1
|
Sousa AAPD, Chaves LDS, Tarso Facundo H. Mitochondrial Electron Transport Chain Disruption and Oxidative Stress in Lipopolysaccharide-Induced Cardiac Dysfunction in rats and mice. Free Radic Res 2025:1-14. [PMID: 40337855 DOI: 10.1080/10715762.2025.2503844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Sepsis, characterized by severe systemic inflammation and an excessive immune response to infection, is frequently triggered by bacterial endotoxins like lipopolysaccharide (LPS) from Gram-negative bacteria. Moreover, sepsis-induced cardiac dysfunction remains a leading cause of mortality. This study aims to elucidate the effects of LPS-induced cardiac injury on mitochondrial damage, oxidative stress, and subsequent cardiac dysfunction. LPS injections (in rats and mice) for three days (1.5 mg/kg) impacted the body weight and increased cardiac TNF-α. Additionally, it decreased mitochondrial complexes I and II activities while complexes III and IV remained unaffected. Disturbed in mitochondrial electron transport chain leads to an increase in reactive oxygen species (ROS). Indeed, LPS treatment significantly increased mitochondrial hydrogen peroxide production, reduced the activity of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activity. This was accompanied by decreased mitochondrial and cytosolic sulfhydryl proteins and parallel increased cellular lipid peroxidation in the presence or absence of Fe2+. LPS-treated samples had increased glutathione s-transferase activity, which may be an attempt of the cell to remove toxic lipid peroxidation products. In a more acute Langendorff-perfused rat hearts, LPS infusion (0.5 μg/mL) induced a significant elevation in left ventricular end-diastolic pressure and a decrease in left ventricular developed pressure. These findings elucidate the harmful mitochondrial and oxidative effects of LPS in cardiac tissue and could help the development of targeted therapies to mitigate the adverse effects of sepsis-induced cardiac dysfunction.
Collapse
|
2
|
Wang S, He S, Hu X, Liu F, Fang X, Huang P. Nrf2 mediated signaling axis in sepsis-induced cardiomyopathy: potential Pharmacological receptor. Inflamm Res 2025; 74:76. [PMID: 40299042 DOI: 10.1007/s00011-025-02037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Sepsis has emerged as the most pressing health concerns globally in emergency and intensive care unit. Sepsis-Induced Cardiomyopathy (SIC) represents an acute cardiac insufficiency syndrome secondary to sepsis, characterized by a high incidence and a significant increase in mortality among sepsis patients. To date, no specific treatment exists for this condition. In recent years, mounting evidence has indicated that Nrf2 plays a critical protective role in SIC and may represent a potential therapeutic target. METHODS Pubmed database literature was searched for studies pertaining to the role of Nrf2 in sepsis, from the inception of the database to October 1, 2024. Biorender software was performed to draw the corresponding mechanism diagram. RESULTS Using the keywords "Nrf2 and Sepsis", we initially identified 454 articles. To refine our search, we employed "Nrf2 and Sepsis and Cardiac" as keywords, yielding 63 articles. Upon reviewing the full texts, we selected 26 studies for inclusion in our review. Nrf2 is implicated in various protective aspects against cardiomyocyte injury stemming from sepsis, including its inhibitory effects on inflammation, apoptosis, mitochondrial dysfunction, pyroptosis, and ferroptosis. 23 natural compounds under investigation for this application were identified. CONCLUSION The Nrf2-mediated signaling pathway plays a critical role in sepsis-induced myocardial injury. Given the complex, systemic, and multifactorial nature of sepsis, these natural compounds should be regarded as adjunctive therapeutic options for scholarly investigation rather than standalone therapeutic interventions. Substantial future research will still be required to validate their clinical efficacy and mechanistic roles.
Collapse
Affiliation(s)
- Sumei Wang
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xiao Hu
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Fusheng Liu
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaolei Fang
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China.
| | - Po Huang
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Yang N, Li L, Shi XL, Liu YP, Wen R, Yang YH, Zhang T, Yang XR, Xu YF, Liu CF, Ning W, Zhang TN. Succinylation of SERCA2a at K352 Promotes Its Ubiquitinoylation and Degradation by Proteasomes in Sepsis-Induced Heart Dysfunction. Circ Heart Fail 2025; 18:e012180. [PMID: 39996319 DOI: 10.1161/circheartfailure.124.012180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Intracellular Ca2+ cycling governs effective myocardial systolic contraction and diastolic relaxation. SERCA2a (sarco/endoplasmic reticulum Ca2+ ATPase type 2a), which plays a crucial role in controlling intracellular Ca2+ signaling and myocardial cell function, is downregulated and inactivated during sepsis-induced heart dysfunction. However, the cause of this dysregulation remains unclear. In this study, we investigated the effect of lysine succinylation in lipopolysaccharide-induced septic heart dysfunction through global succinylome analysis of myocardial tissues from septic rats. METHODS We conducted a succinylome profiling and developed a protein language model-based framework to prioritize succinylation at a functionally important site, and further analysis revealed crosstalk between ubiquitination and succinylation of SERCA2a. The succinylation of SERCA2a in septic rats or lipopolysaccharide-treated cells were detected by co-immunoprecipitation. Thereafter, a desuccinylated SERCA2aK352R was introduced and its function and stability were determined by Ca2+ transient and Western blot, respectively. Meanwhile, the effect on SERCA2aK352R on heart function was assessed in vivo by echocardiography and hemodynamics. RESULTS We identified 10 324 succinylated lysine sites in heart tissues, including 1042 differentially succinylated lysine sites, in response to lipopolysaccharide. SERCA2a was hypersuccinylated in the myocardial tissues of septic rats and lipopolysaccharide-treated cardiomyocytes. Increased ubiquitination level, reduced protein level, and activity of SERCA2a were observed, along with increased succinylation of SERCA2a in vivo and in vitro. K352 was essential for SERCA2a succinylation, which reduced SERCA2a protein level by promoting formation of the K48 ubiquitin chain on SERCA2a and its degradation by proteasomes. Co-immunoprecipitation combined with liquid chromatography-tandem mass spectrometry identified that SIRT2 (sirtuin2), a deacylase, exhibited interaction with SERCA2a. Furthermore, SIRT2 decreased K352 succinylation of SERCA2a, suggesting that SIRT2 may function as a desuccinylase for SERCA2a. CONCLUSIONS Succinylation of SERCA2a at K352, which was controlled by SIRT2, promotes its ubiquitinoylation and degradation by proteasomes in sepsis-induced heart dysfunction.
Collapse
Affiliation(s)
- Ni Yang
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Linus Li
- Institute for Clinical Medical Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China (L.L., W.N.)
| | - Xiao-Lu Shi
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing (X.-L.S.)
| | - Yong-Ping Liu
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Ri Wen
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Yu-Hang Yang
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Tao Zhang
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Xin-Ru Yang
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Yang-Fan Xu
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Chun-Feng Liu
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
| | - Wanshan Ning
- Institute for Clinical Medical Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China (L.L., W.N.)
| | - Tie-Ning Zhang
- Department of Pediatrics, Pediatric Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang (N.Y., Y.-P.L., R.W., Y.-H.Y., T.Z., X.-R.Y., Y.-F.X., C.-F.L., T.-N.Z.)
