1
|
Changes in Acupuncture-Induced Specific Acupoint Neurotransmitters are Possibly Related to Their Physiological Functions in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4849528. [PMID: 36865739 PMCID: PMC9974273 DOI: 10.1155/2023/4849528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
This study investigated changes in neurotransmitters induced by the application of electroacupuncture (EA) at Zusanli (ST36) and Neiguan (PC6). A total of 30 rats were divided into five groups: sham, ST (EA at bilateral ST36 and ST37), ScT (ST plus previous neurectomy of the bilateral sciatic nerves), ScS (sham plus previous neurectomy of the bilateral sciatic nerve), and PC (EA at bilateral PC6 and PC7). The P2X2 receptor expression was stronger in the sham group than in the ST and PC groups (both p < 0.05) but similar between the sham and ScT groups (p > 0.05). Dopamine levels in the extracellular fluid surrounding the acupoints were higher in the PC group than in the sham and ST groups during the postacupuncture period (both p < 0.05). Glutamate levels in the extracellular fluid surrounding the acupoints were higher in the ST group than in the sham group during the acupuncture period (p < 0.05) and higher in the ST group than in the sham and PC groups during the postacupuncture period (both p < 0.05). Serum adrenaline and noradrenaline levels were higher in the PC group than in the sham, ST, and ScT groups (all p < 0.05). Glutamate levels in the CSF were higher in the ST group than in the sham, ScS, and PC groups (all p < 0.05). GABA levels in the CSF were higher in the ST group than in the sham, ScT, and PC groups (all p < 0.05). EA at ST36 and ST37 and PC6 and PC7 exerted an analgesic effect, EA at PC6 and PC7 can enhance heart function, and EA at ST36 and ST37 modulates the cerebral cortex. However, the study needs an evaluation of direct pain behavior, heart function, and brain function in the future.
Collapse
|
2
|
DeLorey DS, Clifford PS. Does sympathetic vasoconstriction contribute to metabolism: Perfusion matching in exercising skeletal muscle? Front Physiol 2022; 13:980524. [PMID: 36171966 PMCID: PMC9510655 DOI: 10.3389/fphys.2022.980524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
The process of matching skeletal muscle blood flow to metabolism is complex and multi-factorial. In response to exercise, increases in cardiac output, perfusion pressure and local vasodilation facilitate an intensity-dependent increase in muscle blood flow. Concomitantly, sympathetic nerve activity directed to both exercising and non-active muscles increases as a function of exercise intensity. Several studies have reported the presence of tonic sympathetic vasoconstriction in the vasculature of exercising muscle at the onset of exercise that persists through prolonged exercise bouts, though it is blunted in an exercise-intensity dependent manner (functional sympatholysis). The collective evidence has resulted in the current dogma that vasoactive molecules released from skeletal muscle, the vascular endothelium, and possibly red blood cells produce local vasodilation, while sympathetic vasoconstriction restrains vasodilation to direct blood flow to the most metabolically active muscles/fibers. Vascular smooth muscle is assumed to integrate a host of vasoactive signals resulting in a precise matching of muscle blood flow to metabolism. Unfortunately, a critical review of the available literature reveals that published studies have largely focused on bulk blood flow and existing experimental approaches with limited ability to reveal the matching of perfusion with metabolism, particularly between and within muscles. This paper will review our current understanding of the regulation of sympathetic vasoconstriction in contracting skeletal muscle and highlight areas where further investigation is necessary.
Collapse
Affiliation(s)
- Darren S. DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren S. DeLorey,
| | - Philip S. Clifford
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
DeLorey DS. Sympathetic vasoconstriction in skeletal muscle: Modulatory effects of aging, exercise training, and sex. Appl Physiol Nutr Metab 2021; 46:1437-1447. [PMID: 34348066 DOI: 10.1139/apnm-2021-0399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system (SNS) is a critically important regulator of the cardiovascular system. The SNS controls cardiac output and its distribution, as well as peripheral vascular resistance and blood pressure at rest and during exercise. Aging is associated with increased blood pressure and decreased skeletal muscle blood flow at rest and in response to exercise. The mechanisms responsible for the blunted skeletal muscle blood flow response to dynamic exercise with aging have not been fully elucidated; however, increased muscle sympathetic nerve activity (MSNA), elevated vascular resistance and a decline in endothelium-dependent vasodilation are commonly reported in older adults. In contrast to aging, exercise training has been shown to reduce blood pressure and enhance skeletal muscle vascular function. Exercise training has been shown to enhance nitric oxide-dependent vascular function and may improve the vasodilatory capacity of the skeletal muscle vasculature; however, surprisingly little is known about the effect of exercise training on the neural control of circulation. The control of blood pressure and skeletal muscle blood flow also differs between males and females. Blood pressure and MSNA appear to be lower in young females compared to males. However, females experience a larger increase in MSNA with aging compared to males. The mechanism(s) for the altered SNS control of vascular function in females remain to be determined. Novelty: • This review will summarize our current understanding of the effects of aging, exercise training and sex on sympathetic vasoconstriction at rest and during exercise. • Areas where additional research is needed are also identified.
