1
|
Xia D, Guo Y, Xu R, Li N. Emerging strategies for nitric oxide production and their topical application as nanodressings to promote diabetic wound healing. J Nanobiotechnology 2025; 23:53. [PMID: 39881346 PMCID: PMC11776289 DOI: 10.1186/s12951-025-03135-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
The challenges associated with prolonged healing or non-healing of chronic diabetic wounds contribute significantly to the increased incidence of lower limb amputation. A pivotal factor in the impediment of healing is the reduced production of endogenous nitric oxide (NO) due to the hyperglycemic microenvironment typical of chronic diabetes. While both endogenous and exogenous NO have been shown to promote the healing process of diabetic wounds, the direct application of NO in wound management is limited due to its gaseous nature and the risk of explosive release. This review summarizes recent advances of nanodressings incorporating NO donors in the treatment of diabetic wounds, detailing the specific conditions under which these nanodressings facilitate NO release, with a focus on the beneficial effects of NO, strategies for its supplementation, and the challenges encountered in the clinical translation of NO donors as a clinically viable nanomedicine in the context of improving diabetic wound healing.
Collapse
Affiliation(s)
- Dan Xia
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ying Guo
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ruodan Xu
- Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2025; 68:158-175. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Bell DA, Miller CM, Sullivan R. A continuous mode of action of nitric oxide in hard-to-heal wound healing. J Wound Care 2024; 33:912-925. [PMID: 39630551 DOI: 10.12968/jowc.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nitric oxide (NO) is one of the most studied molecules in medical science. The role of NO as an endogenous regulator of inflammation, as an antibacterial agent and as an endogenous gasotransmitter is well established. Even so, despite a plethora of excellent wound healing data, hard-to-heal (chronic) wounds are of epidemic proportions, and still growing in number. However, yet to be established and sorely needed is the identification of a single, continuous NO mechanism of action (MoA), where phase-to-phase variance in the complex sequence of cellular and molecular wound healing may elucidate the potential for placing hard-to-heal wounds on positive healing trajectories. Hence, the objectives of this review were to: identify salient MoAs for NO in each phase of skin wound healing; and to select and validate a single MoA that is both ubiquitous and continuous in NO across acute and hard-to-heal wound sequences, and which potentiates the ability to supplementally motivate and guide the recovery of a hard-to-heal wound onto a positive healing trajectory. The search began by selecting a detailed, multipart wound healing model. Next, as guided by the literature, was the identification of salient NO functionalities for each model segment. These modes of action were then be used to identify and validate a single NO MoA that is continuous across the healing spectrum. Finally, by using the principle of 'super position' of two continuous functions, this acute healing NO MoA solution was compared to a similar solution set describing a hard-to-heal or chronic wound. As both solution sets are continuous in a NO function, the resultant 'overlay' then helped to identify and guide the use of a NO MoA capable of placing any hard-to-heal wound on a positive healing trajectory.
Collapse
|
4
|
Ginkgo biloba extracts improve choroidal circulation leading to suppression of myopia in mice. Sci Rep 2023; 13:3772. [PMID: 36882511 PMCID: PMC9989591 DOI: 10.1038/s41598-023-30908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Myopia is becoming more common across the world, necessitating the development of preventive methods. We investigated the activity of early growth response 1 (EGR-1) protein and discovered that Ginkgo biloba extracts (GBEs) activated EGR-1 in vitro. In vivo, C57BL/6 J mice were fed either normal or 0.0667% GBEs (200 mg/kg) mixed chow (n = 6 each), and myopia was induced with - 30 diopter (D) lenses from 3 to 6 weeks of age. Refraction and axial length were measured by an infrared photorefractor and an SD-OCT system, respectively. In lens-induced myopia mice, oral GBEs significantly improved refractive errors (- 9.92 ± 1.53 D vs. - 1.67 ± 3.51 D, p < 0.001) and axial elongation (0.22 ± 0.02 mm vs. 0.19 ± 0.02 mm, p < 0.05). To confirm the mechanism of GBEs in preventing myopia progression, the 3-week-old mice were divided into normally fed with either myopic-induced or non-myopic-induced groups and GBEs fed with either myopic-induced or non-myopic-induced groups (n = 10 each). Choroidal blood perfusion was measured with optical coherence tomography angiography (OCTA). In both non-myopic induced groups, compared to normal chow, oral GBEs significantly improved choroidal blood perfusion (8.48 ± 15.75%Area vs. 21.74 ± 10.54%Area, p < 0.05) and expression of Egr-1 and endothelial nitric oxide synthase (eNOS) in the choroid. In both myopic-induced groups, compared to normal chow, oral GBEs also improved choroidal blood perfusion (- 9.82 ± 9.47%Area vs. 2.29 ± 11.84%Area, p < 0.05) and was positively correlated with the change in choroidal thickness. These findings suggest that GBEs may inhibit the progression of myopia by improving choroidal blood perfusion.
Collapse
|
5
|
Ivnitsky JJ, Schäfer TV, Rejniuk VL, Golovko AI. Endogenous humoral determinants of vascular endothelial dysfunction as triggers of acute poisoning complications. J Appl Toxicol 2023; 43:47-65. [PMID: 35258106 DOI: 10.1002/jat.4312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is not only the semipermeable membrane that separates tissue from blood but also an organ that regulates inflammation, vascular tone, blood clotting, angiogenesis and synthesis of connective tissue proteins. It is susceptible to the direct cytotoxic action of numerous xenobiotics and to the acute hypoxia that accompanies acute poisoning. This damage is superimposed on the preformed state of the vascular endothelium, which, in turn, depends on many humoral factors. The probability that an exogenous toxicant will cause life-threatening dysfunction of the vascular endothelium, thereby complicating the course of acute poisoning, increases with an increase in the content of endogenous substances in the blood that disrupt endothelial function. These include ammonia, bacterial endotoxin, indoxyl sulfate, para-cresyl sulfate, trimethylamine N-oxide, asymmetric dimethylarginine, glucose, homocysteine, low-density and very-low-density lipoproteins, free fatty acids and products of intravascular haemolysis. Some other endogenous substances (albumin, haptoglobin, haemopexin, biliverdin, bilirubin, tetrahydrobiopterin) or food-derived compounds (ascorbic acid, rutin, omega-3 polyunsaturated fatty acids, etc.) reduce the risk of lethal vascular endothelial dysfunction. The individual variability of the content of these substances in the blood contributes to the stochasticity of the complications of acute poisoning and is a promising target for the risk reduction measures. Another feasible option may be the repositioning of drugs that affect the function of the vascular endothelium while being currently used for other indications.
Collapse
Affiliation(s)
- Jury Ju Ivnitsky
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Timur V Schäfer
- State Scientific Research Test Institute of the Military Medicine of Defense Ministry of the Russian Federation, Saint Petersburg, Russia
| | - Vladimir L Rejniuk
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| | - Alexandr I Golovko
- Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency, Saint Petersburg, Russia
| |
Collapse
|
6
|
In Vitro Exercise-Induced Endothelial Shear Stress Protects the Vascular Endothelium. Cardiopulm Phys Ther J 2022. [DOI: 10.1097/cpt.0000000000000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
8
|
Yang CY, Chang PY, Wu BS, Tarng DC, Lee OKS. Mechanical and chemical cues synergistically promote human venous smooth muscle cell osteogenesis through integrin β1-ERK1/2 signaling: A cell model of hemodialysis fistula calcification. FASEB J 2021; 35:e22042. [PMID: 34758125 DOI: 10.1096/fj.202101064rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Arteriovenous fistula (AVF) is the vascular access of choice for renal replacement therapy. However, AVF is susceptible to calcification with a high prevalence of 40%-65% in chronic hemodialysis patients. Repeated needle puncture for hemodialysis cannulation results in intimal denudation of AVF. We hypothesized that exposure to blood shear stress in the medial layer promotes venous smooth muscle cell (SMC) osteogenesis. While previous studies of shear stress focused on arterial-type SMCs, SMCs isolated from the vein had not been investigated. This study established a venous cell model of AVF using the fluid shear device, combined with a high phosphate medium to mimic the uremic milieu. Osteogenic gene expression of venous SMCs upon mechanical and chemical cues was analyzed in addition to the activated cell signaling pathways. Our findings indicated that upon shear stress and high phosphate environment, mechanical stimulation (shear stress) had an additive effect in up-regulation of an early osteogenic marker, Runx2. We further identified that the integrin β1-ERK1/2 signaling pathway was responsible for the molecular basis of venous SMC osteogenesis upon shear stress exposure. Mitochondrial biogenesis also took part in the early stage of this venopathy pathogenesis, evident by the up-regulated mitochondrial transcription factor A and mitochondrial DNA polymerase γ in venous SMCs. In conclusion, synergistic effects of fluid shear stress and high phosphate induce venous SMC osteogenesis via the ERK1/2 pathway through activating the mechanosensing integrin β1 signaling. The present study identified a promising druggable target for reducing AVF calcification, which deserves further in vivo investigations.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Ministry of Education, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Ministry of Education, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Kong Z, Li B, Zhou C, He Q, Zheng Y, Tan Z. Comparative Analysis of Metabolic Differences of Jersey Cattle in Different High-Altitude Areas. Front Vet Sci 2021; 8:713913. [PMID: 34414230 PMCID: PMC8370252 DOI: 10.3389/fvets.2021.713913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
In high-altitude area, hypoxia is a serious stress for humans and other animals, disrupting oxygen homeostasis and thus affecting tissue metabolism. Up to now, there are few reports on the metabolic changes of dairy cows at different altitudes. In this experiment, metabonomics technology and blood biochemical indexes were used to study the metabolic changes of dairy cows in different altitudes. The results showed that the different metabolites were mainly enriched in amino acid metabolism and sphingolipid metabolism, and sphingolipid metabolism showed a negative correlation with increased altitude. The results of this study will enrich the hypoxia-adaptive mechanism of dairy cows in high-altitude areas and provide a theoretical basis for the nutritional regulation of performance and disease treatment of dairy cows in high-altitude areas.