- Institute for Clinical Medical Research, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China (L.L., W.N.)
| |
Collapse
|
4
|
Cheng PP, Wang XT, Liu Q, Hu YR, Dai ER, Zhang MH, Yang TS, Qu HY, Zhou H. Nrf2 mediated signaling axis in heart failure: Potential pharmacological receptor. Pharmacol Res 2024; 206:107268. [PMID: 38908614 DOI: 10.1016/j.phrs.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Ting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ran Hu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - En-Rui Dai
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Hao Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Shu Yang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui-Yan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Zhang L, Xiu L, Wang T, Zhao D. Effect of L-carnitine in Ameliorating Lipopolysaccharide-Induced Cardiomyocyte Injury via MAPK Signaling. Mol Biotechnol 2024; 66:79-89. [PMID: 37029860 DOI: 10.1007/s12033-023-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
The present study aimed to elucidate whether L-carnitine (LC) protected H9c2 cells and its underlying mechanisms. Cell counting kit-8 (CCK-8) assay was used to evaluate cell viability. Apoptosis, cell morphology, and lactate dehydrogenase (LDH) assessment were used to prove effects of lipopolysaccharide (LPS) and LC on H9c2 cells. RT-qPCR and western blot assays were hired to evaluate the mRNA and protein expression levels, respectively. ELISA assay was performed to determine the released protein levels. Reactive oxygen species (ROS) level was evaluated by immunofluorescence and flow cytometry. LC was revealed to protect H9c2 cells against LPS-induced injury as indicated by increased cell viability, reduced apoptosis ratio and LDH level. LC treatment also reduced BAX expression as well as up-regulated Bcl-2 expression under LPS treatment. Mechanically, LC reduced oxidative stress and ameliorated the mitochondrial injury through modulating extracellular signal-regulated kinase 1/2 and c-Jun N-terminal protein kinase c-Jun N-terminal protein kinase phosphorylation levels as indicated by decreased membrane potential, increased ATP production and mtDNA expression. We found that LC ameliorates LPS-induced cardiomyocyte injury by abrogating cell apoptosis ratio, ROS levels, as well as mitochondrial dysfunction via mitogen-activated protein kinase signaling. Our findings revealed a potential drug for sepsis or LPS-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Li Zhang
- Medical College, Internal Medicine Teaching and Research Office, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
- Internal Medicine-Cardiovascular Department, Xinzheng Huaxin Minsheng Hospital, Zhengzhou, Henan, China
| | - Lei Xiu
- Medical College, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Taoli Wang
- Medical College, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Duo Zhao
- Radiology Department, Public People's Hospital of Xinzheng, 2000 Meters South of the Intersection of South China Road and Yanhuang Avenue, Xinzheng, 451100, Henan, China.
| |
Collapse
|
6
|
Liu Y, Guo Y, Li P, Guo H, Xu M. Editorial: Crosstalk between lipid metabolism and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1296935. [PMID: 37868779 PMCID: PMC10588742 DOI: 10.3389/fcvm.2023.1296935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Affiliation(s)
- Yuliang Liu
- Department of Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Pengyong Li
- Department of Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haipeng Guo
- Department of Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
7
|
Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, Karimi A. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res 2023; 37:3780-3808. [PMID: 37405908 DOI: 10.1002/ptr.7917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Sepsis and septic shock are still one of the most important medical challenges. Sepsis is an extreme and uncontrolled response of the innate immune system to invading pathogenesis. Resveratrol (3,5,4'-trihydroxytrans-stilbene), is a phenolic and non-flavonoid compound naturally produced by some plants and fruits. The object of the current study is to systematically review the impacts of resveratrol and its mechanisms of function in the management of sepsis and its related complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (PROSPERO: CRD42021289357). We searched Embase, Web of Science, Google Scholar, Science Direct, PubMed, ProQuest, and Scopus databases up to January 2023 by using the relevant keywords. Study criteria were met by 72 out of 1415 articles screened. The results of this systematic review depict that resveratrol can reduces the complications of sepsis by affecting inflammatory pathways, oxidative stress, and modulating immune responses. Future human randomized clinical trials are necessary due to the promising therapeutic effects of resveratrol on sepsis complications and the lack of clinical trials in this regard.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Dashti
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ, Huang H. Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. J Inflamm Res 2023; 16:995-1015. [PMID: 36923465 PMCID: PMC10010745 DOI: 10.2147/jir.s400107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jia-Yi Zhao
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Experimental Program, Huan Kui College, Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Chen-Chao Zou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qi-Rong Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
9
|
Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol 2023; 14:1003658. [PMID: 36744251 PMCID: PMC9892725 DOI: 10.3389/fphar.2023.1003658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common but critical illness in patients admitted to the intensive care unit and is associated with high mortality. Although there are many treatments for sepsis, specific and effective therapies are still lacking. For over 2,000 years, traditional Chinese medicine (TCM) has played a vital role in the treatment of infectious diseases in Eastern countries. Both anecdotal and scientific evidence show that diverse TCM preparations alleviate organ dysfunction caused by sepsis by inhibiting the inflammatory response, reducing oxidative stress, boosting immunity, and maintaining cellular homeostasis. This review reports on the efficacy and mechanism of action of various TCM compounds, herbal monomer extracts, and acupuncture, on the treatment of sepsis and related multi-organ injury. We hope that this information would be helpful to better understand the theoretical basis and empirical support for TCM in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Ni L, Lin B, Shen M, Li C, Hu L, Fu F, Chen L, Yang J, Shi D. PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis. Cell Death Discov 2022; 8:496. [PMID: 36564378 PMCID: PMC9789059 DOI: 10.1038/s41420-022-01287-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a life-threatening syndrome with multi-organ dysfunction in critical care medicine. With the occurrence of sepsis-induced cardiomyopathy (SIC), characterized by reduced ventricular contractility, the mortality of sepsis is boosted to 70-90%. Pyruvate kinase M2 (PKM2) functions in a variety of biological processes and diseases other than glycolysis, and has been documented as a cardioprotective factor in several heart diseases. It is currently unknown whether PKM2 influences the development of SIC. Here, we found that PKM2 was upregulated in cardiomyocytes treated with LPS both in vitro and in vivo. Pkm2 inhibition exacerbated the LPS-induced cardiac damage to neonatal rat cardiomyocytes (NRCMs). Furthermore, cardiomyocytes lacking PKM2 aggravated LPS-induced cardiomyopathy, including myocardial damage and impaired contractility, whereas PKM2 overexpression and activation mitigated SIC. Mechanism investigation revealed that PKM2 interacted with sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), a key regulator of the excitation-contraction coupling, to maintain calcium homeostasis, and PKM2 deficiency exacerbated LPS-induced cardiac systolic dysfunction by impairing SERCA2a expression. In conclusion, these findings highlight that PKM2 plays an essential role in gram-negative sepsis-induced cardiomyopathy, which provides an attractive target for the prevention and treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meiting Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Can Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fengmei Fu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lei Chen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
11
|
de Castro Nobre AC, Pimentel CF, do Rêgo GMS, Paludo GR, Pereira Neto GB, de Castro MB, Nitz N, Hecht M, Dallago B, Hagström L. Insights from the use of erythropoietin in experimental Chagas disease. Int J Parasitol Drugs Drug Resist 2022; 19:65-80. [PMID: 35772309 PMCID: PMC9253553 DOI: 10.1016/j.ijpddr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.
