1
|
Wang Y, Chen Q, Wu S, Sun X, Yin R, Ouyang Z, Yin H, Wei Y. Amelioration of ethanol-induced oxidative stress and alcoholic liver disease by in vivo RNAi targeting Cyp2e1. Acta Pharm Sin B 2023; 13:3906-3918. [PMID: 37719371 PMCID: PMC10502278 DOI: 10.1016/j.apsb.2023.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 09/19/2023] Open
Abstract
Alcoholic liver disease (ALD) results from continuous and heavy alcohol consumption. The current treatment strategy for ALD is based on alcohol withdrawal coupled with antioxidant drug intervention, which is a long process with poor efficacy and low patient compliance. Alcohol-induced CYP2E1 upregulation has been demonstrated as a key regulator of ALD, but CYP2E1 knockdown in humans was impractical, and pharmacological inhibition of CYP2E1 by a clinically relevant approach for treating ALD was not shown. In this study, we developed a RNAi therapeutics delivered by lipid nanoparticle, and treated mice fed on Lieber-DeCarli ethanol liquid diet weekly for up to 12 weeks. This RNAi-based inhibition of Cyp2e1 expression reduced reactive oxygen species and oxidative stress in mouse livers, and contributed to improved ALD symptoms in mice. The liver fat accumulation, hepatocyte inflammation, and fibrosis were reduced in ALD models. Therefore, this study suggested the feasibility of RNAi targeting to CYP2E1 as a potential therapeutic tool to the development of ALD.
Collapse
Affiliation(s)
- Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Sikes KJ, McConnell A, Serkova N, Cole B, Frisbie D. Untargeted metabolomics analysis identifies creatine, myo-inositol, and lipid pathway modulation in a murine model of tendinopathy. J Orthop Res 2022; 40:965-976. [PMID: 34081345 PMCID: PMC8639838 DOI: 10.1002/jor.25112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023]
Abstract
Tendinopathy has been broadly characterized as alterations in cell proliferation, extracellular matrix turnover/synthesis, and inflammatory alterations. However, the underlying glucose metabolism pathways which contribute to these responses have not been well explored. The potential link between glucose metabolism and tendon pathology is interesting from a global standpoint since the development of spontaneous tendinopathy is associated with systemic metabolic disorders including diabetes mellitus. Therefore, the overarching goal of this study was to understand the potential pathogenic role of glucose metabolism-driven mechanisms in the development of tendinopathy. To test this, we have utilized an untargeted metabolomics approach to discover pathways which may be altered following tendinopathic injury and treadmill running in an established murine model of TGF-β1 induced tendinopathy. While specific tendon glucose alterations were not observed via metabolomics or 18 F-fluoroeoxyglucose (FDG) positron emission tomography/microcomputed tomography imaging (18 F-FDG PET/CT), metabolites including creatinine, D-chiro-inositol, and lipids were dysregulated following tendon injury. As novel pathways for manipulation, the creatine pathway, myo-inositol pathway, and lipid signaling may lead to the development of enhanced preventative strategies and therapeutic options for all patients who suffer from tendon-related injuries.
