1
|
Ying Y, Cai X, Dai P, Zhang Y, Lv J, Huang Z, Chen X, Hu Y, Shi Y, Li X, Jiang D, Wang Z. Neurological Emergency Treatment Strategy: A Neuron-Targeted Regulation System for Reactive Oxygen Species Metabolism through Ferroptosis Modulation. ACS NANO 2025; 19:8753-8772. [PMID: 39996314 PMCID: PMC11913020 DOI: 10.1021/acsnano.4c15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Spinal cord injury (SCI) represents a significant clinical challenge. Following SCI, the implementation of protective measures for neurons is critically important. Current clinical applications of hormone pulse therapy exhibit variable efficacy and considerable side effects, highlighting an urgent need for therapeutic strategies. This study investigates the pathological conditions of ischemia and hypoxia in the SCI region, complemented by early transcriptome sequencing postinjury. Our findings suggest that targeting ferroptosis is pivotal for early neuroprotection following SCI. Aiming at the cascade effect of mitochondrial damage leading to reactive oxygen species (ROS) production, along with extensive ROS-mediated lysosomal damage during ferroptosis signaling, we developed a liposome-based system for regulating iron metabolism─DTLS@CAT. This innovative liposome is designed to specifically target neuronal mitochondria, effectively eliminate mitoROS, and modulate complex interactions among iron metabolism, mitochondria, lysosomes, and ROS to facilitate recovery from SCI.
Collapse
Affiliation(s)
- Yibo Ying
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiong Cai
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Peng Dai
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuchao Zhang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiali Lv
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhiyang Huang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuehai Chen
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusi Hu
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yunjie Shi
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaokun Li
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Dawei Jiang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Affiliated
Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang 315300, China
| | - Zhouguang Wang
- National
Key Laboratory of Macromolecular Drug Development and Manufacturing,
School of Pharmaceutical Science, Wenzhou
Medical University, Wenzhou 325035, China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Li Y, Hu H, Chu C, Yang J. Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). Int J Mol Med 2025; 55:40. [PMID: 39749702 PMCID: PMC11758895 DOI: 10.3892/ijmm.2024.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca2+ and CVD has been extensively studied. Ca2+ movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis. It is also involved in pathological processes such as cardiomyocyte apoptosis, hypertrophy and fibrosis in CVD. The selective mitochondrial calcium uniporter complex (MCU complex) located in the inner membrane is essential for mitochondrial Ca2+ uptake. Therefore, the MCU complex is a potential therapeutic target for CVD. In this review, recent research progress on the pathophysiological mechanisms and therapeutic potential of the MCU complex in various CVDs was summarized, including myocardial ischemia‑reperfusion injury, pulmonary arterial hypertension, other peripheral vascular diseases, myocardial remodeling and arrhythmias. This review contributes to a deeper understanding of these mechanisms at the molecular level and highlights potential intervention targets for CVD treatment in clinical practice.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Hongmin Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| |
Collapse
|
3
|
Wang J, Jiang J, Hu H, Chen L. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res 2025; 68:271-298. [PMID: 38417574 PMCID: PMC11785567 DOI: 10.1016/j.jare.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinyong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China; College of Medicine, Hunan University of Arts and Science, Changde 415000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Xie A, Kang GJ, Kim EJ, Liu H, Feng F, Dudley SC. c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy. Circ Arrhythm Electrophysiol 2024; 17:e013054. [PMID: 39212055 PMCID: PMC11477858 DOI: 10.1161/circep.124.013054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increased mitochondrial Ca2+ uptake has been implicated in the QT prolongation and lethal arrhythmias associated with nonischemic cardiomyopathy. We attempted to define the role of mitochondria in ischemic arrhythmic risk and to identify upstream regulators. METHODS Myocardial infarction (MI) was induced in wild-type FVB/NJ mice by ligation of the left anterior descending coronary artery. Western blot, immunoprecipitation, ECG telemetry, and patch-clamp techniques were used. RESULTS After MI, c-Src (proto-oncogene tyrosine-protein kinase Src) and its active form (phosphorylated Src, p-Src) were increased. The activation of c-Src was associated with increased diastolic Ca2+ sparks, action potential duration prolongation, and arrhythmia in MI mice. c-Src upregulation and arrhythmia could be reversed by treatment of mice with the Src inhibitor PP1 but not with the inactive analogue PP3. Tyrosine phosphorylated mitochondrial Ca2+ uniporter (MCU) was upregulated in the heart tissues of MI mice and patients with ischemic cardiomyopathy. In a heterologous expression system, c-Src could bind MCU and phosphorylate MCU tyrosines. Overexpression of wild-type c-Src significantly increased the mitochondrial Ca2+ transient while overexpression of dominant-negative c-Src significantly decreased the mitochondrial Ca2+ transient. c-Src inhibition by PP1, MCU inhibition by Ru360, or MCU knockdown could reduce the action potential duration, Ca2+ sparks, and arrhythmia after MI. The human heart tissue showed that patients with ischemic cardiomyopathy had significantly increased c-Src active form associated with increased MCU tyrosine phosphorylation and ventricular arrhythmia. CONCLUSIONS MI leads to increased c-Src active form that results in MCU tyrosine phosphorylation, increased mitochondrial Ca2+ uptake, QT prolongation, and arrhythmia, suggesting c-Src or MCU may represent novel antiarrhythmic targets.