Collapse
Affiliation(s)
| | - Carlos Fernando Pimentel
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - George Magno Sousa do Rêgo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Glaucia Bueno Pereira Neto
- Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Márcio Botelho de Castro
- Laboratory of Veterinary Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Faculty of Physical Education, University of Brasília, Brasília, Brazil.
| |
Collapse
|
12
|
Val-Blasco A, Prieto P, Jaén RI, Gil-Fernández M, Pajares M, Domenech N, Terrón V, Tamayo M, Jorge I, Vázquez J, Bueno-Sen A, Vallejo-Cremades MT, Pombo-Otero J, Sanchez-García S, Ruiz-Hurtado G, Gómez AM, Zaragoza C, Crespo-Leiro MG, López-Collazo E, Cuadrado A, Delgado C, Boscá L, Fernández-Velasco M. Specialized Proresolving Mediators Protect Against Experimental Autoimmune Myocarditis by Modulating Ca 2+ Handling and NRF2 Activation. JACC Basic Transl Sci 2022; 7:544-560. [PMID: 35818504 PMCID: PMC9270570 DOI: 10.1016/j.jacbts.2022.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Specialized proresolving mediators and, in particular, 5(S), (6)R, 7-trihydroxyheptanoic acid methyl ester (BML-111) emerge as new therapeutic tools to prevent cardiac dysfunction and deleterious cardiac damage associated with myocarditis progression. The cardioprotective role of BML-111 is mainly caused by the prevention of increased oxidative stress and nuclear factor erythroid-derived 2-like 2 (NRF2) down-regulation induced by myocarditis. At the molecular level, BML-111 activates NRF2 signaling, which prevents sarcoplasmic reticulum-adenosine triphosphatase 2A down-regulation and Ca2+ mishandling, and attenuates the cardiac dysfunction and tissue damage induced by myocarditis.
Collapse
Key Words
- 8OHdG, 8-hydroxy-2'-deoxyguanosine
- BML-111, 5(S), (6)R, 7-trihydroxyheptanoic acid methyl ester
- Ctrl, control
- Cys, cysteine
- EAM, experimental autoimmune myocarditis
- EC, excitation-contraction
- Epi, 15-epi-lipoxin A4
- LXA4, lipoxin A4
- Lut, luteolin
- NRF2
- NRF2, nuclear factor erythroid-derived 2-like 2
- SCR, spontaneous diastolic Ca2+ release
- SERCA2A
- SERCA2A, sarcoplasmic reticulum–adenosine triphosphatase 2A
- SPM, specialized proresolving mediator
- SR, sarcoplasmic reticulum
- Veh, vehicle
- calcium handling
- mRNA, messenger RNA
- myocarditis
- pro-resolving mediators
Collapse
Affiliation(s)
- Almudena Val-Blasco
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Signaling and Cardiovascular Pathophysiology, Unite Mixte de Recherche S 1180, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Paris, France
| | - Patricia Prieto
- Pharmacology, Pharmacognosy, and Botany Department, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rafael Iñigo Jaén
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Marta Gil-Fernández
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Marta Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Nieves Domenech
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidad da Coruña, A Coruña, Spain
| | - Verónica Terrón
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | - María Tamayo
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Inmaculada Jorge
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Andrea Bueno-Sen
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
| | | | - Jorge Pombo-Otero
- Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidad da Coruña, A Coruña, Spain
| | - Sergio Sanchez-García
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Gema Ruiz-Hurtado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiorenal Translational Laboratory, Institute of Research i+12, CIBERCV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana María Gómez
- Signaling and Cardiovascular Pathophysiology, Unite Mixte de Recherche S 1180, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Paris, France
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departamento de Cardiología, Unidad de Investigación Mixta Universidad Francisco de Vitoria, Madrid, Spain
| | - María Generosa Crespo-Leiro
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, Universidad da Coruña, A Coruña, Spain
| | - Eduardo López-Collazo
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Res de Enfermedades Respiratorias, Madrid, Spain
| | - Antonio Cuadrado
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, UAM, Madrid, Spain
| | - Carmen Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Lisardo Boscá
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas, Autonomous University of Madrid (UAM), Madrid, Spain
| | - María Fernández-Velasco
- Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital La Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
13
|
Zhu X, Sun M, Guo H, Lu G, Gu J, Zhang L, Shi L, Gao J, Zhang D, Wang W, Liu J, Wang X. Verbascoside protects from LPS-induced septic cardiomyopathy via alleviating cardiac inflammation, oxidative stress and regulating mitochondrial dynamics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113327. [PMID: 35203005 DOI: 10.1016/j.ecoenv.2022.113327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Verbascoside (VB), as an active component of multiple medicinal plants, has been proved to exert anti-oxidative, anti-aging and neuroprotective effects. This study was designed to investigate whether VB could play a cardioprotective role in septic heart injury. METHODS Mice were injected with lipopolysaccharide (LPS; 10 mg/kg) to induce sepsis. The treatment group received an intraperitoneally injection of VB (20 mg/kg) before LPS challenge. Transthoracic echocardiography, ELISA, immunofluorescence, and qPCR were performed to assess the effect of VB on heart function, oxidative stress, inflammation and apoptosis. Transmission electronic microscopy and immunoblotting were used to evaluate the mitochondrial morphology and biogenesis of the septic heart. In vitro experiments were also performed to repeat above-mentioned assays. RESULTS Compared with LPS group, the VB treatment group showed improved cardiac function in sepsis. VB alleviated oxidative stress and inflammatory cell infiltration, as well as cardiomyocyte apoptosis. Specifically, VB could restore sepsis-induced mitochondrial alterations via regulating mitochondrial biogenesis. These results were also confirmed in in vitro experiments. CONCLUSION Verbascoside could protected from sepsis-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and apoptosis, as well as promoting mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xuanfeng Zhu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Min Sun
- Hypertension Research Institute of Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Hongmei Guo
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Gan Lu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Jianhua Gu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Lingling Zhang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Licheng Shi
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Jia Gao
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Dandan Zhang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Wenjun Wang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China
| | - Jiannan Liu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University; Jiangsu Province Official Hospital, Nanjing, China.
| | - Xia Wang
- Department of Geriatric Cardiology, Taian City Central Hospital, Taian, China.
| |
Collapse
|
14
|
Li J, Zeng X, Yang F, Wang L, Luo X, Liu R, Zeng F, Lu S, Huang X, Lei Y, Lan Y. Resveratrol: Potential Application in Sepsis. Front Pharmacol 2022; 13:821358. [PMID: 35222035 PMCID: PMC8864164 DOI: 10.3389/fphar.2022.821358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by host response disorders due to infection or infectious factors and is a common complication of patients with clinical trauma, burns, and infection. Resveratrol is a natural polyphenol compound that is a SIRT-1 activator with anti-inflammatory, antiviral, antibacterial, antifungal inhibitory abilities as well as cardiovascular and anti-tumor protective effects. In recent years, some scholars have applied resveratrol in animal models of sepsis and found that it has an organ protective effect and can improve the survival time and reduce the mortality of animals with sepsis. In this study, Medline (Pubmed), embase, and other databases were searched to retrieve literature published in 2021 using the keywords “resveratrol” and “sepsis,” and then the potential of resveratrol for the treatment of sepsis was reviewed and prospected to provide some basis for future clinical research.