Collapse
Affiliation(s)
- Katie J. Sikes
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Anna McConnell
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Natalie Serkova
- Department of Radiology, University of Colorado Denver, Denver, CO 80045
| | - Brian Cole
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - David Frisbie
- Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
3
|
Wang X, Wu T, Ma H, Huang X, Huang K, Ye C, Zhu S. VX-765 ameliorates inflammation and extracellular matrix accumulation by inhibiting the NOX1/ROS/NF-κB pathway in diabetic nephropathy. J Pharm Pharmacol 2021; 74:377-386. [PMID: 34383065 DOI: 10.1093/jpp/rgab112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study explores the potential role of a highly selective caspase-1 inhibitor, VX-765, on extracellular matrix (ECM) accumulation and inflammation in diabetic nephropathy (DN) and the underlying mechanisms. METHODS DN rats, induced via high-fat diet/streptozotocin, were used to assess the effects of VX-765. Parallel experiments were carried out on rat mesangial cell line HBZY-1 exposed to high glucose (HG) to reveal the molecular mechanism of VX-765 in preventing DN. Survival analysis, biochemical parameters and renal oxidative stress of rats were observed, and Western blotting and immunofluorescence were evaluated. In vitro, Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX)1 silencing by RNA interference and quantitative real-time PCR (qPCR) assays were conducted in HBZY-1 cells exposed to HG levels. KEY FINDINGS In vivo, VX-765 significantly reduced the increase in urine albumin excretion and ECM accumulation. The phosphorylation of nuclear factor kappa-B (NF-κB) and the expression of pro-inflammatory cytokines IL-1β, IL-6 and tumor necrosis factor (TNF)-α were significantly down-regulated. Furthermore, the generation of reactive oxygen species (ROS), phosphorylation of NF-κB and the expression of the NOX1 gene or protein were significantly decreased in HBZY-1 with VX-765 (5 μM) treatment in vitro. CONCLUSIONS Our results demonstrated that VX-765 exerts favourable effects on DN via the simultaneous alleviation of systemic metabolic syndrome and down-regulating the renal NOX1/ROS/NF-κB pathway, suggesting that it has therapeutic potential for DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Tiesong Wu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Hongyan Ma
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xiaoling Huang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Kaiyuan Huang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Shiping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
5
|
Kidney-based in vivo model for drug-induced nephrotoxicity testing. Sci Rep 2020; 10:13640. [PMID: 32796873 PMCID: PMC7428004 DOI: 10.1038/s41598-020-70502-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 11/08/2022] Open
Abstract
The need is critical and urgent for a real-time, highly specific, and sensitive acute kidney injury biomarker. This study sought to establish a sensitive and specific Miox-NanoLuc transgenic mouse for early detection of drug-induced nephrotoxicity. We generated Miox-NanoLuc transgenic mice with kidney-specific NanoLuc overexpression. Our data showed that Miox-NanoLuc-produced luminescence was kidney-specific and had good stability at room temperature, 4 °C, − 20 °C, and repeated freeze–thaw cycles. Serum levels of BUN and creatinine were significantly increased at day 2 or 3 in cisplatin-treated mice and at day 5 in aristolochic acid (AAI)-treated mice. Particularly, the serum and urine Miox-NanoLuc luminescence levels were significantly increased at day 1 in cisplatin-treated mice and at day 3 in AAI-treated mice. Renal pathological analysis showed that the kidney sections of cisplatin-treated mice at day 5 and AAI-treated mice at day 13 showed cytolysis and marked vacuolization of tubular cells. In conclusion, we developed a new platform to early quantify drug-induced nephrotoxicity before serum BUN and creatinine levels increased and pathological tubular cell injury occurred. This model may serve as an early detection for drug- and food-induced nephrotoxicity and as an animal model to investigate tubular cell injury.
Collapse
|
6
|
O-GlcNAcylation of RAF1 increases its stabilization and induces the renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165556. [DOI: 10.1016/j.bbadis.2019.165556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 01/11/2023]
|
7
|
Tominaga T, Sharma I, Fujita Y, Doi T, Wallner AK, Kanwar YS. Myo-inositol oxygenase accentuates renal tubular injury initiated by endoplasmic reticulum stress. Am J Physiol Renal Physiol 2018; 316:F301-F315. [PMID: 30539651 DOI: 10.1152/ajprenal.00534.