1
|
Rahmani M, Pham T, Crossman DJ, Tran K, Taberner AJ, Han JC. Sex differences in cardiac energetics in the rat ventricular muscle. Sci Rep 2024; 14:31242. [PMID: 39732777 DOI: 10.1038/s41598-024-82604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca2+ dynamics. The energy expenditures from these two cellular processes: activation (Ca2+ handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes. In this study, we directly quantified these energy expenditures in terms of heat production. Left-ventricular trabeculae were dissected from rats aged 9-13 weeks. Mechano-energetics of trabeculae were characterized using our work-loop calorimeter under various conditions including varying muscle lengths, stimulus frequencies, and afterloads. Each trabecula was subjected to protocols that allowed it to contract either isometrically or shorten to perform work-loops. Force production, length change, and heat output were simultaneously measured. We extracted various metrics: twitch kinetics, shortening kinetics, mechanical work, and heat associated with cross-bridge cycling and Ca2+ cycling, and quantified mechanical efficiency. Results show no sex differences in any of the metrics. Peak mechanical efficiency was not affected by sex (10.25 ± 0.57% in female trabeculae; 10.93 ± 0.87% in male trabeculae). We conclude that cardiac mechanics and energetics are not affected by sex at the muscle level, within the rat age range studied.
Collapse
Affiliation(s)
- Maryam Rahmani
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Toan Pham
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, The University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Pu X, Liu L, Zhou Y, Xu Z. Determination of the rat estrous cycle vased on EfficientNet. Front Vet Sci 2024; 11:1434991. [PMID: 39119352 PMCID: PMC11306968 DOI: 10.3389/fvets.2024.1434991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
In the field of biomedical research, rats are widely used as experimental animals due to their short gestation period and strong reproductive ability. Accurate monitoring of the estrous cycle is crucial for the success of experiments. Traditional methods are time-consuming and rely on the subjective judgment of professionals, which limits the efficiency and accuracy of experiments. This study proposes an EfficientNet model to automate the recognition of the estrous cycle of female rats using deep learning techniques. The model optimizes performance through systematic scaling of the network depth, width, and image resolution. A large dataset of physiological data from female rats was used for training and validation. The improved EfficientNet model effectively recognized different stages of the estrous cycle. The model demonstrated high-precision feature capture and significantly improved recognition accuracy compared to conventional methods. The proposed technique enhances experimental efficiency and reduces human error in recognizing the estrous cycle. This study highlights the potential of deep learning to optimize data processing and achieve high-precision recognition in biomedical research. Future work should focus on further validation with larger datasets and integration into experimental workflows.
Collapse
Affiliation(s)
- Xiaodi Pu
- Reproductive Section, Huaihua City Maternal and Child Health Care Hospital, Huaihua, China
| | - Longyi Liu
- Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yonglai Zhou
- Reproductive Section, Huaihua City Maternal and Child Health Care Hospital, Huaihua, China
| | - Zihan Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
MacDougall DJ, Hopkinson LD, King AN. The key to our hearts: Unlocking fundamental sex differences in mouse cardiomyocyte calcium-cycling. J Physiol 2024; 602:19-21. [PMID: 37997024 DOI: 10.1113/jp285735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Affiliation(s)
- Daniel J MacDougall
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lily D Hopkinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alexa N King
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Emerson JI, Ariel P, Shi W, Conlon FL. Sex Differences in Mouse Cardiac Electrophysiology Revealed by Simultaneous Imaging of Excitation-Contraction Coupling. J Cardiovasc Dev Dis 2023; 10:479. [PMID: 38132647 PMCID: PMC10743987 DOI: 10.3390/jcdd10120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Males and females differ in the basic anatomy and physiology of the heart. Sex differences are evident in cardiac repolarization in humans; women have longer corrected QT and JT intervals. However, the molecular mechanisms that lead to these differences are incompletely understood. Here, we present that, like in humans, sex differences in QT and JT intervals exist in mouse models; female mice had longer corrected QT and JT intervals compared with age-matched males. To further understand the molecular underpinning of these sex differences, we developed a novel technology using fluorescent confocal microscopy that allows the simultaneous visualization of action potential, Ca2+ transients, and contractions in isolated cardiomyocytes at a high temporal resolution. From this approach, we uncovered that females at baseline have increased action potential duration, decreased Ca2+ release and reuptake rates, and decreased contraction and relaxation velocities compared with males. Additionally, males had a shorter overall time from action potential onset to peak contraction. In aggregate, our studies uncovered male and female differences in excitation-contraction coupling that account for differences observed in the EKG. Overall, a better understanding of sex differences in electrophysiology is essential for equitably treating cardiac disease.