Collapse
Affiliation(s)
- Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoting Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sen Lu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|
16
|
Li H, Chen J, Hu Y, Cai X, Tang D, Zhang P. Clinical value of serum calcium in elderly patients with sepsis. Am J Emerg Med 2021; 52:208-211. [PMID: 34959023 DOI: 10.1016/j.ajem.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To explore the clinical value of serum calcium (Ca) in elderly patients with sepsis. MATERIALS AND METHODS The clinical data and laboratory data of elderly patients with sepsis (n = 165) and elderly population for physical examination (n = 67) in a tertiary hospital from January 2020 to November 2020 were collected. We analyzed serum Ca levels in sepsis and septic shock firstly, and then continued to investigate them in the survival group and the death group. Meanwhile, we also assessed the correlation between serum Ca and PCT. RESULTS The serum Ca levels of the elderly patients with sepsis were lower than that of the control group (median 1.98 vs 2.31 mmol/L, P < 0.001), and the more severe the sepsis, the lower the serum Ca levels. Sepsis patients with decreased serum Ca had higher shock rate and mortality. There was a negative correlation between serum Ca and PCT (r = -0.2957, P < 0.001). CONCLUSION Serum Ca has a certain value for the early recognition of elderly patients with sepsis and the judgment of the severity of the disease.
Collapse
Affiliation(s)
- Huan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Chen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuanhui Hu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xin Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dongling Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
17
|
Wei A, Liu J, Li D, Lu Y, Yang L, Zhuo Y, Tian W, Cong H. Syringaresinol attenuates sepsis-induced cardiac dysfunction by inhibiting inflammation and pyroptosis in mice. Eur J Pharmacol 2021; 913:174644. [PMID: 34801532 DOI: 10.1016/j.ejphar.2021.174644] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The mortality of sepsis-induced cardiac dysfunction (SICD) is very high due to the complex pathophysiological mechanism. Syringaresinol (SYR) is a natural abstract which possesses anti-inflammatory property. The present study aims was to identify the protective impact of SYR on sepsis-induced cardiac dysfunction and investigate the specific mechanisms. We found that SYR improved the cardiac function and alleviated myocardial injury in mice that subjected to cecal ligation and puncture, in addition, SIRT1 expression was significantly elevated after SYR treatment compared to sepsis group both in vivo and in vitro, along with suppression of NLRP3 activation and proinflammatory cytokines release. However, SIRT1 inhibitor EX427 abolished the impact of SYR on LPS-induced pyroptosis in cardiomyocytes. Furthermore, molecular docking analysis predicted that there is high affinity between SYR and estrogen receptor (ER), ER inhibitor ICI182780, the specific ERβ inhibitor PHTP and the specific ERαinhibitor AZD9496 were used to examine the role of ER in the protective effect of SYR against SICD, and the results suggested that ER activation was essential for the cardioprotective function of SYR. In conclusion, SYR ameliorates SICD via the ER/SIRT1/NLRP3/GSDMD pathway.
Collapse
Affiliation(s)
- Ao Wei
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Jingjing Liu
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Yanmin Lu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, 300100, China.
| | - Wencong Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hongliang Cong
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, 300222, China.
| |
Collapse
|
18
|
Yang YP, Zhao JQ, Gao HB, Li JJ, Li XL, Niu XL, Lei YH, Li X. Tannic acid alleviates lipopolysaccharide‑induced H9C2 cell apoptosis by suppressing reactive oxygen species‑mediated endoplasmic reticulum stress. Mol Med Rep 2021; 24:535. [PMID: 34080663 PMCID: PMC8170226 DOI: 10.3892/mmr.2021.12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
Sepsis‑induced myocardial dysfunction is one of the features of multiple organ dysfunction in sepsis, which is associated with extremely high mortality and is characterized by impaired myocardial compliance. To date, there are few effective treatment options available to cure sepsis. Tannic acid (TA) is reportedly protective during sepsis; however, the underlying mechanisms by which TA protects against septic heart injury remain elusive. The present study investigated the potential effects and underlying mechanisms of TA in alleviating lipopolysaccharide (LPS)‑induced H9C2 cardiomyocyte cell apoptosis. H9C2 cells were treated with LPS (15 µg/ml), TA (10 µM) and TA + LPS; control cells were treated with medium only. Apoptosis was measured using flow cytometry, reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Additionally, the levels of cellular reactive oxygen species (ROS), malondialdehyde and nicotinamide adenine dinucleotide phosphate were evaluated. Western blotting and RT‑qPCR were also employed to detect the expression levels of endoplasmic reticulum (ER) stress‑associated functional proteins. The present findings demonstrated that TA reduced the degree of LPS‑induced H9C2 cell injury, including inhibition of ROS production and ER stress (ERS)‑associated apoptosis. ERS‑associated functional proteins, including activating transcription factor 6, protein kinase‑like ER kinase, inositol‑requiring enzyme 1, spliced X box‑binding protein 1 and C/EBP‑homologous protein were suppressed in response to TA treatment. Furthermore, the expression levels of ERS‑associated apoptotic proteins, including c‑Jun N‑terminal kinase, Bax, cytochrome c, caspase‑3, caspase‑12 and caspase‑9 were reduced following treatment with TA. Additionally, the protective effects of TA on LPS‑induced H9C2 cells were partially inhibited following treatment with the ROS inhibitor N‑acetylcysteine, which demonstrated that ROS mediated ERS‑associated apoptosis and TA was able to decrease ROS‑mediated ERS‑associated apoptosis. Collectively, the present findings demonstrated that the protective effects of TA against LPS‑induced H9C2 cell apoptosis may be associated with the amelioration of ROS‑mediated ERS. These findings may assist the development of potential novel therapeutic methods to inhibit the progression of myocardial cell injury.
Collapse
Affiliation(s)
- Yan-Ping Yang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jie-Qiong Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hai-Bo Gao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jin-Jing Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Li Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Lin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong-Hong Lei
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
19
|
Gao Y, Sun Y, Ercan-Sencicek AG, King JS, Akerberg BN, Ma Q, Kontaridis MI, Pu WT, Lin Z. YAP/TEAD1 Complex Is a Default Repressor of Cardiac Toll-Like Receptor Genes. Int J Mol Sci 2021; 22:6649. [PMID: 34206257 PMCID: PMC8268263 DOI: 10.3390/ijms22136649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.