Collapse
Affiliation(s)
- Zhiwei Kong
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Nornal University, Chaozhou, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Nornal University, Chaozhou, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
10
|
Bai H, Wei S, Xie B, Wang Z, Li M, Qiao Z, Sun P, Wang W. Endothelial nitric oxide synthase (eNOS) mediates neointimal thickness in arteriovenous fistulae with different anastomotic angles in rats. J Vasc Access 2021; 23:403-411. [PMID: 33619996 DOI: 10.1177/1129729821996537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND It is known that the anastomotic angle can influence neointimal hyperplasia and patency in arteriovenous fistulae (AVF). Endothelial nitric oxide synthase (eNOS) is released from the vascular endothelium and can inhibit neointimal hyperplasia. Therefore, here, we aimed to test the hypothesis that the manipulation of eNOS expression could influence neointimal thickness in a rat AVF model with different anastomosis angles. METHODS Rat carotid artery (inflow, CA) and jugular vein (outflow, JV) AVF were created with acute, blunt, or end-to-end (ETE) anastomosis angles. Aspirin was used to increase eNOS expression in the acute angle group, while N(G)-nitro-L-arginine methyl ester (L-name) was used to decrease eNOS expression in the obtuse angle group. The rats were sacrificed on day 21, and tissues were harvested and analyzed histologically and with immunostaining. RESULTS A larger anastomosis diameter (p < 0.016) and smaller neointimal area (p < 0.01) were observed in the obtuse and end-to-end (ETE) groups compared to in the acute group. In the acute angle group, there were more proliferating cell nuclear antigen (PCNA) and α-actin dual-positive cells (p < 0.0001) and fewer phospho (p)-eNOS-positive endothelial cells (p < 0.0001) in the neointima than in the obtuse and ETE angle groups. On treating the acute angle and blunt angle groups with aspirin and L-name, respectively, no significant differences in the neointima/lumen rate were observed (p = 0.6526) between the groups; however, there were fewer von Willebrand factor (vWF) and p-eNOS dual-positive cells in the obtuse angle group treated with L-name (p = 0.0045). CONCLUSIONS We demonstrated that eNOS plays an important role in neointimal hyperplasia in AVF with different anastomosis angles; further, eNOS could potentially be used as a therapeutic target in patients with AVF in the future.
Collapse
Affiliation(s)
- Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhentao Qiao
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Wang
- Department of Physiology, Medical school of Zhengzhou University, Zhengzhou, Henan, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Henan, China
| |
Collapse
|
11
|
A Prior High-Intensity Exercise Bout Attenuates the Vascular Dysfunction Resulting From a Prolonged Sedentary Bout. J Phys Act Health 2019; 16:916-924. [DOI: 10.1123/jpah.2018-0568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/04/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022]
Abstract
Background: This study sought to determine the impact of an acute prior bout of high-intensity interval aerobic exercise on attenuating the vascular dysfunction associated with a prolonged sedentary bout. Methods: Ten young (24 ± 1 y) healthy males completed two 3-hour sessions of prolonged sitting with (SIT-EX) and without (SIT) a high-intensity interval aerobic exercise session performed immediately prior. Prior to and 3 hours into the sitting bout, leg vascular function was assessed with the passive leg movement technique, and blood samples were obtained from the lower limb to evaluate changes in oxidative stress (malondialdehyde and superoxide dismutase) and inflammation (interleukin-6). Results: No presitting differences in leg vascular function (assessed via passive leg movement technique-induced hyperemia) were revealed between conditions. After 3 hours of prolonged sitting, leg vascular function was significantly reduced in the SIT condition, but unchanged in the SIT-EX. Lower limb blood samples revealed no alterations in oxidative stress, antioxidant capacity, or inflammation in either condition. Conclusions: This study revealed that lower limb vascular dysfunction was significantly attenuated by an acute presitting bout of high-intensity interval aerobic exercise. Further analysis of lower limb blood samples revealed no changes in circulating oxidative stress or inflammation in either condition.
Collapse
|
12
|
Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta Mol Basis Dis 2019; 1865:728-734. [DOI: 10.1016/j.bbadis.2018.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/03/2018] [Accepted: 08/15/2018] [Indexed: 01/07/2023]
|
13
|
Garten RS, Hogwood AC, Weggen JB, Fralin RC, LaRosa K, Lee D, Michael A, Scott M. Aerobic training status does not attenuate prolonged sitting-induced lower limb vascular dysfunction. Appl Physiol Nutr Metab 2018; 44:425-433. [PMID: 30257099 DOI: 10.1139/apnm-2018-0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study examined if the degree of aerobic training protects against the lower limb vascular dysfunction associated with a prolonged sitting bout. Ten young, aerobically trained (AT) and 10 young, untrained (UT) individuals completed a prolonged (3 h) sitting bout. Leg vascular function was measured prior to and at 1.5 and 3 h into the prolonged sitting bout using the passive leg movement (PLM) technique. PLM-induced hyperemia was significantly reduced from baseline at 1.5 and 3 h into the prolonged sitting bout in both groups when evaluated as peak change in leg blood flow from baseline (Δ LBF) (UT: 956 ± 140, 586 ± 80, and 599 ± 96 mL·min-1 at baseline, 1.5 h, and 3 h, respectively; AT: 955 ± 183, 789 ± 193, and 712 ± 131 mL·min-1 at baseline, 1.5 h, and 3 h, respectively) and LBF area under the curve (UT: 283 ± 73, 134 ± 31, and 164 ± 42 mL·min-1 at baseline, 1.5 h, and 3 h, respectively; AT: 336 ± 86, 242 ± 86, and 245 ± 73 mL·min-1 at baseline, 1.5 h, and 3 h, respectively), but no significant differences between groups were revealed. No significant correlations were observed when examining the relationship between maximal oxygen uptake (relative and absolute) and reductions in leg vascular function at 1.5 and 3 h into the prolonged sitting bout. This study revealed that aerobic training did not provide a protective effect against prolonged sitting-induced lower limb vascular dysfunction and further highlights the importance of reducing excessive sitting in all populations.
Collapse
Affiliation(s)
- Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Austin C Hogwood
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - R Carson Fralin
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Kathryn LaRosa
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - David Lee
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Austin Michael
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| | - Matthew Scott
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284-2020, USA
| |
Collapse
|
14
|
Alevriadou BR, Shanmughapriya S, Patel A, Stathopulos PB, Madesh M. Mitochondrial Ca 2+ transport in the endothelium: regulation by ions, redox signalling and mechanical forces. J R Soc Interface 2017; 14:rsif.2017.0672. [PMID: 29237825 DOI: 10.1098/rsif.2017.0672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) transport by mitochondria is an important component of the cell Ca2+ homeostasis machinery in metazoans. Ca2+ uptake by mitochondria is a major determinant of bioenergetics and cell fate. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex, an inner mitochondrial membrane protein assembly consisting of the MCU Ca2+ channel, as its core component, and the MCU complex regulatory/auxiliary proteins. In this review, we summarize the current knowledge on the molecular nature of the MCU complex and its regulation by intra- and extramitochondrial levels of divalent ions and reactive oxygen species (ROS). Intracellular Ca2+ concentration ([Ca2+]i), mitochondrial Ca2+ concentration ([Ca2+]m) and mitochondrial ROS (mROS) are intricately coupled in regulating MCU activity. Here, we highlight the contribution of MCU activity to vascular endothelial cell (EC) function. Besides the ionic and oxidant regulation, ECs are continuously exposed to haemodynamic forces (either pulsatile or oscillatory fluid mechanical shear stresses, depending on the precise EC location within the arteries). Thus, we also propose an EC mechanotransduction-mediated regulation of MCU activity in the context of vascular physiology and atherosclerotic vascular disease.