Collapse
Affiliation(s)
- James I. Emerson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Garrett AS, Dowrick J, Taberner AJ, Han JC. Isolated cardiac muscle contracting against a real-time model of systemic and pulmonary cardiovascular loads. Am J Physiol Heart Circ Physiol 2023; 325:H1223-H1234. [PMID: 37712924 PMCID: PMC10907072 DOI: 10.1152/ajpheart.00272.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Isolated cardiac tissues allow a direct assessment of cardiac muscle function and enable precise control of experimental loading conditions. However, current experimental methods do not expose isolated tissues to the same contraction pattern and cardiovascular loads naturally experienced by the heart. In this study, we implement a computational model of systemic-pulmonary impedance that is solved in real time and imposed on contracting isolated rat muscle tissues. This systemic-pulmonary model represents the cardiovascular system as a lumped-parameter, closed-loop circuit. The tissues performed force-length work-loop contractions where the model output informed both the shortening and restretch phases of each work-loop. We compared the muscle mechanics and energetics associated with work-loops driven by the systemic-pulmonary model with that of a model-based loading method that only accounts for shortening. We obtained results that show simultaneous changes of afterload and preload or end-diastolic length of the muscle, as compared with the static, user-defined preload as in the conventional loading method. This feature allows assessment of muscle work output, heat output, and efficiency of contraction as functions of end-diastolic length. The results reveal the behavior of cardiac muscle as a pump source to achieve load-dependent work and efficiency outputs over a wider range of loads. This study offers potential applications of the model to investigate cardiac muscle response to hemodynamic coupling between systemic and pulmonary circulations in an in vitro setting.NEW & NOTEWORTHY We present the use of a "closed-loop" model of systemic and pulmonary circulations to apply, for the first time, real-time model-calculated preload and afterload to isolated cardiac muscle preparations. This method extends current experimental protocols where only afterload has been considered. The extension to include preload provides the opportunity to investigate ventricular muscle response to hemodynamic coupling and as a pump source across a wider range of cardiovascular loads.
Collapse
Affiliation(s)
- Amy S Garrett
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jarrah Dowrick
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science and Biomedical Engineering, The University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Mishra M, Howlett SE. Reference genes in aging: what are you referring to? Aging (Albany NY) 2023; 15:204710. [PMID: 37130432 DOI: 10.18632/aging.204710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Manish Mishra
- Department of Pharmacology, Dalhousie University, Halifax, Scotia Nova Scotia 15000, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Scotia Nova Scotia 15000, Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia Nova Scotia 15000, Canada
| |
Collapse
|
7
|
Björkgren I, Chung DH, Mendoza S, Gabelev-Khasin L, Petersen NT, Modzelewski A, He L, Lishko PV. Alpha/Beta Hydrolase Domain-Containing Protein 2 Regulates the Rhythm of Follicular Maturation and Estrous Stages of the Female Reproductive Cycle. Front Cell Dev Biol 2021; 9:710864. [PMID: 34568325 PMCID: PMC8455887 DOI: 10.3389/fcell.2021.710864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Mammalian female fertility is defined by a successful and strictly periodic ovarian cycle, which is under the control of gonadotropins and steroid hormones, particularly progesterone and estrogen. The latter two are produced by the ovaries that are engaged in controlled follicular growth, maturation, and release of the eggs, i.e., ovulation. The steroid hormones regulate ovarian cycles via genomic signaling, by altering gene transcription and protein synthesis. However, despite this well-studied mechanism, steroid hormones can also signal via direct, non-genomic action, by binding to their membrane receptors. Here we show, that the recently discovered membrane progesterone receptor α/β hydrolase domain-containing protein 2 (ABHD2) is highly expressed in mammalian ovaries where the protein plays a novel regulatory role in follicle maturation and the sexual cycle of females. Ablation of Abhd2 caused a dysregulation of the estrous cycle rhythm with females showing shortened luteal stages while remaining in the estrus stage for a longer time. Interestingly, the ovaries of Abhd2 knockout (KO) females resemble polycystic ovary morphology (PCOM) with a high number of atretic antral follicles that could be rescued with injection of gonadotropins. Such a procedure also allowed Abhd2 KO females to ovulate a significantly increased number of mature and fertile eggs in comparison with their wild-type littermates. These results suggest a novel regulatory role of ABHD2 as an important factor in non-genomic steroid regulation of the female reproductive cycle.