Collapse
Affiliation(s)
- Yunan Gao
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| | - Adife Gulhan Ercan-Sencicek
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Justin S. King
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Brynn N. Akerberg
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Maria I. Kontaridis
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; (J.S.K.); (B.N.A.); (Q.M.); (W.T.P.)
| | - Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (Y.G.); (Y.S.); (A.G.E.-S.); (M.I.K.)
| |
Collapse
|
20
|
Adams JA, Lopez JR, Uryash A, Sackner MA. Whole body periodic acceleration (pGz) improves endotoxin induced cardiomyocyte contractile dysfunction and attenuates the inflammatory response in mice. Heliyon 2021; 7:e06444. [PMID: 33748496 PMCID: PMC7970274 DOI: 10.1016/j.heliyon.2021.e06444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 11/01/2022] Open
Abstract
Sepsis-induces myocardial contractile dysfunction. We previously showed that whole body periodic acceleration (pGz), the sinusoidal motion of the supine body head-foot ward direction significantly improves survival and decreases microvascular permeability in a lethal model of sepsis. We tested the hypothesis that pGz improves LPS induced cardiomyocyte contractile dysfunction and decreases LPS pro-inflammatory cytokine response when applied pre- or post-treatment. Isolated cardiomyocytes were obtained from mice that received LPS who had been pre-treated with pGz for three days (pGz-LPS) or control. Peak shortening (PS), maximal velocity of shortening (+dL/dt), and relengthening (-dL/dt) as well as diastolic intracellular calcium concentration ([Ca+2]d), sodium ([Na+]d), reactive oxygen species (ROS), and cardiac troponin (cTnT) production were measured. LPS decreased PS, +dL/dt, and -dL/dt, by 37%, 41% and 35% change respectively (p < 0.01), increased [Ca+2]d, [Na+]d, ROS, and cTnT by 343%, 122%, 298%, and 610% change respectively (p < 0.01) compared to control. pGz pre-treatment attenuated the parameters mentioned above. In a separate cohort, the effects of a lethal dose of LPS on protein expression of nitric oxide synthases (iNOS, eNOS, nNOS), pro- and anti-inflammatory cytokines in hearts of mice was studied in pre-treated with pGz for three days prior to LPS (pGz-LPS) and post-treated with pGz 30 min after LPS (LPS-pGz) were determined. LPS increased expression of early and late iNOS and decreased expression of eNOS, phosphorylated eNOS (p-eNOS), and nNOS. Both pre- and post-treatment with pGz markedly reduced early and late pro-inflammatory surge. Therefore, pre- and post-treatment with pGz improves LPS-induced cardiomyocyte dysfunction, decreases iNOS expression, and increases cytoprotective eNOS and nNOS, with decreased pro-inflammatory response. Such results have potential for translation to benefit outcomes in human sepsis.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Marvin A Sackner
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
21
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Targeting Nrf2 for the treatment of Duchenne Muscular Dystrophy. Redox Biol 2021; 38:101803. [PMID: 33246292 PMCID: PMC7695875 DOI: 10.1016/j.redox.2020.101803] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Imbalances in redox homeostasis can result in oxidative stress, which is implicated in various pathological conditions including the fatal neuromuscular disease Duchenne Muscular Dystrophy (DMD). DMD is a complicated disease, with many druggable targets at the cellular and molecular level including calcium-mediated muscle degeneration; mitochondrial dysfunction; oxidative stress; inflammation; insufficient muscle regeneration and dysregulated protein and organelle maintenance. Previous investigative therapeutics tended to isolate and focus on just one of these targets and, consequently, therapeutic activity has been limited. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that upregulates many cytoprotective gene products in response to oxidants and other toxic stressors. Unlike other strategies, targeted Nrf2 activation has the potential to simultaneously modulate separate pathological features of DMD to amplify therapeutic benefits. Here, we review the literature providing theoretical context for targeting Nrf2 as a disease modifying treatment against DMD.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia.
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| | - Judy B de Haan
- Oxidative Stress Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| |
Collapse
|
22
|
Guo T, Jiang ZB, Tong ZY, Zhou Y, Chai XP, Xiao XZ. Shikonin Ameliorates LPS-Induced Cardiac Dysfunction by SIRT1-Dependent Inhibition of NLRP3 Inflammasome. Front Physiol 2020; 11:570441. [PMID: 33178042 PMCID: PMC7596688 DOI: 10.3389/fphys.2020.570441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Shikonin (SHI) is an anti-inflammatory agent extracted from natural herbs. It is still unknown whether SHI ameliorates lipopolysaccharide (LPS)-induced cardiac dysfunction. This study aims to explore the protective effects of SHI on LPS-induced myocardial injury and its mechanism. The LPS-induced cardiac dysfunction mouse model was employed to investigate the protective effects of SHI. In the present study, we found that SHI treatment improved the survival rate and cardiac function and remarkably ameliorated the release of inflammatory cytokines and macrophage infiltration in heart tissue of LPS-treated mice. SHI also reduced lactate dehydrogenase (LDH) and cardiac troponin (cTn) release, cell inflammation, and apoptosis in LPS plus adenosine triphosphate (ATP)-treated H9c2 cells. In addition, SHI significantly upregulated silent information regulator 1 (SIRT1) expression and suppressed the upregulation of NOD-like receptor protein 3 (NLRP3), cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Meanwhile, we got the same results in LPS plus ATP-treated H9c2 cells in vitro. Further, SIRT1 inhibitor or siRNA partially blocked SHI-mediated upregulation of SIRT1 expression and downregulation of NLRP3, cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Therefore, we conclude that SHI ameliorates LPS-induced cardiac dysfunction by inhibiting SIRT1-dependent activation of NLRP3 inflammasomes and might be a promising therapeutic strategy for the treatment of LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China.,Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhong-Biao Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Yi Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Zhou
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xiang-Ping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xian-Zhong Xiao
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
23
|
Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127:110234. [PMID: 32559855 DOI: 10.1016/j.biopha.2020.110234] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is a natural polyphenol derived from grapes, berries, red wine, peanuts amongst other fruits and nuts. Beneficial effects such as anti-inflammatory, antioxidant, hepatoprotective, neuroprotective, cardioprotective, renoprotective, anti-obesity, anti-diabetic, and anti-cancer of resveratrol have been demonstrated by preclinical and clinical research. A possibility is that these therapeutical effects are associated with modulation of the Nrf2 signaling pathway in the following way: resveratrol may potentiate Nrf2 signaling through blockage of Keap1, by means of changing the Nrf2 mediators, its expression and its nuclear translocation. This article reviews the evidence of the Nrf2 modulating hypothesis as a possible molecular mechanism underlying the medicinal properties of resveratrol.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Silvia Llorens Folgado
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, 02008, Albacete, Spain
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
24
|
Gao S, Li H, Xie H, Wu S, Yuan Y, Chu L, Sun S, Yang H, Wu L, Bai Y, Zhou Q, Wang X, Zhan B, Cui H, Yang X. Therapeutic efficacy of Schistosoma japonicum cystatin on sepsis-induced cardiomyopathy in a mouse model. Parasit Vectors 2020; 13:260. [PMID: 32423469 PMCID: PMC7236195 DOI: 10.1186/s13071-020-04104-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myocardial dysfunction is one of the most common complications of multiple organ failure in septic shock and significantly increases mortality in patients with sepsis. Although many studies having confirmed that helminth-derived proteins have strong immunomodulatory functions and could treat inflammatory diseases, there is no report on the therapeutic effect of Schistosoma japonicum-produced cystatin (Sj-Cys) on sepsis-induced cardiac dysfunction. METHODS A model of sepsis-induced myocardial injury was established by cecal ligation and puncture (CLP) in mice. Upon CLP operation, each mouse was intraperitoneally treated with 10 µg of recombinant Sj-Cys (rSj-Cys). Twelve hours after CLP, the systolic and diastolic functions of the left ventricular were examined by echocardiography. The levels of myoglobin (Mb), cardiac troponin I (cTnI), N-terminal pro-Brain Natriuretic peptide (NT-proBNP) in sera, and the activity of myeloperoxidase (MPO) in cardiac tissues were examined as biomarkers for heart injury. The heart tissue was collected for checking pathological changes, macrophages and pro-inflammatory cytokine levels. To address the signaling pathway involved in the anti-inflammatory effects of rSj-Cys, myeloid differentiation factor 88 (MyD88) was determined in heart tissue of mice with sepsis and LPS-stimulated H9C2 cardiomyocytes. In addition, the therapeutic effects of rSj-Cys on LPS-induced cardiomyocyte apoptosis were also detected. The levels of M1 biomarker iNOS and M2 biomarker Arg-1 were detected in heart tissue. The pro-inflammatory cytokines TNF-α and IL-6, and regulatory cytokines IL-10 and TGF-β were measured in sera and their mRNA levels in heart tissue of rSj-Cys-treated mice. RESULTS After rSj-Cys treatment, the sepsis-induced heart malfunction was largely improved. The inflammation and injury of heart tissue were significantly alleviated, characterized as significantly decreased infiltration of inflammatory cells in cardiac tissues and fiber swelling, reduced levels of Mb, cTnI and NT-proBNP in sera, and MPO activity in heart tissue. The therapeutic efficacy of rSj-Cys is associated with downregulated pro-inflammatory cytokines (TNF-α and IL-6) and upregulated regulatory inflammatory cytokines (IL-10 and TGF-β), possibly through inhibiting the LPS-MyD88 signal pathway. CONCLUSIONS RSj-Cys significantly reduced sepsis-induced cardiomyopathy and could be considered as a potential therapeutic agent for the prevention and treatment of sepsis associated cardiac dysfunction.