Collapse
Affiliation(s)
- B Rita Alevriadou
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA .,Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA 19140, USA.,Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Akshar Patel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.,Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada N6A 5C1
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA 19140, USA .,Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Tyml K, Swarbreck S, Pape C, Secor D, Koropatnick J, Feng Q, Veldhuizen RAW, Gill SE. Voluntary running exercise protects against sepsis-induced early inflammatory and pro-coagulant responses in aged mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:210. [PMID: 28789683 PMCID: PMC5549433 DOI: 10.1186/s13054-017-1783-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/29/2017] [Indexed: 01/10/2023]
Abstract
Background Despite many animal studies and clinical trials, mortality in sepsis remains high. This may be due to the fact that most experimental studies of sepsis employ young animals, whereas the majority of septic patients are elderly (60 − 70 years). The objective of the present study was to examine the sepsis-induced inflammatory and pro-coagulant responses in aged mice. Since running exercise protects against a variety of diseases, we also examined the effect of voluntary running on septic responses in aged mice. Methods Male C57BL/6 mice were housed in our institute from 2–3 to 22 months (an age mimicking that of the elderly). Mice were prevented from becoming obese by food restriction (given 70–90% of ad libitum consumption amount). Between 20 and 22 months, a subgroup of mice ran voluntarily on wheels, alternating 1–3 days of running with 1–2 days of rest. At 22 months, mice were intraperitoneally injected with sterile saline (control) or 3.75 g/kg fecal slurry (septic). At 7 h post injection, we examined (1) neutrophil influx in the lung and liver by measuring myeloperoxidase and/or neutrophil elastase in the tissue homogenates by spectrophotometry, (2) interleukin 6 (IL6) and KC in the lung lavage by ELISA, (3) pulmonary surfactant function by measuring percentage of large aggregates, (4) capillary plugging (pro-coagulant response) in skeletal muscle by intravital microscopy, (5) endothelial nitric oxide synthase (eNOS) protein in skeletal muscle (eNOS-derived NO is putative inhibitor of capillary plugging) by immunoblotting, and (6) systemic blood platelet counts by hemocytometry. Results Sepsis caused high levels of pulmonary myeloperoxidase, elastase, IL6, KC, liver myeloperoxidase, and capillary plugging. Sepsis also caused low levels of surfactant function and platelet counts. Running exercise increased eNOS protein and attenuated the septic responses. Conclusions Voluntary running protects against exacerbated sepsis-induced inflammatory and pro-coagulant responses in aged mice. Protection against pro-coagulant responses may involve eNOS upregulation. The present discovery in aged mice calls for clinical investigation into potential beneficial effects of exercise on septic outcomes in the elderly. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1783-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karel Tyml
- Centre for Critical Illness Research, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Scott Swarbreck
- Centre for Critical Illness Research, London, Ontario, Canada
| | - Cynthia Pape
- Centre for Critical Illness Research, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Dan Secor
- Centre for Critical Illness Research, London, Ontario, Canada
| | - James Koropatnick
- Cancer Research Program, Lawson Health Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada.,Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Qingping Feng
- Centre for Critical Illness Research, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Ruud A W Veldhuizen
- Centre for Critical Illness Research, London, Ontario, Canada.,Division of Respirology, University of Western Ontario, London, Ontario, Canada.,Department of Medicine, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, London, Ontario, Canada. .,Division of Respirology, University of Western Ontario, London, Ontario, Canada. .,Department of Medicine, University of Western Ontario, London, Ontario, Canada. .,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
16
|
Doyle M, Pohost GM, Bairey Merz CN, Farah V, Shaw LJ, Sopko G, Rogers WJ, Sharaf BL, Pepine CJ, Thompson DV, Rayarao G, Tauxe L, Kelsey SF, Biederman RWW. Aortic flow conditions predict ejection efficiency in the NHLBI-Sponsored Women's Ischemia Syndrome Evaluation (WISE). Cardiovasc Diagn Ther 2017; 7:288-295. [PMID: 28567354 DOI: 10.21037/cdt.2017.03.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The Windkessel model of the cardiovascular system, both in its original wind-chamber and flow-pipe form, and in its electrical circuit analog has been used for over a century to modeled left ventricular ejection conditions. Using parameters obtained from aortic flow we formed a Flow Index that is proportional to the impedance of such a "circuit". We show that the impedance varies with ejection fraction (EF) in a manner characteristic of a resonant circuit with multiple resonance points, with each resonance point centrally located in a small range of EF values, i.e., corresponding to multiple contiguous EF bands. METHODS Two target populations were used: (I) a development group comprising male and female subjects (n=112) undergoing cardiovascular magnetic resonance (CMR) imaging for a variety of cardiac conditions. The Flow Index was developed using aortic flow data and its relationship to left ventricular EF was shown. (II) An illustration group comprised of female subjects from the Women's Ischemia Syndrome Evaluation (WISE) (n=201) followed for 5 years for occurrence of major adverse cardiovascular events (MACE). Flow data was not available in this group but since the Flow Index was related to the EF we noted the MACE rate with respect to EF. RESULTS The EFs of the development population covered a wide range (9%-76%) traversing six Flow Index resonance bands. Within each Flow Index resonance band the impedance varied from highly capacitive at the lower range of EF through minimal impedance at resonance, to highly inductive at the higher range of EF, which is characteristic of a resonant circuit. When transitioning from one EF band to a higher band, the Flow Index made a sudden transition from highly inductive to capacitive impedance modes. MACE occurred in 26 (13%) of the WISE (illustration) population. Distance in EF units (Deltacenter) from the central location between peaks of MACE activity was derived from EF data and was predictive of MACE rate with an area under the receiver operator curve of 0.73. Of special interest, Deltacenter was highly predictive of MACE in the sub-set of women with EF >60% (AUC 0.79) while EF was no more predictive than random chance (AUC 0.48). CONCLUSIONS A Flow Index that describes impedance conditions of left ventricular ejection can be calculated using data obtained completely from the ascending aorta. The Flow Index exhibits a periodic variation with EF, and in a separate illustration population the occurrence of MACE was observed to exhibit a similar periodic variation with EF, even in cases of normal EF.
Collapse
Affiliation(s)
- Mark Doyle
- Allegheny General Hospital, Pittsburgh, PA, USA
| | - Gerald M Pohost
- Keck Medical Center, University of Southern California, Los Angeles, CA, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | | | - Leslee J Shaw
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - George Sopko
- National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | - Sheryl F Kelsey
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
17
|
Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 2017; 313:H72-H88. [PMID: 28476924 DOI: 10.1152/ajpheart.00470.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Bernhard Reich
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Madlen Uhlemann
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
18
|
Bai YP, Xiao S, Tang YB, Tan Z, Tang H, Ren Z, Zeng H, Yang Z. Shear stress-mediated upregulation of GTP cyclohydrolase/tetrahydrobiopterin pathway ameliorates hypertension-related decline in reendothelialization capacity of endothelial progenitor cells. J Hypertens 2017; 35:784-797. [PMID: 28033126 DOI: 10.1097/hjh.0000000000001216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Guanosine triphosphate cyclohydrolase/tetrahydrobiopterin (GTPCH)/(BH4) pathway has been proved to regulate the function of endothelial progenitor cells (EPCs) in deoxycorticosterone acetate-salt hypertensive mice, indicating that GTPCH/BH4 pathway may be an important repair target for hypertension-related endothelial injury. Shear stress is an important nonpharmacologic strategy to modulate the function of EPCs. Here, we investigated the effects of laminar shear stress on the GTPCH/BH4 pathway and endothelial repair capacity of circulating EPCs in hypertension. METHOD Laminar shear stress was loaded on the human EPCs from hypertensive patients and normotensive patients. The in-vitro function, in-vivo reendothelialization capacity and GTPCH/BH4 pathway of human EPCs were evaluated. RESULTS Both in-vitro function and reendothelialization capacity of EPCs were lower in hypertensive patients than that in normotensive patients. The GTPCH/BH4 pathway of EPCs was downregulated in hypertensive patients. Shear stress increased in-vitro function and reendothelialization capacity of EPCs from hypertensive patients and normotensive patients. Furthermore, shear stress upregulated the expression of GTPCH I and levels of BH4, nitric oxide, and cGMP of EPCs, and reduced thrombospondin-1 expression. With treatment of GTPCH knockdown or nitroarginine methyl ester inhibition, shear stress-induced increased levels of BH4, nitric oxide and cGMP of EPCs was suppressed. When GTPCH/BH4 pathway of EPCs was blocked, the effects of shear stress on in-vitro function and reendothelialization capacity of EPCs were inhibited. CONCLUSION The study demonstrates for the first time that shear stress-induced upregulation of the GTPCH/BH4 pathway ameliorates hypertension-related decline in endothelial repair capacity of EPCs. These findings provide novel nonpharmacologic therapeutic approach for hypertension-related endothelial repair.