Collapse
Affiliation(s)
- Ida Björkgren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Dong Hwa Chung
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sarah Mendoza
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Liliya Gabelev-Khasin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Natalie T. Petersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Andrew Modzelewski
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lin He
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Polina V. Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- The Center for Reproductive Longevity and Equality at the Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
8
|
(Sex differences in cardiac tolerance to ischemia-reperfusion injury - the role of mitochondria). COR ET VASA 2021. [DOI: 10.33678/cor.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Sano K, Matsuda S, Tohyama S, Komura D, Shimizu E, Sutoh C. Deep learning-based classification of the mouse estrous cycle stages. Sci Rep 2020; 10:11714. [PMID: 32678183 PMCID: PMC7366650 DOI: 10.1038/s41598-020-68611-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/23/2020] [Indexed: 11/23/2022] Open
Abstract
There is a rapidly growing demand for female animals in preclinical animal, and thus it is necessary to determine animals' estrous cycle stages from vaginal smear cytology. However, the determination of estrous stages requires extensive training, takes a long time, and is costly; moreover, the results obtained by human examiners may not be consistent. Here, we report a machine learning model trained with 2,096 microscopic images that we named the "Stage Estimator of estrous Cycle of RodEnt using an Image-recognition Technique (SECREIT)." With the test dataset (736 images), SECREIT achieved area under the receiver-operating-characteristic curve of 0.962 or more for each estrous stage. A test using 100 images showed that SECREIT provided correct classification that was similar to that provided by two human examiners (SECREIT: 91%, Human 1: 91%, Human 2: 79%) in 11 s. The SECREIT can be a first step toward accelerating the research using female rodents.
Collapse
Affiliation(s)
- Kyohei Sano
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan
| | - Shingo Matsuda
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan. .,Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan. .,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Suguru Tohyama
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eiji Shimizu
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan
| | - Chihiro Sutoh
- Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan.
| |
Collapse
|
10
|
Thompson LC, Walsh L, Martin BL, McGee J, Wood C, Kovalcik K, Pancras JP, Haykal-Coates N, Ledbetter AD, Davies D, Cascio WE, Higuchi M, Hazari MS, Farraj AK. Ambient Particulate Matter and Acrolein Co-Exposure Increases Myocardial Dyssynchrony in Mice via TRPA1. Toxicol Sci 2020; 167:559-572. [PMID: 30351402 DOI: 10.1093/toxsci/kfy262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Air pollution is a complex mixture of particulate matter and gases linked to adverse clinical outcomes. As such, studying responses to individual pollutants does not account for the potential biological responses resulting from the interaction of various constituents within an ambient air shed. We previously reported that exposure to high levels of the gaseous pollutant acrolein perturbs myocardial synchrony. Here, we examined the effects of repeated, intermittent co-exposure to low levels of concentrated ambient particulates (CAPs) and acrolein on myocardial synchrony and the role of transient receptor potential cation channel A1 (TRPA1), which we previously linked to air pollution-induced sensitization to triggered cardiac arrhythmia. Female B6129 and Trpa1-/- mice (n = 6/group) were exposed to filtered air (FA), CAPs (46 µg/m3 of PM2.5), Acrolein (0.42 ppm), or CAPs+Acrolein for 3 h/day, 2 days/week for 4 weeks. Cardiac ultrasound was conducted to assess cardiac synchronicity and function before and after the first exposure and after the final exposure. Heart rate variability (HRV), an indicator of autonomic tone, was assessed after the final exposure. Strain delay (time between peak strain in adjacent cardiac wall segments), an index of myocardial dyssynchrony, increased by 5-fold after the final CAPs+Acrolein exposure in B6129 mice compared with FA, CAPs, or Acrolein-exposed B6129 mice, and CAPs+Acrolein-exposed Trpa1-/- mice. Only exposure to acrolein alone increased the HRV high frequency domain (5-fold) in B6129 mice, but not in Trpa1-/- mice. Thus, repeated inhalation of pollutant mixtures may increase risk for cardiac responses compared with single or multiple exposures to individual pollutants through TRPA1 activation.