Collapse
Affiliation(s)
- Shifang Gao
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Shili Wu
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Siying Sun
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Huijuan Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yongsheng Bai
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Qiao Zhou
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xin Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hu Cui
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China. .,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
25
|
Chen RJ, Rui QL, Wang Q, Tian F, Wu J, Kong XQ. Shenfu injection attenuates lipopolysaccharide-induced myocardial inflammation and apoptosis in rats. Chin J Nat Med 2020; 18:226-233. [PMID: 32245593 DOI: 10.1016/s1875-5364(20)30025-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Indexed: 11/18/2022]
Abstract
Shenfu injection (SFI), a Chinese medicinal product, shows potent efficacy in treating sepsis. The aim of the present study was to clarify the protective effects of SFI against lipopolysaccharide (LPS)-induced myocardial inflammation and apoptosis. Experiments were carried out in Sprague-Dawley (SD) rats treated with LPS or LPS + SFI, and in H9C2 cardiomyocytes. The sepsis-associated myocardial inflammation and apoptosis was induced by the intraperitoneal injection of LPS (20 mg·kg-1). SFI attenuated the increased expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β induced by LPS both in serum and heart. In LPS group, cell viability was reduced, and reversed after SFI administration. LPS treatment increased the expression levels of cleaved-caspase 3 and Bax, and those of Bcl2 and Bcl2/Bax. These two trends were reversed by SFI administration. The expression levels of phosphorylated mitogen-activated protein kinase kinase (p-MEK) and phosphorylated extracellular regulated protein kinases (p-ERK) were increased by LPS, and reversed by SFI. MEK inhibitor U0126 attenuated the apoptosis induced by LPS. These results indicate that SFI could treat LPS-induced cardiac dysfunction. In conclusion, SFI attenuates the inflammation and apoptosis induced by LPS via downregulating the MEK and ERK signaling pathways.
Collapse
Affiliation(s)
- Rui-Juan Chen
- Cardiology Department, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Emergency Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qing-Lin Rui
- Emergency Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qiong Wang
- Clinical Pharmacology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Fang Tian
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Jian Wu
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Xiang-Qing Kong
- Cardiology Department, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
26
|
Zhen J, Yu H, Ji H, Cai L, Leng J, Keller BB. Neonatal murine engineered cardiac tissue toxicology model: Impact of dexrazoxane on doxorubicin induced injury. Life Sci 2019; 239:117070. [PMID: 31751580 DOI: 10.1016/j.lfs.2019.117070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) induced cardiotoxicity is a life-threatening side effect of chemotherapy and decreased cardiac function can present years after treatment. Despite the investigation of a broad range of pharmacologic interventions, to date the only drug shown to reduce DOX-related cardiotoxicity in preclinical studies and limited clinical trials is the iron chelating agent, dexrazoxane (DRZ), although the mechanisms responsible for DRZ mediated protection from DOX related cardiotoxicity remain unclear. Engineered cardiac tissues (ECTs) can be used for tissue repair strategies and as in vitro surrogate models to test cardiac toxicities and preventative countermeasures. Neonatal murine ECTs display cardiotoxicity in response to the environmental toxin, cadmium, and reduced cadmium toxicity with Zinc co-treatment, in part via the induction of the anti-oxidant Metallothionein (MT). We adapted our in vitro ECT model to determine the feasibility of using the ECT approach to investigate DOX-related cardiac injury and DRZ prevention. We found: (1) DOX induced dose and time dependent cell death in ECTs; (2) Zinc did not show protection from DOX cardiotoxicity; (3) MT overexpression induced by Zinc, low dose Cd pretreatment, or MT-overexpression (MT-TG) did not reduce ECT DOX cardiotoxicity; (4) DRZ reduced ECT DOX induced cell death; and (5) The mechanism of DRZ ECT protection from DOX cardiotoxicity was topoisomerase 2B (TOP2B) inhibition rather than reduced reactive oxygen species. Our data support the feasibility of ECTs as an in vitro platform technology for the investigation of drug induced cardiotoxicities including the role of TOP2B in DOX toxicity and DRZ mediated DOX toxicity prevention.
Collapse
Affiliation(s)
- Juan Zhen
- The First Hospital of Jilin University, Changchun 130021, China; The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Haitao Yu
- The First Hospital of Jilin University, Changchun 130021, China; The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Honglei Ji
- The First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Radiation Oncology, the University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Jiyan Leng
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
27
|
Liang QX, Lin YH, Zhang CH, Sun HM, Zhou L, Schatten H, Sun QY, Qian WP. Resveratrol increases resistance of mouse oocytes to postovulatory aging in vivo. Aging (Albany NY) 2019; 10:1586-1596. [PMID: 30036861 PMCID: PMC6075442 DOI: 10.18632/aging.101494] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Abstract
After ovulation, metaphase II oocytes undergo a time-dependent deterioration in vivo or in vitro, which is referred to as postovulatory oocyte aging, a process during which a series of deleterious molecular and cellular changes occur. In this study, we found that short-term injection of resveratrol (3,5,4'-trihydroxystilbene) effectively ameliorated oxidative stress-induced damage in postovulatory oocyte aging of middle-aged mice in vivo. Resveratrol induced changes that delayed the aging-induced oocyte deterioration including the elevated expression of the anti-aging molecule Sirtuin 1 (SIRT1); it reduced intracellular reactive oxygen species (ROS) level, and improved mitochondria function. In addition, these beneficial changes may also help to prevent apoptosis. Taken together, our data suggest that resveratrol can effectively protect against postovulatory oocyte aging in vivo primarily by preventing ROS production.