Collapse
MESH Headings
- Animals
- src-Family Kinases/metabolism
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/enzymology
- Humans
- Disease Models, Animal
- Mice
- Action Potentials
- Phosphorylation
- Male
- Cardiomyopathies/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/physiopathology
- Cardiomyopathies/etiology
- Cardiomyopathies/enzymology
- CSK Tyrosine-Protein Kinase/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Calcium Channels/metabolism
- Calcium Channels/genetics
- Calcium Signaling
- Myocardial Infarction/metabolism
- Myocardial Infarction/complications
- Myocardial Infarction/physiopathology
- Myocardial Infarction/genetics
- Risk Factors
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Eun Ji Kim
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Samuel C. Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
5
|
Li J, Wang T, Hou X, Li Y, Zhang J, Bai W, Qian H, Sun Z. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology 2024; 22:487. [PMID: 39143493 PMCID: PMC11323404 DOI: 10.1186/s12951-024-02750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Mitochondria are crucial organelles responsible for energy generation in eukaryotic cells. Oxidative stress, calcium disorders, and mitochondrial DNA abnormalities can all cause mitochondrial dysfunction. It is now well documented that mitochondrial dysfunction significantly contributes to the pathogenesis of numerous illnesses. Hence, it is vital to investigate innovative treatment methods targeting mitochondrial dysfunction. Extracellular vesicles (EVs) are cell-derived nanovesicles that serve as intercellular messengers and are classified into small EVs (sEVs, < 200 nm) and large EVs (lEVs, > 200 nm) based on their sizes. It is worth noting that certain subtypes of EVs are rich in mitochondrial components (even structurally intact mitochondria) and possess the ability to transfer them or other contents including proteins and nucleic acids to recipient cells to modulate their mitochondrial function. Specifically, EVs can modulate target cell mitochondrial homeostasis as well as mitochondria-controlled apoptosis and ROS generation by delivering relevant substances. In addition, the artificial modification of EVs as delivery carriers for therapeutic goods targeting mitochondria is also a current research hotspot. In this article, we will focus on the ability of EVs to modulate the mitochondrial function of target cells, aiming to offer novel perspectives on therapeutic approaches for diverse conditions linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jiali Li
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tangrong Wang
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaomei Hou
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Li
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxin Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wenhuan Bai
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zixuan Sun
- Department of Gerontology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Pan X, Hao E, Zhang F, Wei W, Du Z, Yan G, Wang X, Deng J, Hou X. Diabetes cardiomyopathy: targeted regulation of mitochondrial dysfunction and therapeutic potential of plant secondary metabolites. Front Pharmacol 2024; 15:1401961. [PMID: 39045049 PMCID: PMC11263127 DOI: 10.3389/fphar.2024.1401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a specific heart condition in diabetic patients, which is a major cause of heart failure and significantly affects quality of life. DCM is manifested as abnormal cardiac structure and function in the absence of ischaemic or hypertensive heart disease in individuals with diabetes. Although the development of DCM involves multiple pathological mechanisms, mitochondrial dysfunction is considered to play a crucial role. The regulatory mechanisms of mitochondrial dysfunction mainly include mitochondrial dynamics, oxidative stress, calcium handling, uncoupling, biogenesis, mitophagy, and insulin signaling. Targeting mitochondrial function in the treatment of DCM has attracted increasing attention. Studies have shown that plant secondary metabolites contribute to improving mitochondrial function and alleviating the development of DCM. This review outlines the role of mitochondrial dysfunction in the pathogenesis of DCM and discusses the regulatory mechanism for mitochondrial dysfunction. In addition, it also summarizes treatment strategies based on plant secondary metabolites. These strategies targeting the treatment of mitochondrial dysfunction may help prevent and treat DCM.