Collapse
Affiliation(s)
- Leslie C Thompson
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Leon Walsh
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Brandi L Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830
| | - John McGee
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Charles Wood
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory
| | - Kasey Kovalcik
- Exposure Methods & Measurements Division, National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Joseph Patrick Pancras
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Najwa Haykal-Coates
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - David Davies
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Wayne E Cascio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Mark Higuchi
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory
| |
Collapse
|
11
|
Beqollari D, Kohrt WM, Bannister RA. Equivalent L-type channel (Ca V1.1) function in adult female and male mouse skeletal muscle fibers. Biochem Biophys Res Commun 2019; 522:996-1002. [PMID: 31812241 DOI: 10.1016/j.bbrc.2019.11.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
Abstract
Loss of total muscle force during aging has both atrophic and non-atrophic components. The former deficit is a direct consequence of reduced muscle mass while the latter has been attributed to a depression of excitation-contraction (EC) coupling. It is well established that age-onset reductions in sex hormone production regulate the atrophic component in both males and females. However, it is unknown whether the non-atrophic component is influenced by sex hormones. Since the non-atrophic component has been linked mechanistically to reduced expression of the skeletal muscle L-type Ca2+ channel (CaV1.1), we recorded L-type Ca2+ currents, gating charge movements and depolarization-induced changes in myoplasmic Ca2+ from flexor digitorum brevis (FDB) fibers of naïve and gonadectomized mice of both sexes. Our first set of experiments sought to identify any basal differences in EC coupling or L-type Ca2+ flux between the sexes; no detectable differences in any of the aforementioned parameters were observed between FDB harvested from either naïve males or females. In the latter segments of the study, ovariectomy (OVX) and orchiectomy (ORX) models were used to assess the possible influence of sex hormones on EC coupling and/or L-type Ca2+ flux. In these experiments, FDB fibers harvested from OVX and ORX mice both showed no differences in L-type Ca2+ current, gating charge movement or depolarization-induced changes in Ca2+ release from the sarcoplasmic reticulum. Taken together, our results indicate L-type Ca2+ channel function and EC coupling are: 1) equivalent between the sexes, and 2) not significantly regulated by sex hormones. Since recent NIH review guidelines mandate the consideration of sex differences as a criterion for review, our work indicates the suitability of either sex for the study of the fundamental mechanisms of EC coupling. Thus, our findings may accelerate the research process by conserving animals, labor and financial resources.
Collapse
Affiliation(s)
- D Beqollari
- Department of Medicine - Division of Cardiology, University of Colorado School of Medicine, 12800 East 19th Avenue, P15-8006, Box 139, Aurora, CO, 80045, USA.
| | - W M Kohrt
- Department of Medicine - Division of Geriatric Medicine, University of Colorado School of Medicine, 12631 East 17th Avenue, L15-8000, Aurora, CO, 80045, USA.
| | - R A Bannister
- Department of Medicine - Division of Cardiology, University of Colorado School of Medicine, 12800 East 19th Avenue, P15-8006, Box 139, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Rattanasopa C, Kirk JA, Bupha-Intr T, Papadaki M, de Tombe PP, Wattanapermpool J. Estrogen but not testosterone preserves myofilament function from doxorubicin-induced cardiotoxicity by reducing oxidative modifications. Am J Physiol Heart Circ Physiol 2019; 316:H360-H370. [PMID: 30499711 PMCID: PMC6397386 DOI: 10.1152/ajpheart.00428.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we aimed to explore sex differences and the impact of sex hormones on cardiac contractile properties in doxorubicin (DOX)-induced cardiotoxicity. Male and female Sprague-Dawley rats were subjected to sham surgery or gonadectomy and then treated or untreated with DOX (2 mg/kg) every other week for 10 wk. Estrogen preserved maximum active tension (Tmax) with DOX exposure, whereas progesterone and testosterone did not. The effects of sex hormones and DOX correlated with both altered myosin heavy chain isoform expression and myofilament protein oxidation, suggesting both as possible mechanisms. However, acute treatment with oxidative stress (H2O2) or a reducing agent (DTT) indicated that the effects on Tmax were mediated by reversible myofilament oxidative modifications and not only changes in myosin heavy chain isoforms. There were also sex differences in the DOX impact on myofilament Ca2+ sensitivity. DOX increased Ca2+ sensitivity in male rats only in the absence of testosterone and in female rats only in the presence of estrogen. Conversely, DOX decreased Ca2+ sensitivity in female rats in the absence of estrogen. In most instances, this mechanism was through altered phosphorylation of troponin I at Ser23/Ser24. However, there was an additional DOX-induced, estrogen-dependent, irreversible (by DTT) mechanism that altered Ca2+ sensitivity. Our data demonstrate sex differences in cardiac contractile responses to chronic DOX treatment. We conclude that estrogen protects against chronic DOX treatment in the heart, preserving myofilament function. NEW & NOTEWORTHY We identified sex differences in cardiotoxic effects of chronic doxorubicin (DOX) exposure on myofilament function. Estrogen, but not testosterone, decreases DOX-induced oxidative modifications on myofilaments to preserve maximum active tension. In rats, DOX exposure increased Ca2+ sensitivity in the presence of estrogen but decreased Ca2+ sensitivity in the absence of estrogen. In male rats, the DOX-induced shift in Ca2+ sensitivity involved troponin I phosphorylation; in female rats, this was through an estrogen-dependent mechanism.