Collapse
Affiliation(s)
- Darren S DeLorey
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, Alberta, Canada;
| |
Collapse
|
4
|
Hansen AB, Moralez G, Romero SA, Gasho C, Tymko MM, Ainslie PN, Hofstätter F, Rainer SL, Lawley JS, Hearon CM. Mechanisms of sympathetic restraint in human skeletal muscle during exercise: role of α-adrenergic and nonadrenergic mechanisms. Am J Physiol Heart Circ Physiol 2020; 319:H192-H202. [PMID: 32502375 DOI: 10.1152/ajpheart.00208.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic vasoconstriction is mediated by α-adrenergic receptors under resting conditions. During exercise, increased sympathetic nerve activity (SNA) is directed to inactive and active skeletal muscle; however, it is unclear what mechanism(s) are responsible for vasoconstriction during large muscle mass exercise in humans. The aim of this study was to determine the contribution of α-adrenergic receptors to sympathetic restraint of inactive skeletal muscle and active skeletal muscle during cycle exercise in healthy humans. In ten male participants (18-35 yr), mean arterial pressure (intra-arterial catheter) and forearm vascular resistance (FVR) and conductance (FVC) were assessed during cycle exercise (60% total peak workload) alone and during combined cycle exercise + handgrip exercise (HGE) before and after intra-arterial blockade of α- and β-adrenoreceptors via phentolamine and propranolol, respectively. Cycle exercise caused vasoconstriction in the inactive forearm that was attenuated ~80% with adrenoreceptor blockade (%ΔFVR, +81.7 ± 84.6 vs. +9.7 ± 30.7%; P = 0.05). When HGE was performed during cycle exercise, the vasodilatory response to HGE was restrained by ~40% (ΔFVC HGE, +139.3 ± 67.0 vs. cycle exercise: +81.9 ± 66.3 ml·min-1·100 mmHg-1; P = 0.03); however, the restraint of active skeletal muscle blood flow was not due to α-adrenergic signaling. These findings highlight that α-adrenergic receptors are the primary, but not the exclusive mechanism by which sympathetic vasoconstriction occurs in inactive and active skeletal muscle during exercise. Metabolic activity or higher sympathetic firing frequencies may alter the contribution of α-adrenergic receptors to sympathetic vasoconstriction. Finally, nonadrenergic vasoconstrictor mechanisms may be important for understanding the regulation of blood flow during exercise.NEW & NOTEWORTHY Sympathetic restraint of vascular conductance to inactive skeletal muscle is critical to maintain blood pressure during moderate- to high-intensity whole body exercise. This investigation shows that cycle exercise-induced restraint of inactive skeletal muscle vascular conductance occurs primarily because of activation of α-adrenergic receptors. Furthermore, exercise-induced vasoconstriction restrains the subsequent vasodilatory response to hand-grip exercise; however, the restraint of active skeletal muscle vasodilation was in part due to nonadrenergic mechanisms. We conclude that α-adrenergic receptors are the primary but not exclusive mechanism by which sympathetic vasoconstriction restrains blood flow in humans during whole body exercise and that metabolic activity modulates the contribution of α-adrenergic receptors.