Collapse
Affiliation(s)
- Xianglong Pan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guangli Yan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xijun Wang
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
7
|
Amjid U, Aziz U, Habib U, Jabeen I. Biological regulatory network analysis for targeting the mitochondrial calcium uniporter (MCU) mediated calcium (Ca 2+) transport in neurodegenerative disorders. Cell Biochem Funct 2024; 42:e4082. [PMID: 38944766 DOI: 10.1002/cbf.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Calcium (Ca2+) has been observed as the most important ion involved in a series of cellular processes and its homeostasis is critical for normal cellular functions. Mitochondrial calcium uniporter (MCU) complex has been recognized as the most important calcium-specific channel located in the inner mitochondrial membrane and is one of the major players in maintaining the Ca2+ homeostasis by transporting Ca2+ across the mitochondrial membrane. Furthermore, dysregulation of the mitochondrial Ca2+ homeostasis has been orchestrated to neurodegenerative response. This necessitates quantitative evaluation of the MCU-dependent mROS production and subsequent cellular responses for more specific therapeutic interventions against neurodegenerative disorders. Towards this goal, here we present a biological regulatory network of MCU to dynamically simulate the MCU-mediated ROS production and its response in neurodegeneration. Previously, ruthenium complex RuRed and its derivatives have been reported to show low nM to high µM potency against MCU to maintain cytosolic Ca2+ (cCa2+) homeostasis by modulating mitochondrial Ca2+ (mCa2+) uptake. Therefore, structural modeling and dynamic simulation of MCU pore-forming subunit is performed to probe the interaction profiling of previously reported Ru265 and its derivatives compounds with MCU. The current study highlighted MCU as a potential drug target in neurodegenerative disorders. Furthermore, ASP261 and GLU264 amino acid residues in DIME motif of MCU pore-forming subunits are identified as crucial for modulating the activity of MCU in neurodegenerative disorders.
Collapse
Affiliation(s)
- Umar Amjid
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
- Department of Paediatrics and Child Health, Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | - Ubair Aziz
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Uzma Habib
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
8
|
Zhou X, Liu H, Feng F, Kang GJ, Liu M, Guo Y, Dudley SC. Macrophage IL-1β mediates atrial fibrillation risk in diabetic mice. JCI Insight 2024; 9:e171102. [PMID: 38889387 PMCID: PMC11383594 DOI: 10.1172/jci.insight.171102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF). The mechanisms underlying DM-associated AF are unclear. AF and DM are both related to inflammation. We investigated whether DM-associated inflammation contributed to AF risk. Mice were fed with high-fat diet to induce type II DM and were subjected to IL-1β antibodies, macrophage depletion by clodronate liposomes, a mitochondrial antioxidant (mitoTEMPO), or a cardiac ryanodine receptor 2 (RyR2) stabilizer (S107). All tests were performed at 36-38 weeks of age. DM mice presented with increased AF inducibility, enhanced mitochondrial reactive oxygen species (mitoROS) generation, and activated innate immunity in the atria, as evidenced by enhanced monocyte chemoattractant protein-1 (MCP-1) expression, macrophage infiltration, and IL-1β levels. Signs of aberrant RyR2 Ca2+ leak were observed in the atria of DM mice. IL-1β neutralization, macrophage depletion, and exposure to mitoTEMPO and S107 significantly ameliorated the AF vulnerability in DM mice. Atrial overexpression of MCP-1 increased AF occurrence in normal mice through the same mechanistic signaling cascade as observed in DM mice. In conclusion, macrophage-mediated IL-1β contributed to DM-associated AF risk through mitoROS modulation of RyR2 Ca2+ leak.