Collapse
Affiliation(s)
- Yong-Ping Bai
- aDepartment of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan bDepartment of Neurology, Sun Yat-Sen Memorial Hospital cDepartment of Pharmacology, Zhongshan School of Medicine dDepartment of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University eSun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine fCenter for Reproductive Medicine, The Sixth Affiliated Hospital gDepartment of Hypertension & Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res 2017; 120:713-735. [DOI: 10.1161/circresaha.116.309326] [Citation(s) in RCA: 692] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Major reactive oxygen species (ROS)–producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).
Collapse
Affiliation(s)
- Ulrich Förstermann
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Ning Xia
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| | - Huige Li
- From the Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany (U.F., N.X., H.L.); Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University Medical Center, Mainz, Germany (H.L.); and German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany (H.L.)
| |
Collapse
|
20
|
Phinikaridou A, Andia ME, Lavin B, Smith A, Saha P, Botnar RM. Increased Vascular Permeability Measured With an Albumin-Binding Magnetic Resonance Contrast Agent Is a Surrogate Marker of Rupture-Prone Atherosclerotic Plaque. Circ Cardiovasc Imaging 2016; 9:e004910. [PMID: 27940955 PMCID: PMC5388187 DOI: 10.1161/circimaging.116.004910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Compromised structural integrity of the endothelium and higher microvessel density increase vascular permeability. We investigated whether vascular permeability measured in vivo by magnetic resonance imaging using the albumin-binding contrast agent, gadofosveset, is a surrogate marker of rupture-prone atherosclerotic plaque in a rabbit model. METHODS AND RESULTS New Zealand white rabbits (n=10) were rendered atherosclerotic by cholesterol-diet and endothelial denudation. Plaque rupture was triggered with Russell's viper venom and histamine. Animals were imaged pre-triggering, at 3 and 12 weeks, to quantify plaque area, vascular permeability, vasodilation, and stiffness and post-triggering to identify thrombus. Plaques identified on the pretrigger scans were classified as stable or rupture-prone based on the absence or presence of thrombus on the corresponding post-trigger magnetic resonance imaging, respectively. All rabbits had developed atherosclerosis, and 60% had ruptured plaques. Rupture-prone plaques had higher vessel wall relaxation rate (R1; 2.30±0.5 versus 1.86±0.3 s-1; P<0.001), measured 30 minutes after gadofosveset administration, and higher R1/plaque area ratio (0.70±0.06 versus 0.47±0.02, P= 0.01) compared with stable plaque at 12 weeks. Rupture-prone plaques had higher percent change in R1 between the 3 and 12 weeks compared with stable plaque (50.80±7.2% versus 14.22±2.2%; P<0.001). Immunohistochemistry revealed increased vessel wall albumin and microvessel density in diseased aortas and especially in ruptured plaque. Electron microscopy showed lack of structural integrity in both luminal and microvascular endothelium in diseased vessels. Functionally, the intrinsic vasodilation of the vessel wall decreased at 12 weeks compared with 3 weeks (18.60±1.0% versus 23.43±0.8%; P<0.001) and in rupture-prone compared with stable lesions (16.40±2.0% versus 21.63±1.2%; P<0.001). Arterial stiffness increased at 12 weeks compared with 3 weeks (5.00±0.1 versus 2.53±0.2 m/s; P<0.001) both in animals with stable and rupture-prone lesions. CONCLUSIONS T1 mapping using an albumin-binding contrast agent (gadofosveset) could quantify the changes in vascular permeability associated with atherosclerosis progression and rupture-prone plaques.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.).
| | - Marcelo E Andia
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Begoña Lavin
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Alberto Smith
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - Prakash Saha
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| | - René M Botnar
- From the Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., B.L., R.M.B.), Academic Department of Surgery, Cardiovascular Division (A.S., P.S.), BHF Centre of Excellence, Cardiovascular Division (A.S., R.M.B.), and Wellcome Trust and EPSRC Medical Engineering Center (P.S., R.M.B.), King's College London, United Kingdom; and Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (M.E.A.)
| |
Collapse
|
21
|
Zaromytidou M, Siasos G, Coskun AU, Lucier M, Antoniadis AP, Papafaklis MI, Koskinas KC, Andreou I, Feldman CL, Stone PH. Intravascular hemodynamics and coronary artery disease: New insights and clinical implications. Hellenic J Cardiol 2016; 57:389-400. [PMID: 27894949 DOI: 10.1016/j.hjc.2016.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Intracoronary hemodynamics play a pivotal role in the initiation and progression of the atherosclerotic process. Low pro-inflammatory endothelial shear stress impacts vascular physiology and leads to the occurrence of coronary artery disease and its implications.
Collapse
Affiliation(s)
- Marina Zaromytidou
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Gerasimos Siasos
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ahmet U Coskun
- Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States
| | - Michelle Lucier
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Antonios P Antoniadis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michail I Papafaklis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Konstantinos C Koskinas
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ioannis Andreou
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Charles L Feldman
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
22
|
Pescetelli I, Zimarino M, Ghirarduzzi A, De Caterina R. Localizing factors in atherosclerosis. J Cardiovasc Med (Hagerstown) 2016; 16:824-30. [PMID: 25575274 DOI: 10.2459/jcm.0000000000000224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atherosclerotic vascular disease is the leading cause of death worldwide. Although the entire vascular bed is constantly exposed to the same risk factors, atheromatous lesions present a distinct intra-individual pattern of localization and progression, being consistently more frequent in specific segments of the arterial vascular bed. This peculiar distribution may be related to selective sensitivity of such locations to the influence of risk factors or to histopathological and flow differences, and has relevant clinical implications, as the prognosis of the disease varies according to localization. We here review the theories that have been formulated to explain such preferential locations, as its understanding can be useful to pursue diagnostic screening strategies and focused preventive measures.
Collapse
Affiliation(s)
- Irene Pescetelli
- aInstitute of Cardiology and Centro di Scienze dell'Invecchiamento (Ce.S.I.), 'G. d'Annunzio' University, Chieti bDivision of Internal Medicine, Arcispedale S. Maria Nuova-IRCCS-Reggio, Emilia, Italy
| | | | | | | |
Collapse
|
23
|
Puri R, Leong DP, Nicholls SJ, Liew GYL, Nelson AJ, Carbone A, Copus B, Wong DT, Beltrame JF, Worthley SG, Worthley MI. Coronary artery wall shear stress is associated with endothelial dysfunction and expansive arterial remodelling in patients with coronary artery disease. EUROINTERVENTION 2016; 10:1440-8. [PMID: 24425248 DOI: 10.4244/eijv10i12a249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS To investigate in vivo relationships between segmental wall shear stress (WSS), endothelium-dependent vasoreactivity and arterial remodelling. METHODS AND RESULTS Twenty-four patients with minor angiographic coronary arterial disease (≤30% stenosis severity) underwent intracoronary (IC) salbutamol provocation during intravascular ultrasound (IVUS)-upon-Doppler guidewire imaging. Macrovascular response (change in segmental lumen volume [SLV] at baseline and following IC salbutamol), plaque burden (percent atheroma volume [PAV]), remodelling indices (RI), eccentricity indices (EI) and WSS were evaluated in 179 consecutive 5 mm coronary segments. Baseline WSS was directly related to endothelium-dependent epicardial coronary vasomotion (% change SLV, coefficient 17.2, p=0.004), and inversely related to RI (coefficient -0.23, p=0.02) and EI (coefficient -10.0, p=0.001). Baseline WSS was lower in segments displaying endothelial dysfunction (defined as any change in SLV ≤0) compared with preserved function (0.66±0.33 vs. 0.71±0.22 N/m2, p=0.046). Independent of plaque burden, segments with the lowest tertile of WSS displayed less vasodilatation, or vasoconstriction, than segments with the highest tertile of WSS. Higher plaque burden segments harbouring the lowest tertiles of WSS displayed vasoconstriction, expansive arterial remodelling and greater plaque eccentricity. CONCLUSIONS In patients with stable coronary syndromes and minor angiographic coronary disease, coronary segments with lower in vivo WSS values display functional and morphological features of plaque vulnerability.