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Besides oxidant stress, endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various metabolic disorders affecting the kidney. These two forms of stresses are not mutually exclusive to each other and may operate by a feedback loop in worsening the cellular injury. To attest to this contention, studies were performed to assess whether in such a setting, there is worsening of tubulointerstitial injury. We employed tunicamycin as a model of ER stress and used tubular cells and mice overexpressing myo-inositol oxygenase (MIOX), an enzyme involved in glycolytic events with excessive generation of ROS. Concomitant treatment of tunicamycin and transfection of cells with MIOX-pcDNA led to a marked generation of ROS, which was reduced by MIOX-siRNA. Likewise, an accentuated expression of ER stress sensors, GRP78, XBP1, and CHOP, was observed, which was reduced with MIOX-siRNA. These sensors were markedly elevated in MIOX-TG mice compared with WT treated with tunicamycin. This was accompanied with marked deterioration of tubular morphology, along with impairment of renal functions. Interestingly, minimal damage and elevation of ER stressors was observed in MIOX-KO mice. Downstream events that were more adversely affected in MIOX-TG mice included accentuated expression of proapoptogenic proteins, proinflammatory cytokines, and extracellular matrix constituents, although expression of these molecules was unaffected in MIOX-KO mice. Also, their tunicamycin-induced accentuated expression in tubular cells was notably reduced with MIOX-siRNA. These studies suggest that the biology of MIOX-induced oxidant stress and tunicamycin-induced ER stress are interlinked, and both of the events may feed into each other to amplify the tubulointerstitial injury.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yui Fujita
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
8
|
Gao P, Xu B, Song P, Zhu X, Yuan S, Kanwar YS, Sun L. The Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker for Diabetic Nephropathy. Kidney Blood Press Res 2018; 43:1772-1785. [PMID: 30504713 DOI: 10.1159/000495635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/21/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal tubular injury plays an important role in the progression of diabetic nephropathy (DN). However, there is a lack of specific biomarkers for tubular damage in incipient DN. We have evaluated the role of myo-inositol oxygenase (MIOX) in the tubular injury of DN, but whether it could serve as a new biomarker for the early diagnosis of DN is unclear. METHODS Ninety patients with type 2 diabetes mellitus (T2DM) were divided into normoalbuminuria, microalbuminuria and macroalbuminuria groups. Fifteen patients from the last group were pathologically diagnosed as type 2 DN (T2DN), and fifteen patients with minimal change disease served as a control group. The expression of MIOX and silent information regulator 1 (Sirt1) in renal biopsies was determined by immunohistochemistry (IHC), and serum/urine MIOX, Sirt1, KIM-1 and NGAL were measured using enzyme-linked immunosorbent assays (ELISAs). Spearman's correlation and multiple regression analyses were carried out for statistical analyses. RESULTS Compared with the controls, MIOX expression was significantly increased in the renal tissues of T2DN patients, and was positively correlated with tubulointerstitial lesions and renal ROS production but inversely correlated with Sirt1 expression. In addition, the serum and urine MIOX were significantly increased and gradually elevated with the increasing of UACR. Interestingly, elevated MIOX levels in serum and urine were found in diabetic patients without early signs of glomerular damage (normoalbuminuric group). Further multivariate regression analysis showed that sMIOX and uMIOX correlated significantly with HbA1c, serum creatinine and logUACR, respectively. CONCLUSION These data indicate that increased MIOX expression in the kidney contributes to tubular damage in DN. The concentration of MIOX in the serum and urine may serve as a new biomarker for the early diagnosis of DN.
Collapse
Affiliation(s)
- Peng Gao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Bo Xu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Panai Song
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yashipal S Kanwar
- Departments of Pathology &Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China,
| |
Collapse
|
9
|
A Network Pharmacology Approach to Uncover the Mechanisms of Shen-Qi-Di-Huang Decoction against Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7043402. [PMID: 30519269 PMCID: PMC6241231 DOI: 10.1155/2018/7043402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/15/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.
Collapse
|
10
|
Mertoglu C, Gunay M, Gul V, Kulhan M, Aktas M, Coban TA. Does myo-inositol oxygenase, the only enzyme to catalyze myo-inositol in vivo, play a role in the etiology of polycystic ovarian syndrome? Gynecol Endocrinol 2018; 34:418-421. [PMID: 29187000 DOI: 10.1080/09513590.2017.1409710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In polycystic ovary syndrome (PCOS), myo-inositol (MI) supplements have shown many beneficial effects. In this study, therefore, we aimed to investigate the serum level of myo-inositol oxygenase (MIOX), which is the only enzyme catalyzing MI in vivo, in patients with PCOS. Serum MIOX enzyme levels and other laboratory parameters were compared between sixty patients, who were diagnosed with PCOS for the first time, and sixty healthy individuals at similar age and sex. MIOX serum levels were not different between two groups (p = 0.7428). MIOX median and 95% CI were 19.4 and 10.6-39.1 in the control group and 16.4 and 7.6-46.2 in the patient group respectively. Demographic data, biochemical and hematological parameters, hormone parameters were not different except from the lymphocyte count between the two groups. Lymphocyte count was higher in the patient group. Although the ratio of LH/FSH was higher in the patient group, it was not statistically significant. Our results suggest that serum MIOX levels do not change in PCOS. It was, therefore, concluded that MI deficiency observed in PCOS was not related to the level of MIOX enzyme which cleaves MI.