Collapse
|
9
|
Rose HM, Ferrán B, Ranjit R, Masingale AM, Owen DB, Hussong S, Kinter MT, Galvan V, Logan S, Díaz-García CM. Mitochondrial calcium uniporter deficiency in dentate granule cells remodels neuronal metabolism and impairs reversal learning. J Neurochem 2024; 168:592-607. [PMID: 37415312 PMCID: PMC10770303 DOI: 10.1111/jnc.15901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
The mitochondrial calcium uniporter (MCU) is the main route of calcium (Ca2+) entry into neuronal mitochondria. This channel has been linked to mitochondrial Ca2+ overload and cell death under neurotoxic conditions, but its physiologic roles for normal brain function remain poorly understood. Despite high expression of MCU in excitatory hippocampal neurons, it is unknown whether this channel is required for learning and memory. Here, we genetically down-regulated the Mcu gene in dentate granule cells (DGCs) of the hippocampus and found that this manipulation increases the overall respiratory activity of mitochondrial complexes I and II, augmenting the generation of reactive oxygen species in the context of impaired electron transport chain. The metabolic remodeling of MCU-deficient neurons also involved changes in the expression of enzymes that participate in glycolysis and the regulation of the tricarboxylic acid cycle, as well as the cellular antioxidant defenses. We found that MCU deficiency in DGCs does not change circadian rhythms, spontaneous exploratory behavior, or cognitive function in middle-aged mice (11-13 months old), when assessed with a food-motivated working memory test with three choices. DGC-targeted down-regulation of MCU significantly impairs reversal learning assessed with an 8-arm radial arm water maze but does not affect their ability to learn the task for the first time. Our results indicate that neuronal MCU plays an important physiologic role in memory formation and may be a potential therapeutic target to develop interventions aimed at improving cognitive function in aging, neurodegenerative diseases, and brain injury.
Collapse
Affiliation(s)
- Hadyn M Rose
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Beatriz Ferrán
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Rojina Ranjit
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Anthony M Masingale
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Daniel B Owen
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Stacy Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, Oklahoma, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
- Oklahoma City Veterans Health Care System, Oklahoma City, Oklahoma, USA
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, USA
| |
Collapse
|
10
|
Xiong WJ, Lai XL, Lu J, Li LS, Zhang JX, Duan X. O-GlcNAcylation orchestrates porcine oocyte maturation through maintaining mitochondrial dynamics and function. Mol Hum Reprod 2024; 30:gaae003. [PMID: 38265252 DOI: 10.1093/molehr/gaae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/24/2023] [Indexed: 01/25/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification exists widely in cells, playing a crucial role in the regulation of important biological processes such as transcription, translation, metabolism, and the cell cycle. O-GlcNAc modification is an inducible reversible dynamic protein post-translational modification, which regulates complex cellular activities through transient glycosylation and deglycosylation. O-GlcNAc glycosylation is specifically regulated by O-GlcNAc glycosyltransferase (O-GlcNAc transferase, OGT) and O-GlcNAc glycoside hydrolase (O-GlcNAcase). However, the mechanisms underlying the effects of O-GlcNAc modification on the female reproductive system, especially oocyte quality, remain unclear. Here, we found that after OGT was inhibited, porcine oocytes failed to extrude the first polar body and exhibited abnormal actin and microtubule assembly. Meanwhile, the mitochondrial dynamics and function were also disrupted after inhibition of OGT function, resulting in the occurrence of oxidative stress and autophagy. Collectively, these results inform our understanding of the importance of the glycosylation process for oocyte maturation, especially for the maturation quality of porcine oocytes, and the alteration of O-GlcNAc in oocytes to regulate cellular events deserves further investigation.
