosa decreased, associated with an inhibition of occludin expression and gut barrier dysfunction. These results indicate that HuR regulates occludin mRNA translation through Chk2-dependent HuR phosphorylation and that this influence is crucial for maintenance of the epithelial barrier integrity in the intestinal tract.
Collapse
Affiliation(s)
- Ting-Xi Yu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Greenspon J, Li R, Xiao L, Rao JN, Sun R, Strauch ED, Shea-Donohue T, Wang JY, Turner DJ. Sphingosine-1-phosphate regulates the expression of adherens junction protein E-cadherin and enhances intestinal epithelial cell barrier function. Dig Dis Sci 2011; 56:1342-53. [PMID: 20936358 PMCID: PMC4140085 DOI: 10.1007/s10620-010-1421-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 09/02/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND The regulation of intestinal barrier permeability is important in the maintenance of normal intestinal physiology. Sphingosine-1-phosphate (S1P) has been shown to play a pivotal role in enhancing barrier function in several non-intestinal tissues. The current study determined whether S1P regulated function of the intestinal epithelial barrier by altering expression of E-cadherin, an important protein in adherens junctions. METHODS Studies were performed upon cultured differentiated IECs (IEC-Cdx2L1 line) using standard techniques. RESULTS S1P treatment significantly increased levels of E-cadherin protein and mRNA in intestinal epithelial cells (IECs) and also led to E-cadherin localizing strongly to the cell-cell border. S1P also improved the barrier function as indicated by a decrease in 14C-mannitol paracellular permeability and an increase in transepithelial electrical resistance (TEER) in vitro. CONCLUSIONS These results indicate that S1P increases levels of E-cadherin, both in cellular amounts and at the cell-cell junctions, and leads to improved barrier integrity in cultured intestinal epithelial cells.
Collapse
Affiliation(s)
- Jose Greenspon
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ruiyun Li
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lan Xiao
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaladanki N. Rao
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rex Sun
- Department of Gastroenterology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric D. Strauch
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terez Shea-Donohue
- Department of Gastroenterology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jian-Ying Wang
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA. Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Douglas J. Turner
- Department of Surgery, Baltimore Veterans Affairs Medical Center, 10 N. Greene Street, Baltimore, MD 21201, USA. Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|