Collapse
Affiliation(s)
- Chutima Rattanasopa
- 1Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jonathan A. Kirk
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Tepmanas Bupha-Intr
- 1Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Maria Papadaki
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Pieter P. de Tombe
- 2Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | | |
Collapse
|
13
|
Counts BR, Fix DK, Hetzler KL, Carson JA. The Effect of Estradiol Administration on Muscle Mass Loss and Cachexia Progression in Female Apc Min/+ Mice. Front Endocrinol (Lausanne) 2019; 10:720. [PMID: 31736871 PMCID: PMC6838005 DOI: 10.3389/fendo.2019.00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is a multifactorial muscle wasting condition characterized by severe body weight and muscle mass loss which is secondary to chronic disease. The mechanistic examination of cachexia has predominately focused on the male phenotype and created significant gaps in understanding cachexia progression in the female. Female hypogonadism can accompany cancer cachexia and is characterized by reduced circulating 17ß-estradiol and uterine atrophy. Estrogen has known functions in skeletal muscle homeostasis involving the regulation of muscle protein turnover, cellular stressors, and oxidative metabolism. However, 17ß-estradiol's ability to regulate cachexia progression in the female is not known. The purpose of this study was to determine the effect of gonadal function and estradiol administration on muscle mass loss and cachexia progression in female Apc Min/+ mice. Methods: Female C57BL/6 (B6; N = 82) and Apc Min/+ (MIN; N = 88) mice were used in two separate experiments. In experiment 1, mice were sacrificed at either 12 (N = 20) or 20 (N = 41) weeks of age. Body weight and estrous cycle presence was determined weekly. In experiment 2, B6 and MIN mice were randomly allocated to: Control (N = 17), received E2 pellet (E2, N = 18), ovariectomy surgery (OVX; N = 19) or ovariectomy surgery with E2 pellet (OVX + E2; N = 21). 17ß-estradiol was administered through an implanted slow-releasing pellet (0.1 mg). In estrogen and ovariectomy experiments, food intake, and functional outcomes were recorded 1 week prior to sacrifice. Results: We report that E2 administration prevented body weight loss, muscle mass loss, cage inactivity, and grip strength loss associated with cachexia. In skeletal muscle, E2 reduced skeletal muscle AMPK phosphorylation, improved mTORC1 signaling, and prevented mitochondrial dysfunction. Conclusion: Our results demonstrate a role for 17ß-estradiol for the prevention of skeletal muscle mass loss in female tumor bearing mice. Furthermore, 17ß-estradiol prevented cachexia's disruption in skeletal muscle signaling involving AMPK and mTORC1, in addition to improving mitochondrial function in female tumor bearing mice.
Collapse
Affiliation(s)
- Brittany R. Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dennis K. Fix
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - Kimbell L. Hetzler
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: James A. Carson
| |
Collapse
|
14
|
Jurrissen TJ, Olver TD, Winn NC, Grunewald ZI, Lin GS, Hiemstra JA, Edwards JC, Gastecki ML, Welly RJ, Emter CA, Vieira-Potter, VJ, Padilla J. Endothelial dysfunction occurs independently of adipose tissue inflammation and insulin resistance in ovariectomized Yucatan miniature-swine. Adipocyte 2018; 7:35-44. [PMID: 29283284 DOI: 10.1080/21623945.2017.1405191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In rodents, experimentally-induced ovarian hormone deficiency increases adiposity and adipose tissue (AT) inflammation, which is thought to contribute to insulin resistance and increased cardiovascular disease risk. However, whether this occurs in a translationally-relevant large animal model remains unknown. Herein, we tested the hypothesis that ovariectomy would promote visceral and perivascular AT (PVAT) inflammation, as well as subsequent insulin resistance and peripheral vascular dysfunction in female swine. At sexual maturity (7 months of age), female Yucatan mini-swine either remained intact (control, n = 9) or were ovariectomized (OVX, n = 7). All pigs were fed standard chow (15-20 g/kg), and were euthanized 6 months post-surgery. Uterine mass and plasma estradiol levels were decreased by ∼10-fold and 2-fold, respectively, in OVX compared to control pigs. Body mass, glucose homeostasis, and markers of insulin resistance were not different between control and OVX pigs; however, OVX animals exhibited greater plasma triglycerides and triglyceride:HDL ratio. Ovariectomy enhanced visceral adipocyte expansion, although this was not accompanied by brachial artery PVAT adipocyte expansion, AT inflammation in either depot, or increased systemic inflammation assessed by plasma C-reactive protein concentrations. Despite the lack of AT inflammation and insulin resistance, OVX pigs exhibited depressed brachial artery endothelial-dependent vasorelaxation, which was rescued with blockade of endothelin receptor A. Together, these findings indicate that in female Yucatan mini-swine, increased AT inflammation and insulin resistance are not required for loss of ovarian hormones to induce endothelial dysfunction.