Collapse
Affiliation(s)
- Rishi Puri
- Discipline of Medicine, Cardiovascular Research Centre, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee JS, Fang SY, Roan JN, Jou IM, Lam CF. Spinal cord injury enhances arterial expression and reactivity of α1-adrenergic receptors-mechanistic investigation into autonomic dysreflexia. Spine J 2016; 16:65-71. [PMID: 26433037 DOI: 10.1016/j.spinee.2015.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/26/2015] [Accepted: 09/03/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Autonomic dysreflexia (AD) usually presents with a significant increase in blood pressure, and uncontrollable autonomic response to stimuli below the level of spinal cord injury (SCI). PURPOSE This study analyzed the vasomotor function and molecular changes in the peripheral arteries below the lesion of SCI to characterize the mechanism of autonomic dysreflexia. STUDY DESIGN This was a randomized experimental study in rats. METHODS Contusive SCI was induced using a force-calibrated weight-drop device at the T10 level in anesthetized rats. Two weeks after severe SCI, blood flow in the femoral arteries was measured, and the vasomotor function and expression of α1-adrenergic receptors were analyzed. RESULTS Blood flow in the femoral artery was significantly reduced in rats with SCI (8.0±2 vs. 17.5±4 mL/min, SCI vs. control, respectively; p=.016). The contraction responses of femoral artery segments to cumulative addition of α1-adrenergic agonist phenylephrine were significantly enhanced in rats with SCI. Expression of α1-adrenergic receptor was upregulated in the medial layer of femoral artery vascular homogenates of these rats. CONCLUSION Our study provides evidence demonstrating that prolonged denervation below the lesion level following SCI results in a compensatory increased expression of α1-adrenergic receptors in the arterial smooth muscle layer, thereby enhancing the responsiveness to α1-adrenergic agonist and potentiating the development of AD.
Collapse
Affiliation(s)
- Jung-Shun Lee
- Divisions of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - Shih-Yuan Fang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - Jun-Neng Roan
- Divisions of Cardiovascular Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Rd, Tainan 704, Taiwan; Department of Anesthesiology, Buddhist Tzu Chi General Hospital and Tzu Chi University School of Medicine, 707 Chung Yang Rd Section 3, Hualien 907, Taiwan.
| |
Collapse
|
25
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
26
|
Santhanam AVR, d'Uscio LV, Katusic ZS. Characterization of cerebral microvasculature in transgenic mice with endothelium targeted over-expression of GTP-cyclohydrolase I. Brain Res 2015; 1625:198-205. [PMID: 26343845 PMCID: PMC4637228 DOI: 10.1016/j.brainres.2015.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/14/2015] [Accepted: 08/26/2015] [Indexed: 01/05/2023]
Abstract
Tetrahydrobiopterin (BH4) is a critical determinant of nitric oxide (NO) production by nitric oxide synthase (NOS) in the vascular endothelium and its biosynthesis is regulated by the enzymatic activity of GTP-cyclohydrolase I (GTPCH I). The present study was designed to determine the effects of endothelium-targeted overexpression of GTPCH I (eGCH-Tg) on murine cerebral vascular function. Endothelium targeted over-expression of GTPCH I was associated with a significant increase in levels of BH4, as well as its oxidized product, 7,8-dihydrobiopterin (7,8-BH2) in cerebral microvessels. Importantly, ratio of BH4 to 7,8-BH2, indicative of BH4 available for eNOS activation, was significantly increased in eGCH-Tg mice. However, expression of endothelial NOS, levels of nitrate/nitrite--indicative of NO production--remained unchanged between cerebral microvessels of wild-type and eGCH-Tg mice. Furthermore, increased BH4 biosynthesis neither affected production of superoxide anion nor expression of antioxidant proteins. Moreover, endothelium-specific GTPCH I overexpression did not alter intracellular levels of cGMP, reflective of NO signaling in cerebral microvessels. The obtained results suggest that, despite a significant increase in BH4 bioavailability, generation of endothelial NO in cerebral microvessels remained unchanged in eGCH-Tg mice. We conclude that under physiological conditions the levels of BH4 in the cerebral microvessels are optimal for activation of endothelial NOS and NO/cGMP signaling.
Collapse
Affiliation(s)
- Anantha Vijay R Santhanam
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Hirai DM, Musch TI, Poole DC. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 2015; 309:H1419-39. [PMID: 26320036 DOI: 10.1152/ajpheart.00469.2015] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 01/13/2023]
Abstract
Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2 , respectively). The Q̇mO2 /V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2 ), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2 ). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2 /V̇mO2 matching (and enhanced PmvO2 ) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2 transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; and
| | - Timothy I Musch
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
28
|
|
29
|
ZHOU TIAN, ZHENG YIMING, QIU JUHUI, HU JIANJUN, SUN DAMING, TANG CHAOJUN, WANG GUIXUE. ENDOTHELIAL MECHANOTRANSDUCTION MECHANISMS FOR VASCULAR PHYSIOLOGY AND ATHEROSCLEROSIS. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414300063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular physiology and disease progression, such as atherosclerosis, are mediated by hemodynamic force generated from blood flow. The hemodynamic force exerts on vascular endothelial cells (ECs), which could perceive the mechanical signals and transmit them into cell interior by multiple potential shear sensors, collectively known as mechanotransduction. However, we do not understand completely how these shear-sensitive components orchestrate physiological and atherosclerotic responses to shear stress. In this review, we provide an overview of biomechanical mechanisms underlying vascular physiology and atherosclerotic progression. Additionally, we summarize current evidences to illustrate that atherosclerotic lesions preferentially develop in arterial regions experiencing disturbance in blood flow, during which endothelial dysfunction is the initial event of atherosclerosis, inflammation plays dominant roles in atherosclerotic progression, and angiogenesis emerges as compensatory explanation for atherosclerotic plaque rupture. Especially in the presence of systemic risk factors (e.g., hyperlipidaemia, hypertension and hyperglycemia), the synergy between these systemic risk factors with hemodynamic factors aggravates atherosclerosis by co-stimulating some of these biomechanical events. Given the hemodynamic environment of vasculature, understanding how the rapid shear-mediated signaling, particularly in combination with systemic risk factors, contribute to atherosclerotic progression through endothelial dysfunction, inflammation and angiogenesis helps to elucidate the role for atherogenic shear stress in specifically localizing atherosclerotic lesions in arterial regions with disturbed flow.
Collapse
Affiliation(s)
- TIAN ZHOU
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - YIMING ZHENG
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - JUHUI QIU
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - JIANJUN HU
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - DAMING SUN
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - CHAOJUN TANG
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - GUIXUE WANG
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
30
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Sildenafil attenuates hepatocellular injury after liver ischemia reperfusion in rats: a preliminary study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:161942. [PMID: 24999378 PMCID: PMC4066851 DOI: 10.1155/2014/161942] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/17/2023]
Abstract
We evaluated the role of sildenafil in a rat liver ischemia-reperfusion model. Forty male rats were randomly allocated in four groups. The sham group underwent midline laparotomy only. In the sildenafil group, sildenafil was administered intraperitoneally 60 minutes before sham laparotomy. In the ischemia-reperfusion (I/R) group, rats were subjected to 45 minutes of hepatic ischemia followed by 120 minutes of reperfusion, while in the sild+I/R group rats were subjected to a similar pattern of I/R after the administration of sildenafil, 60 minutes before ischemia. Two hours after reperfusion, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured and histopathological examination of the lobes subjected to ischemia as well as TUNEL staining for apoptotic bodies was performed. Additionally, myeloperoxidase (MPO) activity and the expression of intercellular adhesion molecule-1 (ICAM-1) were analyzed. Serum markers of hepatocellular injury were significantly lower in the sild+I/R group, which also exhibited lower severity of histopathological lesions and fewer apoptotic bodies, as compared to the I/R group. The I/R group showed significantly higher MPO activity and higher expression of ICAM-1, as compared to the sild+I/R group. Use of sildenafil as a preconditioning agent in a rat model of liver I/R exerted a protective effect.
Collapse
|
32
|
Abstract
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Collapse
|
33
|
Tarhouni K, Guihot AL, Vessières E, Toutain B, Procaccio V, Grimaud L, Loufrani L, Lenfant F, Arnal JF, Henrion D. Determinants of flow-mediated outward remodeling in female rodents: respective roles of age, estrogens, and timing. Arterioscler Thromb Vasc Biol 2014; 34:1281-9. [PMID: 24700123 DOI: 10.1161/atvbaha.114.303404] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Flow (shear stress)-mediated outward remodeling (FMR) of resistance arteries is a key adaptive process allowing collateral growth after arterial occlusion but declining with age. 17-β-estradiol (E2) has a key role in this process through activation of estrogen receptor α (ERα). Thus, we investigated the impact of age and timing for estrogen efficacy on FMR. APPROACH AND RESULTS Female rats, 3 to 18 months old, were submitted to surgery to increase blood flow locally in 1 mesenteric artery in vivo. High-flow and normal-flow arteries were collected 2 weeks later for in vitro analysis. Diameter increased by 27% in high-flow arteries compared with normal-flow arteries in 3-month-old rats. The amplitude of remodeling declined with age (12% in 18-month-old rats) in parallel with E2 blood level and E2 substitution failed restoring remodeling in 18-month-old rats. Ovariectomy of 3-, 9-, and 12-month-old rats abolished FMR, which was restored by immediate E2 replacement. Nevertheless, this effect of E2 was absent 9 months after ovariectomy. In this latter group, ERα and endothelial nitric oxide synthase expression were reduced by half compared with age-matched rats recently ovariectomized. FMR did not occur in ERα(-/-) mice, whereas it was decreased by 50% in ERα(+/-) mice, emphasizing the importance of gene dosage in high-flow remodeling. CONCLUSIONS E2 deprivation, rather than age, leads to decline in FMR, which can be prevented by early exogenous E2. However, delayed E2 replacement was ineffective on FMR, underlining the importance of timing of this estrogen action.