Collapse
Affiliation(s)
- Qiu-Xia Liang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Lin
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Hong-Mei Sun
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Liang Zhou
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
28
|
Tan S, Long Z, Hou X, Lin Y, Xu J, You X, Wang T, Zhang Y. H 2 Protects Against Lipopolysaccharide-Induced Cardiac Dysfunction via Blocking TLR4-Mediated Cytokines Expression. Front Pharmacol 2019; 10:865. [PMID: 31440160 PMCID: PMC6694767 DOI: 10.3389/fphar.2019.00865] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose: Septic cardiomyopathy, which is one of the features of multi-organ dysfunction in sepsis, is characterized by ventricular dilatation, reduced ventricular contractility, and reduction in ejection fraction and, if severe, can lead to death. To date, there is no specific therapy that exists, and its treatment represents a large unmet clinical need. Herein, we investigated the effects and underlying anti-inflammatory mechanisms of hydrogen gas in the setting of lipopolysaccharide (LPS)-induced cardiomyocytes injury. Experimental Approach: Hydrogen gas was intraperitoneally injected to mice in LPS plus hydrogen group and hydrogen group for 4 days. On fourth, LPS was given by intraperitoneal injection to mice in LPS group and to mice in LPS plus hydrogen group. In addition, H9c2 cardiomyocytes were treated with hydrogen-rich medium for 30 min before LPS. The transthoracic echocardiography was performed at 6 h post‐LPS to assess left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), left ventricular ejection fraction (EF%), fractional shortening (FS%), left ventricular mass average weight (LV mass AW), and LV mass AW (Corrected). The histological and morphological analyses of left ventricular were performed by hematoxylin and eosin (H&E) staining and Masson’s trichrome staining. The mRNA levels of ANP and BNP were examined by PCR in vitro. The expression of cytokines were assayed by Enzyme Linked Immunosorbent Assay (ELISA) and PCR. Moreover, Western blotting was performed to examine the expression of TLR4, the activation of ERK1/2, p38, JNK, and the expression of NF-κB in nucleus after 6 h of LPS challenge in vivo and in vitro. Key Results: LPS induced cardiac dysfunction; hydrogen therapy improved cardiac function after LPS challenge. Furthermore, pretreatment with hydrogen resulted in cardioprotection during septic cardiomyopathy via inhibiting the expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-18; suppressing the phosphorylation of ERK1/2, p38, and JNK; and reducing the nuclear translocation of NF-κB and the expression of TLR4 by LPS. Conclusion and Implications: Hydrogen therapy prevents LPS-induced cardiac dysfunction in part via downregulation of TLR4-mediated pro-inflammatory cytokines expression.
Collapse
Affiliation(s)
- Sihua Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhiyuan Long
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangping Hou
- Department of Psychological Sleeping, Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Lin
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China.,Department of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Xinchao You
- Department of Science and Education, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China.,Biofeedback Therapy and Research Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Dai W, Laforest B, Tyan L, Shen KM, Nadadur RD, Alvarado FJ, Mazurek SR, Lazarevic S, Gadek M, Wang Y, Li Y, Valdivia HH, Shen L, Broman MT, Moskowitz IP, Weber CR. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. eLife 2019; 8:41814. [PMID: 30896405 PMCID: PMC6428569 DOI: 10.7554/elife.41814] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Risk for Atrial Fibrillation (AF), the most common human arrhythmia, has a major genetic component. The T-box transcription factor TBX5 influences human AF risk, and adult-specific Tbx5-mutant mice demonstrate spontaneous AF. We report that TBX5 is critical for cellular Ca2+ homeostasis, providing a molecular mechanism underlying the genetic implication of TBX5 in AF. We show that cardiomyocyte action potential (AP) abnormalities in Tbx5-deficient atrial cardiomyocytes are caused by a decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2)-mediated SR calcium uptake which was balanced by enhanced trans-sarcolemmal calcium fluxes (calcium current and sodium/calcium exchanger), providing mechanisms for triggered activity. The AP defects, cardiomyocyte ectopy, and AF caused by TBX5 deficiency were rescued by phospholamban removal, which normalized SERCA function. These results directly link transcriptional control of SERCA2 activity, depressed SR Ca2+ sequestration, enhanced trans-sarcolemmal calcium fluxes, and AF, establishing a mechanism underlying the genetic basis for a Ca2+-dependent pathway for AF risk. The human heart contains four distinct chambers that work together to pump blood around the body. In individuals with a condition called atrial fibrillation, two of the chambers (known as the atria) beat irregularly and are unable to push all the blood they hold into the other two chambers of the heart. This can cause heart failure and increases the likelihood of blood clots, which may lead to stroke and heart attacks. Small molecules called calcium ions play a crucial role in regulating how and when the atria contract by driving electrical activity in heart cells. To contract the atria, a storage compartment within heart cells known as the sarcoplasmic reticulum releases calcium ions into the main compartment of the cells. Calcium ions also enter the cell from the surrounding tissue. As the atria relax, calcium ions are pumped back into the sarcoplasmic reticulum or out of the cell by specific transport proteins. Individuals with mutations in a gene called Tbx5 are more likely to develop atrial fibrillation than other people, but it was not clear how such gene mutations contribute to the disease. Here, Dai, Laforest et al. used mice with a mutation in the Tbx5 gene to study how defects in Tbx5 affect electrical activity in heart cells. The experiments found that the Tbx5 gene was critical for calcium ions to drive normal electrical activity in mouse heart cells. Compared with heart cells from normal mice, the heart cells from the mutant mice had decreased flow of calcium ions into the sarcoplasmic reticulum and increased flow of calcium ions out of the cell. These findings provide a direct link between atrial fibrillation and the flow of calcium ions in heart cells. Together with previous work, these findings indicate that multiple different mechanisms could lead to atrial fibrillation, but that many of these involve changes in the flow of calcium ions. Therefore, personalized medicine, where clinicians uncover the specific mechanisms responsible for atrial fibrillation in individual patients, may play an important role in treating this condition in the future.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, United States
| | - Brigitte Laforest
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Leonid Tyan
- Department of Pathology, University of Chicago, Chicago, United States
| | - Kaitlyn M Shen
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Francisco J Alvarado
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Stefan R Mazurek
- Department of Medicine, University of Chicago, Chicago, United States
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Margaret Gadek
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | - Yitang Wang
- Department of Pathology, University of Chicago, Chicago, United States
| | - Ye Li
- Department of Pathology, University of Chicago, Chicago, United States
| | - Hector H Valdivia
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, United States
| | - Le Shen
- Department of Pathology, University of Chicago, Chicago, United States.,Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, United States
| | - Michael T Broman
- Department of Medicine, University of Chicago, Chicago, United States
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, United States
| | | |
Collapse
|
30
|
Zhou J, Yang D, Liu K, Hou L, Zhang W. Systematic review and meta-analysis of the protective effect of resveratrol on multiple organ injury induced by sepsis in animal models. Biomed Rep 2018; 10:55-62. [PMID: 30588304 DOI: 10.3892/br.2018.1169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022] Open