Collapse
Affiliation(s)
- Cuma Mertoglu
- a Department of Clinical Biochemistry, Faculty of Medicine , Erzincan University , Erzincan , Turkey
| | - Murat Gunay
- a Department of Clinical Biochemistry, Faculty of Medicine , Erzincan University , Erzincan , Turkey
| | - Vahdet Gul
- a Department of Clinical Biochemistry, Faculty of Medicine , Erzincan University , Erzincan , Turkey
| | - Mehmet Kulhan
- b Department of Obstetrics and Gynecology, Faculty of Medicine , Erzincan University , Erzincan , Turkey
| | - Mehmet Aktas
- a Department of Clinical Biochemistry, Faculty of Medicine , Erzincan University , Erzincan , Turkey
| | - Taha Abdulkadir Coban
- a Department of Clinical Biochemistry, Faculty of Medicine , Erzincan University , Erzincan , Turkey
| |
Collapse
|
11
|
Sharma I, Tupe RS, Wallner AK, Kanwar YS. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy. Am J Physiol Renal Physiol 2017; 314:F107-F121. [PMID: 28931523 DOI: 10.1152/ajprenal.00434.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN. We investigated the effect of AGEs on MIOX expression and delineated mechanisms that lead to tubulointerstitial injury. The status of MIOX, RAGE, and relevant cellular signaling pathways activated following AGE:RAGE interaction was examined in tubular cells and kidneys of AGE-BSA-treated mice. A solid-phase assay revealed an enhanced binding of RAGE with AGE-BSA, AGE-laminin, and AGE-collagen IV. The cells treated with AGE-BSA had increased MIOX activity/expression and promoter activity. This was associated with activation of various signaling kinases of phosphatidylinositol 3-kinase (PI3K)-AKT pathway and increased expression of NF-κB, transforming growth factor (TGF)-β, and fibronectin, which was negated with the treatment of MIOX/RAGE- small interfering (si) RNA. Concomitant with MIOX upregulation, there was an increased generation of reactive oxygen species (ROS), which could be abrogated with MIOX/RAGE- siRNA treatment. The kidneys of mice treated with AGE-BSA had significantly high urinary A/C ratio, upregulation of MIOX, RAGE and NF-κB, along with influx of monocytes into the tubulointerstitium, increased the expression of MCP-1, IL-6, and fibronectin and increased the generation of ROS. Such perturbations were abrogated with the concomitant treatment of inhibitors MIOX or RAGE (d-glucarate and FPS-ZM1). These studies support a role of AGE:RAGE interaction in the activation of PI3K-AKT pathway and upregulation of MIOX, with excessive generation of ROS, increased expression of NF-κB, inflammatory cytokines, TGF-β, and fibronectin. Collectively, these observations highlight the relevance of the biology of MIOX in the contribution toward tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University , Pune , India
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
12
|
Tominaga T, Dutta RK, Joladarashi D, Doi T, Reddy JK, Kanwar YS. Transcriptional and Translational Modulation of myo-Inositol Oxygenase (Miox) by Fatty Acids: IMPLICATIONS IN RENAL TUBULAR INJURY INDUCED IN OBESITY AND DIABETES. J Biol Chem 2015; 291:1348-67. [PMID: 26578517 DOI: 10.1074/jbc.m115.698191] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
The kidney is one of the target organs for various metabolic diseases, including diabetes, metabolic syndrome, and obesity. Most of the metabolic studies underscore glomerular pathobiology, although the tubulo-interstitial compartment has been underemphasized. This study highlights mechanisms concerning the pathobiology of tubular injury in the context of myo-inositol oxygenase (Miox), a tubular enzyme. The kidneys of mice fed a high fat diet (HFD) had increased Miox expression and activity, and the latter was related to phosphorylation of serine/threonine residues. Also, expression of sterol regulatory element-binding protein1 (Srebp1) and markers of cellular/nuclear damage was increased along with accentuated apoptosis and loss of tubular brush border. Similar results were observed in cells treated with palmitate/BSA. Multiple sterol-response elements and E-box motifs were found in the miox promoter, and its activity was modulated by palmitate/BSA. Electrophoretic mobility and ChIP assays confirmed binding of Srebp to consensus sequences of the miox promoter. Exposure of palmitate/BSA-treated cells to rapamycin normalized Miox expression and prevented Srebp1 nuclear translocation. In addition, rapamycin treatment reduced p53 expression and apoptosis. Like rapamycin, srebp siRNA reduced Miox expression. Increased expression of Miox was associated with the generation of reactive oxygen species (ROS) in kidney tubules of mice fed an HFD and cell exposed to palmitate/BSA. Both miox and srebp1 siRNAs reduced generation of ROS. Collectively, these findings suggest that HFD or fatty acids modulate transcriptional, translational, and post-translational regulation of Miox expression/activity and underscore Miox being a novel target of the transcription factor Srebp1. Conceivably, activation of the mTORC1/Srebp1/Miox pathway leads to the generation of ROS culminating into tubulo-interstitial injury in states of obesity.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Rajesh K Dutta