Collapse
Affiliation(s)
- Kahena Tarhouni
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Anne-Laure Guihot
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Emilie Vessières
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Bertrand Toutain
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Vincent Procaccio
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Linda Grimaud
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Laurent Loufrani
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Francoise Lenfant
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Jean-Francois Arnal
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.)
| | - Daniel Henrion
- From the LUNAM (L'université Nantes, Le Mans et Angers) University and University of Angers, Angers, France (K.T., B.T., V.P., L.G., D.H.); Centre National de la Recherche Scientifique 6214, Angers, France (A.L.G., L.L., D.H.); Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Angers, France (D.H.); Centre Hospitalo-Universitaire d'Angers, Angers, France (E.V., V.P., D.H.); and INSERM U1048, Toulouse III Paul Sabatier University, CHU de Toulouse, Toulouse, France (F.L., J.F.A.).
| |
Collapse
|
34
|
Ying WZ, Aaron KJ, Sanders PW. Transforming growth factor-β regulates endothelial function during high salt intake in rats. Hypertension 2013; 62:951-6. [PMID: 24041947 DOI: 10.1161/hypertensionaha.113.01835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have demonstrated that an increase in dietary NaCl (salt) intake stimulated endothelial cells to produce transforming growth factor-β (TGF-β). The intent of the present study was to determine the functional significance of increased TGF-β on endothelial cell function. Young Sprague-Dawley rats were fed diets containing 0.3 or 8.0% NaCl for 2 days before treatment with a specific inhibitor of the TGF-β receptor I/activin receptor-like kinase 5 kinase, or vehicle for another 2 days. At day 4 of study, endothelial phosphorylated Smad2 (S465/467) increased and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) levels decreased in the high-salt-treated rats. In addition, phosphorylated Akt (S473) and phosphorylation of the endothelial isoform of NO synthase (NOS3) at S1177 increased. Treatment with the TGF-β receptor I/activin receptor-like kinase 5 inhibitor reduced Smad2 phosphorylation to levels observed in rats on the low-salt diet and prevented the downstream signaling events induced by the high-salt diet. In human umbilical vein endothelial cells, reduction in PTEN levels increased phosphorylated Akt and NOS3. Treatment of macrovascular endothelial cells with TGF-β1 increased phosphorylated NOS3 and the concentration of NO metabolites in the medium but had no effect on either of these variables in cells pretreated with small interfering RNA directed against PTEN. Thus, during high salt intake, an increase in TGF-β directly promoted a reduction in endothelial PTEN levels, which in turn regulated Akt activation and NOS3 phosphorylation. This effect closes a feedback loop that potentially mitigates the effect of TGF-β on the vasculature.
Collapse
Affiliation(s)
- Wei-Zhong Ying
- Division of Nephrology/Department of Medicine, 642 Lyons-Harrison Research Bldg, 1530 Third Ave, South, University of Alabama at Birmingham, Birmingham, AL 35294-0007.
| | | | | |
Collapse
|
35
|
Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol 2012; 9:439-53. [PMID: 22614618 DOI: 10.1038/nrcardio.2012.64] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deployment of drug-eluting stents instead of bare-metal stents has dramatically reduced restenosis rates, but rates of very late stent thrombosis (>1 year postimplantation) have increased. Vascular endothelial cells normally provide an efficient barrier against thrombosis, lipid uptake, and inflammation. However, endothelium that has regenerated after percutaneous coronary intervention is incompetent in terms of its integrity and function, with poorly formed cell junctions, reduced expression of antithrombotic molecules, and decreased nitric oxide production. Delayed arterial healing, characterized by poor endothelialization, is the primary cause of late (1 month-1 year postimplantation) and very late stent thrombosis following implantation of drug-eluting stents. Impairment of vasorelaxation in nonstented proximal and distal segments of stented coronary arteries is more severe with drug-eluting stents than bare-metal stents, and stent-induced flow disturbances resulting in complex spatiotemporal shear stress can also contribute to increased thrombogenicity and inflammation. The incompetent endothelium leads to late stent thrombosis and the development of in-stent neoatherosclerosis. The process of neoatherosclerosis occurs more rapidly, and more frequently, following deployment of drug-eluting stents than bare-metal stents. Improved understanding of vascular biology is crucial for all cardiologists, and particularly interventional cardiologists, as maintenance of a competently functioning endothelium is critical for long-term vascular health.
Collapse
Affiliation(s)
- Fumiyuki Otsuka
- CVPath Institute Inc., 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | |
Collapse
|
36
|
Moens AL, Kietadisorn R, Lin JY, Kass D. Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin. J Mol Cell Cardiol 2011; 51:559-63. [PMID: 21458460 DOI: 10.1016/j.yjmcc.2011.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for aromatic amino acid hydroxylases and for all three nitric oxide synthase (NOS) isoforms. It also has a protective role in the cell as an antioxidant and scavenger of reactive nitrogen and oxygen species. Experimental studies in humans and animals demonstrate that decreased BH(4)-bioavailability, with subsequent uncoupling of endothelial NOS (eNOS) plays an important role in the pathogenesis of endothelial dysfunction, hypertension, ischemia-reperfusion injury, and pathologic cardiac remodeling. Synthetic BH(4) is clinically approved for the treatment of phenylketonuria, and experimental studies support its capacity for ameliorating cardiovascular pathophysiologies. To date, however, the translation of these studies to human patients remains limited, and early results have been mixed. In this review, we discuss the pathophysiologic role of decreased BH(4) bioavailability, molecular mechanisms regulating its metabolism, and its potential therapeutic use as well as pitfalls as an NOS-modulating drug. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- An L Moens
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Dept. of Cardiology, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Montezano AC, Touyz RM. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 2011; 110:87-94. [PMID: 21883939 DOI: 10.1111/j.1742-7843.2011.00785.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The healthy endothelium prevents platelet aggregation and leucocyte adhesion, controls permeability to plasma components and maintains vascular integrity. Damage to the endothelium promotes endothelial dysfunction characterized by: altered endothelium-mediated vasodilation, increased vascular reactivity, platelet aggregation, thrombus formation, increased permeability, leucocyte adhesion and monocyte migration. Molecular processes contributing to these phenomena include increased expression of adhesion molecules, synthesis of pro-inflammatory and pro-thrombotic factors and increased endothelin-1 secretion. Decreased nitric oxide bioavailability and increased generation of reactive oxygen species (ROS) are among the major molecular changes associated with endothelial dysfunction. A critical source of endothelial ROS is a family of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, including the prototypic Nox2-based NADPH oxidases, Nox1, Nox4 and Nox5. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase and uncoupled nitric oxide synthase (NOS). Cross-talk between ROS-generating enzymes, such as mitochondrial oxidases and Noxs, is increasingly implicated in cellular ROS production. The present review discusses the importance of endothelial ROS in health and disease and focuses on the major ROS-generating systems in the endothelium, namely uncoupled endothelial nitric oxide synthase and NADPH oxidases.
Collapse
Affiliation(s)
- Augusto C Montezano
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
38
|
Roan JN, Yeh CY, Chiu WC, Lee CH, Chang SW, Jiangshieh YF, Tsai YC, Lam CF. Functional Dilatation and Medial Remodeling of the Renal Artery in Response to Chronic Increased Blood Flow. Kidney Blood Press Res 2011; 34:447-56. [DOI: 10.1159/000329096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/29/2011] [Indexed: 11/19/2022] Open
|
39
|
Roan JN, Tsai YC, Chen IW, Chang SW, Huang CC, Lam CF. Inhibition of cyclooxygenase-2 modulates phenotypic switching of vascular smooth muscle cells during increased aortic blood flow. Heart Vessels 2011; 27:307-15. [DOI: 10.1007/s00380-011-0148-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
40
|
Affiliation(s)
- Stephan Gielen
- Department of Internal Medicine/Cardiology, University of Leipzig, Heart Center, Strümpellstraße 39, Leipzig, Germany
| | | | | |
Collapse
|
41
|
Villanueva C, Giulivi C. Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 2010; 49:307-16. [PMID: 20388537 PMCID: PMC2900489 DOI: 10.1016/j.freeradbiomed.2010.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 02/06/2023]
Abstract
The effects of nitric oxide in biological systems depend on its steady-state concentration and where it is being produced. The organ where nitric oxide is produced is relevant, and within the organ, which types of cells are actually contributing to this production seem to play a major determinant of its effect. Subcellular compartmentalization of specific nitric oxide synthase enzymes has been shown to play a major role in health and disease. Pathophysiological conditions affect the cellular expression and localization of nitric oxide synthases, which in turn alter organ cross talk. In this study, we describe the compartmentalization of nitric oxide in organs, cells, and subcellular organelles and how its localization relates to several relevant clinical conditions. Understanding the complexity of the compartmentalization of nitric oxide production and the implications of this compartmentalization in terms of cellular targets and downstream effects will eventually contribute toward the development of better strategies for treating or preventing pathological events associated with the increase, inhibition, or mislocalization of nitric oxide production.