Collapse
Affiliation(s)
- Wen-Jie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xin-Le Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jie Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-Shu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jin-Xin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
11
|
Trewin AJ, Weeks KL, Wadley GD, Lamon S. Regulation of mitochondrial calcium uniporter expression and calcium-dependent cell signaling by lncRNA Tug1 in cardiomyocytes. Am J Physiol Cell Physiol 2023; 325:C1097-C1105. [PMID: 37721002 DOI: 10.1152/ajpcell.00339.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Cardiomyocyte calcium homeostasis is a tightly regulated process. The mitochondrial calcium uniporter (MCU) complex can buffer elevated cytosolic Ca2+ levels and consists of pore-forming proteins including MCU, and various regulatory proteins such as mitochondrial calcium uptake proteins 1 and 2 (MICU1/2). The stoichiometry of these proteins influences the sensitivity to Ca2+ and the activity of the complex. However, the factors that regulate their gene expression remain incompletely understood. Long noncoding RNAs (lncRNAs) regulate gene expression through various mechanisms, and we recently found that the lncRNA Tug1 increased the expression of Mcu and associated genes. To further explore this, we performed antisense LNA knockdown of Tug1 (Tug1 KD) in H9c2 rat cardiomyocytes. Tug1 KD increased MCU protein expression, yet pyruvate dehydrogenase dephosphorylation, which is indicative of mitochondrial Ca2+ uptake, was not enhanced. However, RNA-seq revealed that Tug1 KD increased Mcu along with differential expression of >1,000 genes including many related to Ca2+ regulation pathways in the heart. To understand the effect of this on Ca2+ signaling, we measured phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its downstream target cAMP Response Element-Binding protein (CREB), a transcription factor known to drive Mcu gene expression. In response to a Ca2+ stimulus, the increase in CaMKII and CREB phosphorylation was attenuated by Tug1 KD. Inhibition of CaMKII, but not CREB, partially prevented the Tug1 KD-mediated increase in Mcu. Together, these data suggest that Tug1 modulates MCU expression via a mechanism involving CaMKII and regulates cardiomyocyte Ca2+ signaling, which could have important implications for cardiac function.NEW & NOTEWORTHY Calcium is essential for signaling, excitation contraction, and energy homeostasis in the heart. Despite this, molecular regulators of these processes are not completely understood. We report that knockdown of lncRNA Tug1 alters the calcium handling transcriptome and increases mitochondrial calcium uniporter expression via a mechanism involving CaMKII. As overexpression of MCU is known to be protective against pathological cardiac remodeling, targeting Tug1 may be a potential strategy for treating cardiovascular disease.
Collapse
Affiliation(s)
- Adam J Trewin
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
12
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Clements RT, Terentyeva R, Hamilton S, Janssen PML, Roder K, Martin BY, Perger F, Schneider T, Nichtova Z, Das AS, Veress R, Lee BS, Kim DG, Koren G, Stratton MS, Csordas G, Accornero F, Belevych AE, Gyorke S, Terentyev D. Sexual dimorphism in bidirectional SR-mitochondria crosstalk in ventricular cardiomyocytes. Basic Res Cardiol 2023; 118:15. [PMID: 37138037 PMCID: PMC10156626 DOI: 10.1007/s00395-023-00988-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Calcium transfer into the mitochondrial matrix during sarcoplasmic reticulum (SR) Ca2+ release is essential to boost energy production in ventricular cardiomyocytes (VCMs) and match increased metabolic demand. Mitochondria from female hearts exhibit lower mito-[Ca2+] and produce less reactive oxygen species (ROS) compared to males, without change in respiration capacity. We hypothesized that in female VCMs, more efficient electron transport chain (ETC) organization into supercomplexes offsets the deficit in mito-Ca2+ accumulation, thereby reducing ROS production and stress-induced intracellular Ca2+ mishandling. Experiments using mitochondria-targeted biosensors confirmed lower mito-ROS and mito-[Ca2+] in female rat VCMs challenged with β-adrenergic agonist isoproterenol compared to males. Biochemical studies revealed decreased mitochondria Ca2+ uniporter expression and increased supercomplex assembly in rat and human female ventricular tissues vs male. Importantly, western blot analysis showed higher expression levels of COX7RP, an estrogen-dependent supercomplex assembly factor in female heart tissues vs males. Furthermore, COX7RP was decreased in hearts from aged and ovariectomized female rats. COX7RP overexpression in male VCMs increased mitochondrial supercomplexes, reduced mito-ROS and spontaneous SR Ca2+ release in response to ISO. Conversely, shRNA-mediated knockdown of COX7RP in female VCMs reduced supercomplexes and increased mito-ROS, promoting intracellular Ca2+ mishandling. Compared to males, mitochondria in female VCMs exhibit higher ETC subunit incorporation into supercomplexes, supporting more efficient electron transport. Such organization coupled to lower levels of mito-[Ca2+] limits mito-ROS under stress conditions and lowers propensity to pro-arrhythmic spontaneous SR Ca2+ release. We conclude that sexual dimorphism in mito-Ca2+ handling and ETC organization may contribute to cardioprotection in healthy premenopausal females.
Collapse
Affiliation(s)
- Richard T Clements
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island College of Pharmacy, Kingston, RI, USA
- Department of Medicine, Providence VAMC and Brown University, Providence, RI, USA
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
| | - Karim Roder
- Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Benjamin Y Martin
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Fruzsina Perger
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy Schneider
- Department of Pathology, Anatomy and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- Department of Pathology, Anatomy and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Anindhya S Das
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Gideon Koren
- Department of Medicine, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew S Stratton
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gyorgy Csordas
- Department of Pathology, Anatomy and Cell Biology, MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA.