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Darukeshwara Joladarashi
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Toshio Doi
- the Department of Nephrology, University of Tokushima, Tokushima, Japan
| | - Janardan K Reddy
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Yashpal S Kanwar
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
13
|
Chang HH, Chao HN, Walker CS, Choong SY, Phillips A, Loomes KM. Renal depletion of myo-inositol is associated with its increased degradation in animal models of metabolic disease. Am J Physiol Renal Physiol 2015; 309:F755-63. [DOI: 10.1152/ajprenal.00164.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022] Open
Abstract
Renal depletion of myo-inositol (MI) is associated with the pathogenesis of diabetic nephropathy in animal models, but the underlying mechanisms involved are unclear. We hypothesized that MI depletion was due to changes in inositol metabolism and therefore examined the expression of genes regulating de novo biosynthesis, reabsorption, and catabolism of MI. We also extended the analyses from diabetes mellitus to animal models of dietary-induced obesity and hypertension. We found that renal MI depletion was pervasive across these three distinct disease states in the relative order: hypertension (−51%) > diabetes mellitus (−35%) > dietary-induced obesity (−19%). In 4-wk diabetic kidneys and in kidneys derived from insulin-resistant and hypertensive rats, MI depletion was correlated with activity of the MI-degrading enzyme myo-inositol oxygenase (MIOX). By contrast, there was decreased MIOX expression in 8-wk diabetic kidneys. Immunohistochemistry localized the MI-degrading pathway comprising MIOX and the glucuronate-xylulose (GX) pathway to the proximal tubules within the renal cortex. These findings indicate that MI depletion could reflect increased catabolism through MIOX and the GX pathway and implicate a common pathological mechanism contributing to renal oxidative stress in metabolic disease.
Collapse
Affiliation(s)
- H.-H. Chang
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - H.-N. Chao
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - C. S. Walker
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - S.-Y. Choong
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - A. Phillips
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - K. M. Loomes
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Yang C, Nilsson L, Cheema MU, Wang Y, Frøkiær J, Gao S, Kjems J, Nørregaard R. Chitosan/siRNA nanoparticles targeting cyclooxygenase type 2 attenuate unilateral ureteral obstruction-induced kidney injury in mice. Am J Cancer Res 2015; 5:110-23. [PMID: 25553102 PMCID: PMC4278998 DOI: 10.7150/thno.9717] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023] Open
Abstract
Cyclooxygenase type 2 (COX-2) plays a predominant role in the progression of kidney injury in obstructive nephropathy. The aim of this study was to test the efficacy of chitosan/small interfering RNA (siRNA) nanoparticles to knockdown COX-2 specifically in macrophages to prevent kidney injury induced by unilateral ureteral obstruction (UUO). Using optical imaging techniques and confocal microscopy, we demonstrated that chitosan/siRNA nanoparticles accumulated in macrophages in the obstructed kidney. Consistent with the imaging data, the obstructed kidney contained a higher amount of siRNA and macrophages. Chitosan-formulated siRNA against COX-2 was evaluated on RAW macrophages demonstrating reduced COX-2 expression and activity after LPS stimulation. Injection of COX-2 chitosan/siRNA nanoparticles in mice subjected to three-day UUO diminished the UUO-induced COX-2 expression. Likewise, macrophages in the obstructed kidney had reduced COX-2 immunoreactivity, and histological examination showed lesser tubular damage in COX-2 siRNA-treated UUO mice. Parenchymal inflammation, assessed by tumor necrosis factor-alpha (TNF-α) and interleukin 6 mRNA expression, was attenuated by COX-2 siRNA. Furthermore, treatment with COX-2 siRNA reduced heme oxygenase-1 and cleaved caspase-3 in UUO mice, indicating lesser oxidative stress and apoptosis. Our results demonstrate a novel strategy to prevent UUO-induced kidney damage by using chitosan/siRNA nanoparticles to knockdown COX-2 specifically in macrophages.