Collapse
Affiliation(s)
- Cleva Villanueva
- Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F. 11320
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
- Corresponding author: Dr. Cecilia Giulivi, Department of Molecular Biosciences, 1120 Haring Hall, University of California, Davis, CA. 95616, Tel. 530 754 8603, Fax. 530 754 9342,
| |
Collapse
|
42
|
Ai L, Zhang L, Dai W, Hu C, Shung KK, Hsiai TK. Real-time assessment of flow reversal in an eccentric arterial stenotic model. J Biomech 2010; 43:2678-83. [PMID: 20655537 DOI: 10.1016/j.jbiomech.2010.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/18/2010] [Accepted: 06/20/2010] [Indexed: 11/17/2022]
Abstract
Plaque rupture is the leading cause of acute coronary syndromes and stroke. Plaque formation, otherwise known as stenosis, preferentially occurs in the regions of arterial bifurcation or curvatures. To date, real-time assessment of stenosis-induced flow reversal remains a clinical challenge. By interfacing microelectromechanical system (MEMS) thermal sensors with the high frequency pulsed wave (PW) Doppler ultrasound, we proposed to assess flow reversal in the presence of an eccentric stenosis. We developed a 3-D stenotic model (inner diameter of 6mm, an eccentric stenosis with a height of 2.75 mm, and width of 21 mm) simulating a superficial arterial vessel. We demonstrated that heat transfer from the sensing element (2 x 80 μm²) to the flow field peaked as a function of flow rates at the throat of the stenosis along the center/midline of arterial model, and dropped downstream from the stenosis, where flow reversal was detected by the high frequency ultrasound device at 45 MHz. Computational fluid dynamics (CFD) codes are in agreement with the ultrasound-acquired flow profiles upstream, downstream, and at the throat of the stenosis. Hence, we characterized regions of eccentric stenosis in terms of changes in heat transfer along the midline of vessel and identified points of flow reversal with high spatial and temporal resolution.
Collapse
Affiliation(s)
- Lisong Ai
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089-1111, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Chen YS, Lu MJ, Huang HS, Ma MC. Mechanosensitive transient receptor potential vanilloid type 1 channels contribute to vascular remodeling of rat fistula veins. J Vasc Surg 2010; 52:1310-20. [PMID: 20638226 DOI: 10.1016/j.jvs.2010.05.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We previously showed that matrix metalloproteinases (MMPs) contribute to tremendous blood flow-induced venous wall thickening during the maturation of an arteriovenous fistula (AVF). However, how veins in the fistula sense a dramatic change in the blood flow remains unknown. Because mechanosensitive transient receptor potential vanilloid channels (TRPVs) are present in the endothelium, we examined whether the Ca2+-permeable TRPVs play a role in remodeling of fistula veins. METHODS The fistula veins were generated at femoral AVF of Wistar rats. Changes in the hemodynamics and the width and internal radius of the iliac vein were studied at 3, 7, 14, and 28 days, then the iliac vein was removed and examined for changes in wall thickness and protein or mRNA expression by immunofluorecent stain, Western blot, or real time PCR. Changes in MMP2 activity was examined by gelatin zymography. Two ligatures were performed in iliac vein to prevent venodilatation to confirm the effect of dramatic changes in hemodynamics on TRPV expression. The specific role of TRPV was studied in another group of fistula veins given with capsazepine via a subcutaneous mini-osmotic pump for 28 days. RESULTS The fistula veins demonstrated high flow/wall shear stress (WSS), wall thickening, and venodilatation compared with control veins. The WSS increase was positively correlated with upregulation of TRPV1, but not TRPV4. Narrowing fistula veins prevented TRPV1 upregulation, indicating that high flow directly upregulates TRPV1. We examined the underlying signaling components and found that enhanced Ca2+/calmodulin-dependent protein kinase II (CaMK II) activity upregulated endothelial nitric oxide synthase (eNOS) and downregulated arginase I in the fistula veins. These changes were reversed by a CaMK II inhibitor. The relative levels of eNOS and arginase I activity consequently augmented NO formation, which coincided with an increase in MMP2 activity. Chronic inhibition of TRPV1 in the fistula veins by capsazepine showed no effect on high flow and TRPV1 expression, but markedly attenuated WSS, which was concomitantly associated with attenuation of CaMK II activity, NO-dependent MMP2 activation, and remodeling. CONCLUSION These findings indicate that TRPV1 is essential in the remodeling of AVFs and that WSS leads to TRPV1 upregulation, which then enhances remodeling, therefore, inhibition of TRPV1 pathway may prolong the lifespan of an AVF by decreasing WSS and vein wall remodeling.
Collapse
Affiliation(s)
- Yih-Sharng Chen
- Department of Cardiovascular Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
44
|
Administration of a low dose of sildenafil for 1 week decreases intrahepatic resistance in rats with biliary cirrhosis: the role of NO bioavailability. Clin Sci (Lond) 2010; 119:45-55. [PMID: 20132096 DOI: 10.1042/cs20090601] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing NO bioavailability improves hepatic endothelial dysfunction, which ameliorates intrahepatic resistance and portal hypertension. Acute administration of sildenafil increases hepatic production of NO with a reduction in hepatic sinusoid resistance in cirrhotic patients and enhances the vasorelaxation response to NO in cirrhotic rat livers. However, the mechanisms were still unclear. Therefore, our present study aims to evaluate the effects and mechanisms of administration of sildenafil for 1 week on the hepatic microcirculation of cirrhotic rats. Cirrhosis was induced by bile duct ligation with sham-operated rats serving as normal controls. Intrahepatic resistance was evaluated by in situ liver perfusion. Expression of phospho-eNOS (endothelial NO synthase), iNOS (inducible NO synthase), phospho-Akt, PDE-5 (phosphodiesterase-5) and sGC (soluble guanylate cyclase) were determined by Western blot analysis. Biosynthesis of BH4 (tetrahydrobiopterin) and GTPCH-I (GTP cyclohydrolase I) activity were examined by HPLC. Intravital microscopy was used to observe the direct change in hepatic microcirculation. In cirrhotic rat livers, sildenafil treatment increased hepatic sinusoid volumetric flow, NO bioavailability, BH4, GTPCH-I activity, and the protein expression of phospho-Akt, phospho-eNOS and sGC. These events were associated with reduced protein expression of PDE-5, portal perfusion pressure and portal vein pressure. In contrast, sham rats did not produce any significant change in these measurements. In conclusion, sildenafil treatment improves endothelial dysfunction by augmenting NO bioavailability in the hepatic microcirculation.
Collapse
|
45
|
Croatt AJ, Grande JP, Hernandez MC, Ackerman AW, Katusic ZS, Nath KA. Characterization of a model of an arteriovenous fistula in the rat: the effect of L-NAME. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2530-41. [PMID: 20363917 DOI: 10.2353/ajpath.2010.090649] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular access dysfunction contributes to the mortality of patients undergoing chronic hemodialysis. The present study analyzed the changes that evolve in a femoral arteriovenous fistula in the rat. The venous segment of this model exhibited, at 1 week, activation of pro-inflammatory transcription factors and up-regulation of pro-inflammatory, proliferative, procoagulant, and profibrotic genes; and at 4 weeks, the venous segment displayed neointimal hyperplasia, smooth muscle proliferation, and thrombus formation. These changes were accompanied by endothelial (e) nitric oxide synthase (NOS) and inducible (i) NOS up-regulation. The administration of NG-nitro-L-arginine methyl ester, an inhibitor of NOS activity, increased venous neointimal hyperplasia and pro-inflammatory gene expression (monocyte chemoattractant protein-1 and cytokine-induced neutrophil chemoattractant-1), increased systolic blood pressure, and decreased blood flow through the fistula. In another hypertensive model, the rat subtotal nephrectomy model, venous neointimal hyperplasia in the arteriovenous fistula was also exacerbated. We conclude that this arteriovenous fistula model recapitulates the salient features observed in dysfunctional, hemodialysis arteriovenous fistulas, and that venous neointimal hyperplasia is exacerbated when this model is superimposed in two different models of systemic hypertension. Since the uremic milieu contains increased amounts of asymmetric dimethylarginine, we speculate that such accumulation of this endogenous inhibitor of NOS, by virtue of its pressor or nitric oxide-depleting effects, or a combination thereof, may contribute to the limited longevity of arteriovenous fistulas used for hemodialysis.