Collapse
Affiliation(s)
- Thomas J. Jurrissen
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - T. Dylan Olver
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Nathan C. Winn
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Zachary I. Grunewald
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Gabriela S. Lin
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Biology, Barry University, Miami, FL, United States
| | | | - Jenna C. Edwards
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Michelle L. Gastecki
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Rebecca J. Welly
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Craig A. Emter
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | | | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Child Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Breedt E, Lacerda L, Essop MF. Trimetazidine therapy for diabetic mouse hearts subjected to ex vivo acute heart failure. PLoS One 2017; 12:e0179509. [PMID: 28632748 PMCID: PMC5478112 DOI: 10.1371/journal.pone.0179509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Acute heart failure (AHF) is the most common primary diagnosis for hospitalized heart diseases in Africa. As increased fatty acid β-oxidation (FAO) during heart failure triggers detrimental effects on the myocardium, we hypothesized that trimetazidine (TMZ) (partial FAO inhibitor) offers cardioprotection under normal and obese-related diabetic conditions. Hearts were isolated from 12-14-week-old obese male and female diabetic (db/db) mice versus lean non-diabetic littermates (db/+) controls. The Langendorff retrograde isolated heart perfusion system was employed to establish an ex vivo AHF model: a) Stabilization phase-Krebs Henseleit buffer (10 mM glucose) at 100 mmHg (25 min); b) Critical Acute Heart Failure (CAHF) phase-(1.2 mM palmitic acid, 2.5 mM glucose) at 20 mmHg (25 min); and c) Recovery Acute Heart Failure phase (RAHF)-(1.2 mM palmitic acid, 10 mM glucose) at 100 mmHg (25 min). Treated groups received 5 μM TMZ in the perfusate during either the CAHF or RAHF stage for the full duration of each respective phase. Both lean and obese males benefited from TMZ treatment administered during the RAHF phase. Sex differences were observed only in lean groups where the phases of the estrous cycle influenced therapy; only the lean follicular female group responded to TMZ treatment during the CAHF phase. Lean luteal females rather displayed an inherent cardioprotection (without treatments) that was lost with obesity. However, TMZ treatment initiated during RAHF was beneficial for obese luteal females. TMZ treatment triggered significant recovery for male and obese female hearts when administered during RAHF. There were no differences between lean and obese male hearts, while lean females displayed a functional recovery advantage over lean males. Thus TMZ emerges as a worthy therapeutic target to consider for AHF treatment in normal and obese-diabetic individuals (for both sexes), but only when administered during the recovery phase and not during the very acute stages.
Collapse
Affiliation(s)
- Emilene Breedt
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lydia Lacerda
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
16
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 458] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
17
|
Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z, Oudit GY. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress. J Am Heart Assoc 2017; 6:JAHA.116.003456. [PMID: 28115312 PMCID: PMC5523622 DOI: 10.1161/jaha.116.003456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Sex‐related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron‐overload cardiomyopathy is poorly understood. Methods and Results Male and female wild‐type and hemojuvelin‐null mice were injected and fed with a high‐iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron‐overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron‐overloaded mice based on echocardiographic and invasive pressure‐volume analyses. Female mice demonstrated a marked suppression of iron‐mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron‐overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron‐induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β‐Estradiol therapy rescued the iron‐overload cardiomyopathy in male wild‐type mice. The responses in wild‐type and hemojuvelin‐null female mice were remarkably similar, highlighting a conserved mechanism of sex‐dependent protection from iron‐overload‐mediated cardiac injury. Conclusions Male and female mice respond differently to iron‐overload‐mediated effects on heart structure and function, and females are markedly protected from iron‐overload cardiomyopathy. Ovariectomy in female mice exacerbated iron‐induced myocardial injury and precipitated severe cardiac dysfunction during iron‐overload conditions, whereas 17β‐estradiol therapy was protective in male iron‐overloaded mice.