Collapse
|
15
|
Zhan M, Usman IM, Sun L, Kanwar YS. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol 2014; 26:1304-21. [PMID: 25270067 DOI: 10.1681/asn.2014050457] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/23/2014] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is associated with oxidative stress and mitochondrial injury. Myo-inositol oxygenase (MIOX), a tubular-specific enzyme, modulates redox imbalance and apoptosis in tubular cells in diabetes, but these mechanisms remain unclear. We investigated the role of MIOX in perturbation of mitochondrial quality control, including mitochondrial dynamics and autophagy/mitophagy, under high-glucose (HG) ambience or a diabetic state. HK-2 or LLC-PK1 cells subjected to HG exhibited an upregulation of MIOX accompanied by mitochondrial fragmentation and depolarization, inhibition of autophagy/mitophagy, and altered expression of mitochondrial dynamic and mitophagic proteins. Furthermore, dysfunctional mitochondria accumulated in the cytoplasm, which coincided with increased reactive oxygen species generation, Bax activation, cytochrome C release, and apoptosis. Overexpression of MIOX in LLC-PK1 cells enhanced the effects of HG, whereas MIOX siRNA or d-glucarate, an inhibitor of MIOX, partially reversed these perturbations. Moreover, decreasing the expression of MIOX under HG ambience increased PTEN-induced putative kinase 1 expression and the dependent mitofusin-2-Parkin interaction. In tubules of diabetic mice, increased MIOX expression and mitochondrial fragmentation and defective autophagy were observed. Dietary supplementation of d-glucarate in diabetic mice decreased MIOX expression, attenuated tubular damage, and improved renal functions. Notably, d-glucarate administration also partially attenuated mitochondrial fragmentation, oxidative stress, and apoptosis and restored autophagy/mitophagy in the tubular cells of these mice. These results suggest a novel mechanism linking MIOX to impaired mitochondrial quality control during tubular injury in the pathogenesis of DKD and suggest d-glucarate as a potential therapeutic agent for the amelioration of DKD.
Collapse
Affiliation(s)
- Ming Zhan
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois
| | - Irtaza M Usman
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois
| | - Lin Sun
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
16
|
Konvalinka A. myo-Inositol Oxygenase: A Novel Kidney-Specific Biomarker of Acute Kidney Injury? Clin Chem 2014; 60:708-10. [DOI: 10.1373/clinchem.2014.221960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Konvalinka
- Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Brandt LE, Ehrhart EJ, Scherman H, Olver CS, Bohn AA, Prenni JE. Characterization of the canine urinary proteome. Vet Clin Pathol 2014; 43:193-205. [DOI: 10.1111/vcp.12147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Laura E. Brandt
- Department of Microbiology, Immunology and Pathology; Colorado State University; Fort Collins CO USA
| | - E. J. Ehrhart
- Department of Microbiology, Immunology and Pathology; Colorado State University; Fort Collins CO USA
- Animal Cancer Center; Colorado State University; Fort Collins CO USA
| | - Hataichanok Scherman
- Proteomics and Metabolomics Facility; Colorado State University; Fort Collins CO USA
| | - Christine S. Olver
- Department of Microbiology, Immunology and Pathology; Colorado State University; Fort Collins CO USA
| | - Andrea A. Bohn
- Department of Microbiology, Immunology and Pathology; Colorado State University; Fort Collins CO USA
| | - Jessica E. Prenni
- Department of Biochemistry and Molecular Biology; Colorado State University; Fort Collins CO USA
- Proteomics and Metabolomics Facility; Colorado State University; Fort Collins CO USA
| |
Collapse
|
18
|
Sánchez-Pérez Y, Morales-Bárcenas R, García-Cuellar CM, López-Marure R, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI. The α-mangostin prevention on cisplatin-induced apoptotic death in LLC-PK1 cells is associated to an inhibition of ROS production and p53 induction. Chem Biol Interact 2010; 188:144-50. [DOI: 10.1016/j.cbi.2010.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/21/2010] [Accepted: 06/25/2010] [Indexed: 01/16/2023]
|