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
14
|
Zhao Y, Wang P, Liu T, Yang Y, Guo J, He Y, Xi J. Zn 2+ protect cardiac H9c2 cells from endoplasmic reticulum stress by preventing mPTP opening through MCU. Cell Signal 2022; 100:110467. [PMID: 36126793 DOI: 10.1016/j.cellsig.2022.110467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Zn2+ regulates endoplasmic reticulum stress (ERS) and is essential for myocardial protection through gating the mitochondrial permeability transition pore (mPTP). However, the underlining mechanism of the mPTP opening remains uncertain. Cells under sustained ERS induce unfolded protein responses (UPR) and cell apoptosis. Glucose regulatory protein 78 (GRP 78) and glucose regulatory protein 94 (GRP 94) are marker proteins of ERS and regulate the onset of apoptosis through the endoplasmic reticulum signaling pathway. We found tunicamycin (TM) treatment activates ERS and significantly increases intracellular Ca2+ and mitochondrial reactive oxygen species (ROS) levels in H9c2 cardiomyocyte cells. Zn2+ markedly decreased protein level of GRP 78/94 and suppressed intracellular Ca2+ and ROS elevation. Mitochondrial calcium uniporter (MCU) is an important Ca2+ transporter protein, through which Zn2+ enter mitochondria. MCU inhibitor ruthenium red (RR) or siRNA significantly reversed the Zinc effect on GRP 78, mitochondrial Ca2+ and ROS. Additionally, Zn2+ prevented TM-induced mPTP opening and decreased mitochondrial Ca2+ concentration, which were blocked through inhibiting or knockdown MCU with siRNA. In summary, our study suggests that Zn2+ protected cardiac ERS by elevating Ca2+ and closing mPTP through MCU.
Collapse
Affiliation(s)
- Yang Zhao
- Basic School of Medicine, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan 063000, China
| | - Pei Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Tianyu Liu
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Ying Yang
- Basic School of Medicine, Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan 063000, China
| | - Jiabao Guo
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Yonggui He
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063000, China.
| | - Jinkun Xi
- Clinic School of Medicine, Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China.
| |
Collapse
|
15
|
Tow BD, Deb A, Neupane S, Patel SM, Reed M, Loper AB, Eliseev RA, Knollmann BC, Györke S, Liu B. SR-Mitochondria Crosstalk Shapes Ca Signalling to Impact Pathophenotype in Disease Models Marked by Dysregulated Intracellular Ca Release. Cardiovasc Res 2022; 118:2819-2832. [PMID: 34677619 PMCID: PMC9724772 DOI: 10.1093/cvr/cvab324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022] Open
Abstract
AIMS Diastolic Ca release (DCR) from sarcoplasmic reticulum (SR) Ca release channel ryanodine receptor (RyR2) has been linked to multiple cardiac pathologies, but its exact role in shaping divergent cardiac pathologies remains unclear. We hypothesize that the SR-mitochondria interplay contributes to disease phenotypes by shaping Ca signalling. METHODS AND RESULTS A genetic model of catecholaminergic polymorphic ventricular tachycardia (CPVT2 model of CASQ2 knockout) and a pre-diabetic cardiomyopathy model of fructose-fed mice (FFD), both marked by DCR, are employed in this study. Mitochondria Ca (mCa) is modulated by pharmacologically targeting mitochondria Ca uniporter (MCU) or permeability transition pore (mPTP), mCa uptake, and extrusion mechanisms, respectively. An MCU activator abolished Ca waves in CPVT2 but exacerbated waves in FFD cells. Mechanistically this is ascribed to mitochondria's function as a Ca buffer or source of reactive oxygen species (mtROS) to exacerbate RyR2 functionality, respectively. Enhancing mCa uptake reduced and elevated mtROS production in CPVT2 and FFD, respectively. In CPVT2, mitochondria took up more Ca in permeabilized cells, and had higher level of mCa content in intact cells vs. FFD. Conditional ablation of MCU in the CPVT2 model caused lethality and cardiac remodelling, but reduced arrhythmias in the FFD model. In parallel, CPVT2 mitochondria also employ up-regulated mPTP-mediated Ca efflux to avoid mCa overload, as seen by elevated incidence of MitoWinks (an indicator of mPTP-mediated Ca efflux) vs. FFD. Both pharmacological and genetic inhibition of mPTP promoted mtROS production and exacerbation of myocyte Ca handling in CPVT2. Further, genetic inhibition of mPTP exacerbated arrhythmias in CPVT2. CONCLUSION In contrast to FFD, which is more susceptible to mtROS-dependent RyR2 leak, in CPVT2 mitochondria buffer SR-derived DCR to mitigate Ca-dependent pathological remodelling and rely on mPTP-mediated Ca efflux to avoid mCa overload. SR-mitochondria interplay contributes to the divergent pathologies by disparately shaping intracellular Ca signalling.