Collapse
Affiliation(s)
- Alexander B Hansen
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, University of Loma Lida, Loma Lida, California
| | - Michael M Tymko
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada.,Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Florian Hofstätter
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Simon L Rainer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Justin S Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
5
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Just TP, DeLorey DS. Exercise training and α1-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle. Physiol Rep 2016; 4:4/3/e12707. [PMID: 26869686 PMCID: PMC4758927 DOI: 10.14814/phy2.12707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exercise training (ET) increases sympathetic vasoconstrictor responsiveness and enhances contraction‐mediated inhibition of sympathetic vasoconstriction (i.e., sympatholysis) through a nitric oxide (NO)‐dependent mechanism. Changes in α2‐adrenoreceptor vasoconstriction mediate a portion of these training adaptations, however the contribution of other postsynaptic receptors remains to be determined. Therefore, the purpose of this study was to investigate the effect of ET on α1‐adrenoreceptor‐mediated vasoconstriction in resting and contracting muscle. It was hypothesized that α1‐adrenoreceptor‐mediated sympatholysis would be enhanced following ET. Male Sprague Dawley rats were randomized to sedentary (S; n = 12) or heavy‐intensity treadmill ET (n = 11) groups. Subsequently, rats were anesthetized and instrumented for lumbar sympathetic chain stimulation and measurement of femoral vascular conductance (FVC) at rest and during muscle contraction. The percentage change in FVC in response to sympathetic stimulation was measured in control, α1‐adrenoreceptor blockade (Prazosin; 20 μg, IV), and combined α1 and NO synthase (NOS) blockade (l‐NAME; 5 mg·kg−1IV) conditions. Sympathetic vasoconstrictor responsiveness was increased (P < 0.05) in ET compared to S rats at low, but not high (P > 0.05) stimulation frequencies at rest (S: 2 Hz: −25 ± 4%; 5 Hz: −45 ± 5 %; ET: 2 Hz: −35 ± 7%, 5 Hz: −52 ± 7%), whereas sympathetic vasoconstrictor responsiveness was not different (P > 0.05) between groups during contraction (S: 2 Hz: −11 ± 8%; 5 Hz: −26 ± 11%; ET: 2 Hz: −10 ± 7%, 5 Hz: −27 ± 12%). Prazosin blunted (P < 0.05) vasoconstrictor responsiveness in S and ET rats at rest and during contraction, and abolished group differences in vasoconstrictor responsiveness. Subsequent NOS blockade increased vasoconstrictor responses (P < 0.05) in S at rest and during contraction, whereas in ET vasoconstriction was increased (P < 0.05) in response to sympathetic stimulation at 2 Hz at rest and unchanged (P > 0.05) during contraction. ET enhanced (P < 0.05) sympatholysis, however the training‐mediated improvements in sympatholysis were abolished by α1‐adrenoreceptor blockade. Subsequent NOS inhibition did not alter (P > 0.05) sympatholysis in S or ET rats. In conclusion, ET augmented α1‐adrenoreceptor‐mediated vasoconstriction in resting skeletal muscle and enhanced α1‐adrenoreceptor‐mediated sympatholysis. Furthermore, these data suggest that NO is not required to inhibit α2‐adrenoreceptor‐ and nonadrenoreceptor‐mediated vasoconstriction during exercise.
Collapse
Affiliation(s)
- Timothy P Just
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 2015; 95:549-601. [PMID: 25834232 DOI: 10.1152/physrev.00035.2013] [Citation(s) in RCA: 480] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| |
Collapse
|
8
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
9
|
Jendzjowsky NG, DeLorey DS. Short-term exercise training augments 2-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle. J Physiol 2013; 591:5221-33. [PMID: 23940382 DOI: 10.1113/jphysiol.2013.257626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We hypothesized that exercise training (ET) would alter α2-adrenoreceptor-mediated sympathetic vasoconstriction. Sprague-Dawley rats (n = 30) were randomized to sedentary (S), mild- (M) or heavy-intensity (H) treadmill ET groups (5 days per week for 4 weeks). Following the ET component of the study, rats were anaesthetized, and instrumented for lumbar sympathetic chain stimulation, triceps surae muscle contraction and measurement of femoral vascular conductance (FVC). The percentage change of FVC in response to sympathetic stimulation was determined at rest and during contraction in control, α2 blockade (yohimbine) and combined α2 + nitric oxide (NO) synthase (NOS) blockade (N-nitro-L-arginine methyl ester hydrochloride, L-NAME) conditions. ET augmented (P < 0.05) sympathetic vasoconstrictor responses at rest and during contraction. Yohimbine reduced (P < 0.05) the vasoconstrictor response in ET rats at rest (M: 2 Hz: 8 ± 2%, 5 Hz: 9 ± 4%; H: 2 Hz: 14 ± 5%, 5 Hz: 11 ± 6%) and during contraction (M: 2 Hz: 9 ± 2%, 5 Hz: 9 ± 5%; H: 2 Hz: 8 ± 3%, 5 Hz: 6 ± 6%) but did not change the response in S rats. The addition of L-NAME caused a larger increase (P < 0.05) in the vasoconstrictor response in ET than in S rats at rest (2 Hz: S: 8 ± 2%, M: 15 ± 3%, H: 23 ± 7%; 5 Hz: S: 8 ± 5%, M: 15 ± 3%, H: 17 ± 5%) and during contraction (2 Hz: S: 9 ± 3%, M: 18 ± 3%, H: 22 ± 6%; 5 Hz: S: 9 ± 5%, M: 22 ± 4%, H:26 ± 9%). Sympatholysis was greater (P < 0.05) in ET than in S rats. Blockade of α2-adrenoreceptors and NOS reduced (P < 0.05) sympatholysis in ET rats, but had no effect on sympatholysis in S rats. In conclusion, ET increased α2-mediated vasoconstriction at rest and during contraction.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Darren S. DeLorey: Faculty of Physical Education and Recreation, University of Alberta, E-435 Van Vliet Centre, Edmonton, T6G 2H9, Alberta, Canada.