Collapse
Affiliation(s)
- Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Wang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada .,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Feridooni HA, MacDonald JK, Ghimire A, Pyle WG, Howlett SE. Acute exposure to progesterone attenuates cardiac contraction by modifying myofilament calcium sensitivity in the female mouse heart. Am J Physiol Heart Circ Physiol 2016; 312:H46-H59. [PMID: 27793852 DOI: 10.1152/ajpheart.00073.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022]
Abstract
Acute application of progesterone attenuates cardiac contraction, although the underlying mechanisms are unclear. We investigated whether progesterone modified contraction in isolated ventricular myocytes and identified the Ca2+ handling mechanisms involved in female C57BL/6 mice (6-9 mo; sodium pentobarbital anesthesia). Cells were field-stimulated (4 Hz; 37°C) and exposed to progesterone (0.001-10.0 μM) or vehicle (35 min). Ca2+ transients (fura-2) and cell shortening were recorded simultaneously. Maximal concentrations of progesterone inhibited peak contraction by 71.4% (IC50 = 160 ± 50 nM; n = 12) and slowed relaxation by 75.4%. By contrast, progesterone had no effect on amplitudes or time courses of underlying Ca2+ transients. Progesterone (1 µM) also abbreviated action potential duration. When the duration of depolarization was controlled by voltage-clamp, progesterone attenuated contraction and slowed relaxation but did not affect Ca2+ currents, Ca2+ transients, sarcoplasmic reticulum (SR) content, or fractional release of SR Ca2+ Actomyosin MgATPase activity was assayed in myofilaments from hearts perfused with progesterone (1 μM) or vehicle (35 min). While maximal responses to Ca2+ were not affected by progesterone, myofilament Ca2+ sensitivity was reduced (EC50 = 0.94 ± 0.01 µM for control, n = 7 vs. 1.13 ± 0.05 μM for progesterone, n = 6; P < 0.05) and progesterone increased phosphorylation of myosin binding protein C. The effects on contraction were inhibited by lonaprisan (progesterone receptor antagonist) and levosimendan (Ca2+ sensitizer). Unlike results in females, progesterone had no effect on contraction or myofilament Ca2+ sensitivity in age-matched male mice. These data indicate that progesterone reduces myofilament Ca2+ sensitivity in female hearts, which may exacerbate manifestations of cardiovascular disease late in pregnancy when progesterone levels are high. NEW & NOTEWORTHY We investigated myocardial effects of acute application of progesterone. In females, but not males, progesterone attenuates and slows cardiomyocyte contraction with no effect on calcium transients. Progesterone also reduces myofilament calcium sensitivity in female hearts. This may adversely affect heart function, especially when serum progesterone levels are high in pregnancy.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/acute-progesterone-modifies-cardiac-contraction/.
Collapse
Affiliation(s)
- Hirad A Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Anjali Ghimire
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - W Glen Pyle
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; .,Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Sex Differences in the Biology and Pathology of the Aging Heart. Can J Cardiol 2016; 32:1065-73. [DOI: 10.1016/j.cjca.2016.03.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/30/2023] Open
|
20
|
Bell JR, Curl CL, Harding TW, Vila Petroff M, Harrap SB, Delbridge LMD. Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and β-adrenergic challenge are different. Biol Sex Differ 2016; 7:32. [PMID: 27390618 PMCID: PMC4936311 DOI: 10.1186/s13293-016-0084-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/22/2016] [Indexed: 01/19/2023] Open
Abstract
Background Cardiac hypertrophy is the most potent cardiovascular risk factor after age, and relative mortality risk linked with cardiac hypertrophy is greater in women. Ischemic heart disease is the most common form of cardiovascular pathology for both men and women, yet significant differences in incidence and outcomes exist between the sexes. Cardiac hypertrophy and ischemia are frequently occurring dual pathologies. Whether the cellular (cardiomyocyte) mechanisms underlying myocardial damage differ in women and men remains to be determined. In this study, utilizing an in vitro experimental approach, our goal was to examine the proposition that responses of male/female cardiomyocytes to ischemic (and adrenergic) stress may be differentially modulated by the presence of pre-existing cardiac hypertrophy. Methods We used a novel normotensive custom-derived hypertrophic heart rat (HHR; vs control strain normal heart rat (NHR)). Cardiomyocyte morphologic and electromechanical functional studies were performed using microfluorimetric techniques involving simulated ischemia/reperfusion protocols. Results HHR females exhibited pronounced cardiac/cardiomyocyte enlargement, equivalent to males. Under basal conditions, a lower twitch amplitude in female myocytes was prominent in normal but not in hypertrophic myocytes. The cardiomyocyte Ca2+ responses to β-adrenergic challenge differed in hypertrophic male and female cardiomyocytes, with the accentuated response in males abrogated in females—even while contractile responses were similar. In simulated ischemia, a marked and selective elevation of end-ischemia Ca2+ in normal female myocytes was completely suppressed in hypertrophic female myocytes—even though all groups demonstrated similar shifts in myocyte contractile performance. After 30 min of simulated reperfusion, the Ca2+ desensitization characterizing the male response was distinctively absent in female cardiomyocytes. Conclusions Our data demonstrate that cardiac hypertrophy produces dramatically different basal and stress-induced pathophenotypes in female- and male-origin cardiomyocytes. The lower Ca2+ operational status characteristic of female (vs male) cardiomyocytes comprising normal hearts is not exhibited by myocytes of hypertrophic hearts. After ischemia/reperfusion, availability of activator Ca2+ is suppressed in female hypertrophic myocytes, whereas sensitivity to Ca2+ is blunted in male hypertrophic myocytes. These findings demonstrate that selective intervention strategies should be pursued to optimize post-ischemic electromechanical support for male and female hypertrophic hearts. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0084-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Claire L Curl