Collapse
Affiliation(s)
- Brian D Tow
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Starkville, Mississippi, 39762, USA
| | - Arpita Deb
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Starkville, Mississippi, 39762, USA
| | - Shraddha Neupane
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Starkville, Mississippi, 39762, USA
| | - Shuchi M Patel
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Starkville, Mississippi, 39762, USA
| | - Meagan Reed
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Starkville, Mississippi, 39762, USA
| | - Anna-Beth Loper
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Starkville, Mississippi, 39762, USA
| | - Roman A Eliseev
- epartment of Orthopedics, Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Ave, Rochester, New York 14624, USA
| | - Björn C Knollmann
- Department of Medicine, Vanderbilt University School of Medicine, 2215B Garland Ave, Nashville, Tennessee, 37232, USA
| | - Sándor Györke
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, The Ohio State University, 473 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, 295 Lee Blvd, Starkville, Mississippi, 39762, USA
| |
Collapse
|
16
|
Ponnalagu D, Hamilton S, Sanghvi S, Antelo D, Schwieterman N, Hansra I, Xu X, Gao E, Edwards JC, Bansal SS, Wold LE, Terentyev D, Janssen PML, Hund TJ, Khan M, Kohut AR, Koch WJ, Singh H. CLIC4 localizes to mitochondrial-associated membranes and mediates cardioprotection. SCIENCE ADVANCES 2022; 8:eabo1244. [PMID: 36269835 PMCID: PMC9586484 DOI: 10.1126/sciadv.abo1244] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/25/2022] [Indexed: 06/12/2023]
Abstract
Mitochondrial-associated membranes (MAMs) are known to modulate organellar and cellular functions and can subsequently affect pathophysiology including myocardial ischemia-reperfusion (IR) injury. Thus, identifying molecular targets in MAMs that regulate the outcome of IR injury will hold a key to efficient therapeutics. Here, we found chloride intracellular channel protein (CLIC4) presence in MAMs of cardiomyocytes and demonstrate its role in modulating ER and mitochondrial calcium homeostasis under physiological and pathological conditions. In a murine model, loss of CLIC4 increased myocardial infarction and substantially reduced cardiac function after IR injury. CLIC4 null cardiomyocytes showed increased apoptosis and mitochondrial dysfunction upon hypoxia-reoxygenation injury in comparison to wild-type cardiomyocytes. Overall, our results indicate that MAM-CLIC4 is a key mediator of cellular response to IR injury and therefore may have a potential implication on other pathophysiological processes.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Diego Antelo
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Neill Schwieterman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Inderjot Hansra
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Xianyao Xu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Departments of Biomedical Engineering and Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - John C. Edwards
- Nephrology Division, Department of Internal Medicine, St. Louis University, St. Louis, MO, USA
| | - Shyam S. Bansal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Thomas J. Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Departments of Biomedical Engineering and Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mahmood Khan
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Emergency Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Andrew R. Kohut
- Penn Heart and Vascular Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Campbell T, Slone J, Huang T. Mitochondrial Genome Variants as a Cause of Mitochondrial Cardiomyopathy. Cells 2022; 11:cells11182835. [PMID: 36139411 PMCID: PMC9496904 DOI: 10.3390/cells11182835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are small double-membraned organelles responsible for the generation of energy used in the body in the form of ATP. Mitochondria are unique in that they contain their own circular mitochondrial genome termed mtDNA. mtDNA codes for 37 genes, and together with the nuclear genome (nDNA), dictate mitochondrial structure and function. Not surprisingly, pathogenic variants in the mtDNA or nDNA can result in mitochondrial disease. Mitochondrial disease primarily impacts tissues with high energy demands, including the heart. Mitochondrial cardiomyopathy is characterized by the abnormal structure or function of the myocardium secondary to genetic defects in either the nDNA or mtDNA. Mitochondrial cardiomyopathy can be isolated or part of a syndromic mitochondrial disease. Common manifestations of mitochondrial cardiomyopathy are a phenocopy of hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac conduction defects. The underlying pathophysiology of mitochondrial cardiomyopathy is complex and likely involves multiple abnormal processes in the cell, stemming from deficient oxidative phosphorylation and ATP depletion. Possible pathophysiology includes the activation of alternative metabolic pathways, the accumulation of reactive oxygen species, dysfunctional mitochondrial dynamics, abnormal calcium homeostasis, and mitochondrial iron overload. Here, we highlight the clinical assessment of mtDNA-related mitochondrial cardiomyopathy and offer a novel hypothesis of a possible integrated, multivariable pathophysiology of disease.