| | | |
Collapse
|
10
|
Nyberg M, Al-Khazraji BK, Mortensen SP, Jackson DN, Ellis CG, Hellsten Y. Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. Am J Physiol Regul Integr Comp Physiol 2013; 305:R281-90. [PMID: 23761642 DOI: 10.1152/ajpregu.00189.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During skeletal muscle contractions, the concentration of ATP increases in muscle interstitial fluid as measured by microdialysis probes. This increase is associated with the magnitude of blood flow, suggesting that interstitial ATP may be important for contraction-induced vasodilation. However, interstitial ATP has solely been described to induce vasoconstriction in skeletal muscle. To examine whether interstitial ATP induces vasodilation in skeletal muscle and to what extent this vasoactive effect is mediated by formation of nitric oxide (NO) and prostanoids, three different experimental models were studied. The rat gluteus maximus skeletal muscle model was used to study changes in local skeletal muscle hemodynamics. Superfused ATP at concentrations found during muscle contractions (1-10 μM) increased blood flow by up to 400%. In this model, the underlying mechanism was also examined by inhibition of NO and prostanoid formation. Inhibition of these systems abolished the vasodilator effect of ATP. Cell-culture experiments verified ATP-induced formation of NO and prostacyclin in rat skeletal muscle microvascular endothelial cells, and ATP-induced formation of NO in rat skeletal muscle cells. To confirm these findings in humans, ATP was infused into skeletal muscle interstitium of healthy subjects via microdialysis probes and found to increase muscle interstitial concentrations of NO and prostacyclin by ~60% and ~40%, respectively. Collectively, these data suggest that a physiologically relevant elevation in interstitial ATP concentrations increases muscle blood flow, indicating that the contraction-induced increase in skeletal muscle interstitial [ATP] is important for exercise hyperemia. The vasodilator effect of ATP application is mediated by NO and prostanoid formation.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
11
|
Jendzjowsky NG, DeLorey DS. Short-term exercise training augments sympathetic vasoconstrictor responsiveness and endothelium-dependent vasodilation in resting skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2012; 303:R332-9. [DOI: 10.1152/ajpregu.00053.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased ( P < 0.05) in a training intensity-dependent manner at 2 Hz (S: −20.2 ± 9.8%, M: −34.0 ± 6.7%, and H: −44.9 ± 2.0%), 20 Hz (S: −22.0 ± 10.6%, M: −31.2 ± 8.4%, and H: −42.8 ± 5.9%), and 40 Hz (S: H −24.5 ± 8.5%, M: −35.1 ± 8.9%, H: −44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner ( P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner.
Collapse
Affiliation(s)
- Nicholas G. Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Delorey DS, Clifford PS, Mittelstadt S, Anton MM, Kluess HA, Tune JD, Dincer UD, Buckwalter JB. The effect of aging on adrenergic and nonadrenergic receptor expression and responsiveness in canine skeletal muscle. J Appl Physiol (1985) 2011; 112:841-8. [PMID: 22194325 DOI: 10.1152/japplphysiol.00945.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that adrenergic and nonadrenergic receptor responsiveness and protein expression would be altered with advancing age. Young (n = 6; 22 ± 1 mo; mean ± SE) and old (n = 6; 118 ± 9 mo) beagles were instrumented with flow probes and an indwelling catheter for continuous measurement of external iliac blood flow and arterial blood pressure. Vascular conductance (VC) was calculated as hindlimb blood flow/mean arterial pressure. Selective agonists for α-1, α-2, neuropeptide-Y (NPY), and purinergic (P2X) receptors were infused at rest and during treadmill running at moderate (2.5 mph) and heavy (4 mph with 2.5% grade) exercise intensities. Feed arteries were dissected from gracilis muscles, and α-1D, α-1B, α-2A, P2X-4, P2X-1, and NPY-Y1 receptor protein expression was determined. Phenylephrine produced similar decreases (P > 0.05) in VC in young and old beagles at