Abstract
Sepsis may directly lead to multiple organ failure, which is among the leading causes of mortality in critically ill patients. According to data released by the Global Sepsis Alliance, the number of mortalities due to sepsis exceeded the combined number for prostate cancer, breast cancer and AIDS in 2012. To date, studies have reported that resveratrol has marked positive effects including anti-inflammatory, anti-oxidative and pro-microcirculatory functions in sepsis-induced organ injury, significantly improving the survival time and mortality of sepsis animals. The present systematic review sought to further clarify the efficacy and safety of resveratrol in the treatment of sepsis. Studies on resveratrol application in the treatment of sepsis-induced organ injury in animal models were reviewed by searching various Chinese and other language databases (PubMed, Embase, CNKI, WanFang and WeiPu) and by manually searching the references of related articles. The selection and evaluation of the studies was performed by two independent reviewers. A total of 260 related studies were initially identified. Following application of the exclusion factors and inclusion criteria, 11 studies were included. Meta-analysis revealed that resveratrol exerted significant protective effect in sepsis-induced animal models of organ injury, through anti-inflammatory, anti-oxidant and pro-microcirculatory functions compared with in the placebo group. While nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (NRF-2) are the two major signaling pathways to have been associated with the anti-inflammatory and anti-oxidative effects of resveratrol, these factors were not quantified for mean values, therefore not suitable for systematic evaluation. For related factors, the results of meta-analysis were as follows: For tumor necrosis factor-α (TNF-α), the standardized mean difference (SMD) was -13.50 [95% confidence interval (CI): -22.08, -4.91; P=0.002]; for malondialdehyde (MDA), the SMD was -3.10 (95% CI: -5.27, -0.93; P=0.005); for mean arterial pressure the SMD was 1.34 (95% CI: 0.07, 2.62; P=0.04); for interleukin (IL)-6 the SMD was -9.57 (95% CI: -20.90, 1.75; P=0.10); and for IL-10 the SMD was 0.80 (95% CI: -0.73, 2.34; P=0.31). It was concluded that resveratrol exerted significant anti-inflammatory and anti-oxidative effects through NF-κB and NRF-2 signaling pathways in animal models of sepsis-induced multiple organ injury, manifesting as significant downregulation of TNF-α and MDA expression and improved microcirculation, therefore ameliorating septic damage to the body, which may ultimately improve survival ratios.
Collapse
Affiliation(s)
- Jiawei Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Daihong Yang
- Department of Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Kai Liu
- Department of Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Linyi Hou
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenkai Zhang
- Intensive Care Unit, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
31
|
Yang L, Zhang H, Chen P. Sulfur dioxide attenuates sepsis-induced cardiac dysfunction via inhibition of NLRP3 inflammasome activation in rats. Nitric Oxide 2018; 81:11-20. [PMID: 30273666 DOI: 10.1016/j.niox.2018.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Sulfur dioxide (SO2) plays an important role in maintaining homeostasis of cardiovascular system. This study was aimed to investigate cardioprotective effects of SO2 on in the rat and the underlying mechanism. METHODS AND RESULTS Sepsis model induced by cecal ligation and puncture (CLP) in rats were used. SO2 donor (NaHSO3/Na2SO3, 1:3 M/M) was administered intraperitoneally at a dose of 85 mg/kg. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were stimulated with LPS (1 mg/mL) in presence or absence of different concentrations of SO2 (10, 50 and 100 μmol/L). SO2 donor could restore the decreased levels of SO2 in plasma and heart of septic rats. SO2 exhibited dramatic improvement in cardiac functions. At 24 h after CLP, SO2 treatments decreased the number of TUNEL-positive cells, Bax/Bcl-2 ratio and activity of caspase-3. Moreover CLP-induced inflammatory response was also relieved by SO2. In NRCMs, SO2 could suppress the LPS-induced myocardial injury, leading to an increase in cell viability, a decrease in LDH and apoptotic rate. Western blot showed that the expression of TLR4, NLRP3, and Caspase-1 were obviously increased in myocardial tissue of CLP group or in NRCMs of LPS group, while SO2 significantly inhibited the CLP-induced or LPS-induced TLR4, NLRP3, and Caspase-1 expression. CONCLUSION SO2 attenuated sepsis-induced cardiac dysfunction likely in association with the inhibiting inflammation via TLR4/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Lin Yang
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu, Shangqiu, 476100, China.
| | - Hui Zhang
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu, Shangqiu, 476100, China
| | - Peili Chen
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu, Shangqiu, 476100, China.
| |
Collapse
|
32
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
33
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
34
|
Wei Y, Jia J, Jin X, Tong W, Tian H. Resveratrol ameliorates inflammatory damage and protects against osteoarthritis in a rat model of osteoarthritis. Mol Med Rep 2017; 17:1493-1498. [PMID: 29138829 PMCID: PMC5780088 DOI: 10.3892/mmr.2017.8036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol is a non-flavonoid polyphenol compound with a stilbene structure. As a type of phytoalexin produced under stress in plants, it improves the plant's resistance against pathogens and environment deterioration, and performs important functions beneficial to human health, such as anti-cancer, anti-oxidation, regulating blood lipid levels and prolonging life span. The effects of resveratrol were examined in a rat model of osteoarthritis (OA) and observed to ameliorate inflammatory damage and protect against OA. In the present study, resveratrol significantly inhibited the induction of clinical scores in rats with OA. Resveratrol inhibited tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and IL-18 expression levels, and decreased caspase-3/9 activity in rats with OA. Inducible nitric oxide synthase, nuclear factor (NF)-κB, phosphorylated-(p)-AMP-activated protein kinase and sirtuin 1 protein expression were significantly suppressed and heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein expression was stimulated in rats with OA treated with resveratrol. The current results indicate that resveratrol ameliorates inflammatory damage and protects against OA in a rat model of OA via NF-κB and HO-1/Nrf-2 signaling.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Jia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xin Jin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Tong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hongtao Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
35
|
Liu W, Chen P, Deng J, Lv J, Liu J. Resveratrol and polydatin as modulators of Ca 2+ mobilization in the cardiovascular system. Ann N Y Acad Sci 2017; 1403:82-91. [PMID: 28665033 DOI: 10.1111/nyas.13386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022]
Abstract
In the cardiovascular system, Ca2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca2+ mobilization. The actions of Res and PD on Ca2+ signals delicately manipulated by multiple Ca2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Peiya Chen
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jianxin Deng
- Department of Endocrinology, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Department of Endocrinology, Shenzhen No. 2 People's Hospital, Shenzhen, China
| | - Jingzhang Lv
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L, Manzari V, Modesti A, Bei R. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017; 9:nu9050523. [PMID: 28531112 PMCID: PMC5452253 DOI: 10.3390/nu9050523] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress.
Collapse
Affiliation(s)
- Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | | | - Sonia Bergante
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Guido Tettamanti
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00164 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|