Collapse
|
18
|
What Role do Mitochondria have in Diastolic Dysfunction? Implications for Diabetic Cardiomyopathy and Heart Failure with Preserved Ejection Function (HFpEF). J Cardiovasc Pharmacol 2022; 79:399-406. [DOI: 10.1097/fjc.0000000000001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022]
|
19
|
Krstic AM, Power AS, Ward ML. Visualization of Dynamic Mitochondrial Calcium Fluxes in Isolated Cardiomyocytes. Front Physiol 2022; 12:808798. [PMID: 35140632 PMCID: PMC8818789 DOI: 10.3389/fphys.2021.808798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 01/19/2023] Open
Abstract
BackgroundCardiomyocyte contraction requires a constant supply of ATP, which varies depending on work rate. Maintaining ATP supply is particularly important during excitation-contraction coupling, where cytosolic Ca2+ fluxes drive repeated cycles of contraction and relaxation. Ca2+ is one of the key regulators of ATP production, and its uptake into the mitochondrial matrix occurs via the mitochondrial calcium uniporter. Fluorescent indicators are commonly used for detecting cytosolic Ca2+ changes. However, visualizing mitochondrial Ca2+ fluxes using similar methods is more difficult, as the fluorophore must be permeable to both the sarcolemma and the inner mitochondrial membrane. Our aim was therefore to optimize a method using the fluorescent Ca2+ indicator Rhod-2 to visualize beat-to-beat mitochondrial calcium fluxes in rat cardiomyocytes.MethodsHealthy, adult male Wistar rat hearts were isolated and enzymatically digested to yield rod-shaped, quiescent ventricular cardiomyocytes. The fluorescent Ca2+ indicator Rhod-2 was reduced to di-hydroRhod-2 and confocal microscopy was used to validate mitochondrial compartmentalization. Cardiomyocytes were subjected to various pharmacological interventions, including caffeine and β-adrenergic stimulation. Upon confirmation of mitochondrial Rhod-2 localization, loaded myocytes were then super-fused with 1.5 mM Ca2+ Tyrodes containing 1 μM isoproterenol and 150 μM spermine. Myocytes were externally stimulated at 0.1, 0.5 and 1 Hz and whole cell recordings of both cytosolic ([Ca2+]cyto) and mitochondrial calcium ([Ca2+]mito) transients were made.ResultsMyocytes loaded with di-hydroRhod-2 revealed a distinct mitochondrial pattern when visualized by confocal microscopy. Application of 20 mM caffeine revealed no change in fluorescence, confirming no sarcoplasmic reticulum compartmentalization. Myocytes loaded with di-hydroRhod-2 also showed a large increase in fluorescence within the mitochondria in response to β-adrenergic stimulation (P < 0.05). Beat-to-beat mitochondrial Ca2+ transients were smaller in amplitude and had a slower time to peak and maximum rate of rise relative to cytosolic calcium transients at all stimulation frequencies (P < 0.001).ConclusionMyocytes loaded with di-hydroRhod-2 revealed mitochondrial specific compartmentalization. Mitochondrial Ca2+ transients recorded from di-hydroRhod-2 loaded myocytes were distinct in comparison to the large and rapid Rhod-2 cytosolic transients, indicating different kinetics between [Ca2+]cyto and [Ca2+]mito transients. Overall, our results showed that di-hydroRhod-2 loading is a quick and suitable method for measuring beat-to-beat [Ca2+]mito transients in intact myocytes.
Collapse
Affiliation(s)
- Anna Maria Krstic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Amelia Sally Power
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Marie-Louise Ward,
| |
Collapse
|