Collapse
Affiliation(s)
- Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
46
|
Santhanam AVR, d'Uscio LV, Katusic ZS. Cardiovascular effects of erythropoietin an update. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:257-85. [PMID: 21081221 DOI: 10.1016/b978-0-12-385061-4.00009-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO) is a therapeutic product of recombinant DNA technology and it has been in clinical use as stimulator of erythropoiesis over the last two decades. Identification of EPO and its receptor (EPOR) in the cardiovascular system expanded understanding of physiological and pathophysiological role of EPO. In experimental models of cardiovascular and cerebrovascular disorders, EPO exerts protection either by preventing apoptosis of cardiac myocytes, smooth muscle cells, and endothelial cells, or by increasing endothelial production of nitric oxide. In addition, EPO stimulates mobilization of progenitor cells from bone marrow thereby accelerating repair of injured endothelium and neovascularization. A novel signal transduction pathway involving EPOR--β-common heteroreceptor is postulated to enhance EPO-mediated tissue protection. A better understanding of the role of β-common receptor signaling as well as development of novel analogs of EPO with enhanced nonhematopoietic protective effects may expand clinical application of EPO in prevention and treatment of cardiovascular and cerebrovascular disorders.
Collapse
|
47
|
Vásquez-Vivar J. Tetrahydrobiopterin, superoxide, and vascular dysfunction. Free Radic Biol Med 2009; 47:1108-19. [PMID: 19628033 PMCID: PMC2852262 DOI: 10.1016/j.freeradbiomed.2009.07.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 06/20/2009] [Accepted: 07/15/2009] [Indexed: 01/06/2023]
Abstract
(6R)-5,6,7,8-Tetrahydrobiopterin (BH(4)) is an endogenously produced pterin that is found widely distributed in mammalian tissues. BH(4) works as a cofactor of aromatic amino acid hydroxylases and nitric oxide synthases. In the vasculature a deficit of BH(4) is implicated in the mechanisms of several diseases including atherosclerosis, hypertension, diabetic vascular disease, and vascular complications from cigarette smoking and environmental pollution. These ill-effects are connected to the ability of BH(4) to regulate reactive oxygen species levels in the endothelium. The possibility of using BH(4) as a therapeutical agent in cardiovascular medicine is becoming more compelling and many biochemical and physiological aspects involved in this application are currently under investigation. This review summarizes our current understanding of BH(4) reactivity and some aspects of cellular production and regulation.
Collapse
Affiliation(s)
- Jeannette Vásquez-Vivar
- Department of Biophysics, Free Radical Research Center, Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
48
|
Pall ML. Do sauna therapy and exercise act by raising the availability of tetrahydrobiopterin? Med Hypotheses 2009; 73:610-3. [PMID: 19581054 DOI: 10.1016/j.mehy.2009.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 10/20/2022]
Abstract
Sauna therapy has been used to treat a number of different diseases known or thought to have a tetrahydrobiopterin (BH4) deficiency. It has been interpreted to act in multiple chemical sensitivity by increasing chemical detoxification and excretion but there is no evidence that this is its main mode of action. Sauna therapy may act to increase BH4 availability via two distinct pathways. Increased blood flow in heated surface tissues leads to increased vascular shear stress, inducing increased activity of GTP cyclohydrolase I (GTPCH-I) in those vascular tissues which will lead to increasing BH4 synthesis. A second mechanism involves the heat shock protein Hsp90, which is induced by even modest heating of mammalian tissues. Sauna heating of these surface tissues may act via Hsp90, which interacts with the GTPCH-I complex and is reported to produce increased GTPCH-I activity by lowering its degradation. The increased consequent availability of BH4 may lead to lowered nitric oxide synthase uncoupling, such as has been reported for the eNOS enzyme. Increased BH4 synthesis in surface tissues of the body will produce increased circulating BH4 which will feed BH4 to other body tissues that may have been BH4 deficient. Similar mechanisms may act in vigorous exercise due to the increased blood shear stresses and possibly also heating of the exercising tissues and heart. There is a large and rapidly increasing number of diseases that are associated with BH4 depletion and these may be candidates for sauna therapy. Such diseases as hypertension, vascular endothelial dysfunction, multiple chemical sensitivity and heart failure are thought to be helped by sauna therapy and chronic fatigue syndrome and fibromyalgia may also be helped and there are others that may be good candidates for sauna therapy.
Collapse
Affiliation(s)
- Martin L Pall
- The Tenth Paradigm Research Group and School of Molecular Biosciences (WSU), 638 NE 41st Ave., Portland, OR 97232-3312, USA.
| |
Collapse
|
49
|
Sun X, Kumar S, Tian J, Black SM. Estradiol increases guanosine 5'-triphosphate cyclohydrolase expression via the nitric oxide-mediated activation of cyclic adenosine 5'-monophosphate response element binding protein. Endocrinology 2009; 150:3742-52. [PMID: 19389836 PMCID: PMC2717883 DOI: 10.1210/en.2008-1464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of studies have demonstrated that estradiol can stimulate endothelial nitric oxide synthase expression and activity, resulting in enhanced nitric oxide (NO) generation. However, its effect on the NO synthase cofactor, tetrahydrobiopterin are less clear. Cellular tetrahydrobiopterin levels are regulated, at least in part, by GTP cyclohydrolase 1 (GCH1). Thus, the purpose of this study was to determine the effect of estradiol on GCH1 expression and the regulatory mechanisms in pulmonary arterial endothelial cells. Our data indicate that 17beta-estradiol (E2) increases GCH1 transcription in a dose- and time-dependent manner, whereas estrogen receptor antagonism or NO synthase inhibition attenuated E2-stimulated GCH1 expression. Analysis of the GCH1 promoter fragment responsive to E2 revealed the presence of a cAMP response element, and we found that E2 triggers a rapid but transient elevation of phospho-cAMP response element-binding protein (CREB; <1 h) followed by a second sustained rise after 6 h. EMSA analysis revealed an increase in the binding of CREB during E2 treatment and mutation of the cAMP response element in the GCH1 promoter attenuated the E2-mediated increase in transcription. Furthermore, inhibition of the cAMP-dependent kinase, protein kinase A (PKA) completely abolished the E2-stimulated GCH1 promoter activity, whereas the stimulation of cAMP levels with forskolin increased GCH1 promoter activity, indicating the key role of cAMP in regulating GCH1 promoter activity. In conclusion, our results demonstrate that estradiol can modulate GCH1 expression via NO-mediated activation of CREB in pulmonary arterial endothelial cells. These findings provide new insight into the vascular protective effect of estradiol.
Collapse
Affiliation(s)
- Xutong Sun
- Program in Pulmonary Vascular Disease, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
50
|
Wu H, Jin Y, Arias J, Bassuk J, Uryash A, Kurlansky P, Webster K, Adams JA. In vivo upregulation of nitric oxide synthases in healthy rats. Nitric Oxide 2009; 21:63-8. [PMID: 19481168 DOI: 10.1016/j.niox.2009.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/19/2009] [Accepted: 05/19/2009] [Indexed: 01/08/2023]
Abstract
Periodic acceleration (pGz), sinusoidal motion of the whole body in a head-foot direction in the spinal axis, is a novel noninvasive means for cardiopulmonary support and induction of pulsatile shear stress. pGz increases plasma nitrite levels, in vivo and in vitro. Additionally, pGz confers cardioprotection in models of ischemia reperfusion injury. We hypothesize that pGz may also confer a cardiac phenotypic change by upregulation of the expression of the various NO synthase (NOS) isoforms in vivo. pGz was applied for 1h to awake restrained male rats at 2 frequencies (360 and 600 cpm) and acceleration (Gz) of +/-3.4 m/s(2). pGz did not affect arterial blood gases or electrolytes. pGz significantly increased total nitrosylated protein levels, indicating increased NO production. pGz also increased mRNA and protein levels of eNOS and nNOS, and phosphorylated eNOS in heart. pGz increased Akt phosphorylation (p-AKT), but not total Akt, or phosphorylated ERK1/2. Inducible (i) NOS levels were undetectable with or without pGz. Immunoblotting revealed the localization of nNOS, exclusively in cardiomyocyte, and pGz increased its expression. We have demonstrated that pGz changes myocardial NOS phenotypes. Such upregulation of eNOS and nNOS was still evident 24h after pGz. Further studies are needed to understand the biochemical and biomechanical signal transduction pathway for the observed NOS phenotype changed induced by pGz.
Collapse
Affiliation(s)
- Heng Wu
- Divisions of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | | | | | | | | | | | | | | |
Collapse
|