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Tristan W Harding
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, Centro Cientifico Tecnologico La Plata, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Stephen B Harrap
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria Australia.,Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Melbourne, Victoria 3010 Australia
| |
Collapse
|
21
|
Bell JR, Raaijmakers AJ, Curl CL, Reichelt ME, Harding TW, Bei A, Ng DC, Erickson JR, Vila Petroff M, Harrap SB, Delbridge LM. Cardiac CaMKIIδ splice variants exhibit target signaling specificity and confer sex-selective arrhythmogenic actions in the ischemic-reperfused heart. Int J Cardiol 2015; 181:288-96. [DOI: 10.1016/j.ijcard.2014.11.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/23/2014] [Indexed: 01/16/2023]
|
22
|
Ayaz O, Howlett SE. Testosterone modulates cardiac contraction and calcium homeostasis: cellular and molecular mechanisms. Biol Sex Differ 2015; 6:9. [PMID: 25922656 PMCID: PMC4411792 DOI: 10.1186/s13293-015-0027-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/27/2015] [Indexed: 02/06/2023] Open
Abstract
The incidence of cardiovascular disease rises dramatically with age in both men and women. Because a woman's risk of cardiovascular disease rises markedly after the onset of menopause, there has been growing interest in the effect of estrogen on the heart and its role in the pathophysiology of these diseases. Much less attention has been paid to the impact of testosterone on the heart, even though the levels of testosterone also decline with age and low-testosterone levels are linked to the development of cardiovascular diseases. The knowledge that receptors for all major sex steroid hormones, including testosterone, are present on individual cardiomyocytes suggests that these hormones may influence the heart at the cellular level. Indeed, it is well established that there are male-female differences in intracellular Ca(2+) release and contraction in isolated ventricular myocytes. Growing evidence suggests that these differences arise from effects of sex steroid hormones on processes involved in intracellular Ca(2+) homeostasis. This review considers how myocardial contractile function is modified by testosterone, with a focus on the impact of testosterone on processes that regulate Ca(2+) handling at the level of the ventricular myocyte. The idea that testosterone regulates Ca(2+) handling in the heart is important, as Ca(2+) dysregulation plays a key role in the pathogenesis of a variety of different cardiovascular diseases. A better understanding of sex hormone regulation of myocardial Ca(2+) homeostasis may reveal new targets for the treatment of cardiovascular diseases in all older adults.
Collapse
Affiliation(s)
- Omar Ayaz
- Department of Pharmacology, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, PO Box 15000, Halifax, NS B3H 4R2 Canada
| | - Susan Ellen Howlett
- Department of Pharmacology, Dalhousie University, 5850 College Street, Sir Charles Tupper Medical Building, PO Box 15000, Halifax, NS B3H 4R2 Canada
- Medicine (Geriatric Medicine), Dalhousie University, 5850 College Street, PO Box 15000, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
23
|
Franconi F, Rosano G, Campesi I. Need for gender-specific pre-analytical testing: the dark side of the moon in laboratory testing. Int J Cardiol 2014; 179:514-35. [PMID: 25465806 DOI: 10.1016/j.ijcard.2014.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Many international organisations encourage studies in a sex-gender perspective. However, research with a gender perspective presents a high degree of complexity, and the inclusion of sex-gender variable in experiments presents many methodological questions, the majority of which are still neglected. Overcoming these issues is fundamental to avoid erroneous results. Here, pre-analytical aspects of the research, such as study design, choice of utilised specimens, sample collection and processing, animal models of diseases, and the observer's role, are discussed. Artefacts in this stage of research could affect the predictive value of all analyses. Furthermore, the standardisation of research subjects according to their lifestyles and, if female, to their life phase and menses or oestrous cycle, is urgent to harmonise research worldwide. A sex-gender-specific attention to pre-analytical aspects could produce a decrease in the time for translation from the bench to bedside. Furthermore, sex-gender-specific pre-clinical pharmacological testing will enable adequate assessment of pharmacokinetic and pharmacodynamic actions of drugs and will enable, where appropriate, an adequate gender-specific clinical development plan. Therefore, sex-gender-specific pre-clinical research will increase the gender equity of care and will produce more evidence-based medicine.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy; Vicepresident of Basilicata Region.
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy
| |
Collapse
|