rest (young: -62 ± 5%; old: -59 ± 5%) and during moderate (young: -67 ± 5%; old: -62 ± 4%) and heavy (young: -54 ± 4%; old: -49 ± 3%) exercise. Clonidine caused similar (P > 0.05) decreases in VC in old compared with young dogs at rest (young: -59 ± 8%; old: -70 ± 6%) and during moderate (young: -52 ± 6%; old: -47 ± 5%)- and heavy (young: -42 ± 5%; old: -43 ± 5%)-intensity exercise. NPY infusion resulted in a similar decline in VC in young and old beagles at rest (young: -40 ± 7%; old: -39 ± 9%) and during moderate (young: -47 ± 6%; old: -40 ± 6%)- and heavy (young: -40 ± 3%; old: -38 ± 4%)-intensity exercise. α-β-Methylene-ATP also produced similar decreases in VC in young and old beagles at rest (young: -36 ± 6%; old: -40 ± 8%) and during exercise at moderate (young: -42 ± 5%; old: -40 ± 9%) and heavy (young: -47 ± 5%; old: -42 ± 8%) intensities. α-1B receptor protein expression was elevated (P < 0.05) in old compared with young dogs, whereas there were no age-related differences in α-1D or α-2A receptor expression and nonadrenergic P2X-4, P2X-1, and NPY-Y1 receptor expression. The present findings indicate that postsynaptic adrenergic and nonadrenergic receptor responsiveness was not altered by advancing age. Moreover, the expression of adrenergic and nonadrenergic receptors in skeletal-muscle feed arteries was largely unaffected by aging.
Collapse
Affiliation(s)
- D S Delorey
- Department of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
DeLorey DS, Buckwalter JB, Mittelstadt SW, Anton MM, Kluess HA, Clifford PS. Is tonic sympathetic vasoconstriction increased in the skeletal muscle vasculature of aged canines? Am J Physiol Regul Integr Comp Physiol 2010; 299:R1342-9. [PMID: 20702803 DOI: 10.1152/ajpregu.00194.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that tonic adrenergic and nonadrenergic receptor-mediated sympathetic vasoconstriction would increase at rest and during exercise with advancing age. Young (n = 6; 22 ± 1 mo; means ± SE) and old (n = 6; 118 ± 9 mo) beagles were studied. Selective antagonists for alpha-1, alpha-2, neuropeptide Y (NPY), and purinergic (P(2x)) receptors were infused at rest and during treadmill running at 2.5 mph and 4 mph with 2.5% grade. Prazosin produced similar increases in vascular conductance in young and old beagles at rest (Young: 158 ± 34%; Old: 98 ± 19%) and during exercise at 2.5 mph (Young: 80 ± 10%; Old: 58 ± 12%) and 4 mph and 2.5% grade (Young: 57 ± 5%; Old: 26 ± 4%). Rauwolscine caused similar (P > 0.05) increases in vascular conductance in old compared with young dogs at rest (Young: 119 ± 25%; Old: 64 ± 22%) and at 2.5 mph (Young: 86 ± 13%; Old: 60 ± 7%) and 4 mph with 2.5% grade (Young: 61 ± 5%; Old: 43 ± 7%). N2-(diphenylacetyl)-N-[4-hydroxyphenyl)methyl]-d-arginine amide (BIBP) caused a smaller increase (P < 0.05) in vascular conductance in old compared with young dogs at rest (Young: 179 ± 44%; Old: 91 ± 22%), whereas similar increases (P > 0.05) of experimental limb vascular conductance in young and old dogs occurred following BIBP during exercise at 2.5 mph (Young: 56 ± 16%; Old: 50 ± 12%) and 4 mph and 2.5% grade (Young: 45 ± 10%; Old: 25 ± 7%). Pyridoxal-phosphate-6-azophenyl-2'-4'-disulfonic acid infusion produced a larger increase in vascular conductance in old compared with young beagles at rest (Young: 88 ± 14%; Old: 191 ± 58%), whereas similar increases were observed at 2.5 mph (Young: 47 ± 18%; Old: 31 ± 11%) and 4 mph with 2.5% grade (Young: 26 ± 13%; Old: -18 ± 8%). At rest, NPY receptor-mediated restraint of skeletal muscle blood flow was reduced with advancing age, whereas P(2x) receptor-mediated restraint of skeletal muscle blood flow was increased. During exercise, the magnitude of adrenergic and nonadrenergic sympathetic vasoconstriction was not different between young and old dogs. Overall, these data demonstrate that adrenergic receptor-mediated vasoconstriction was not elevated at rest, but nonadrenergic sympathetic vasoconstriction was altered under basal conditions in aged beagles.
Collapse
Affiliation(s)
- D S DeLorey
- Faculty of Physical Education and Recreation, Univ. of Alberta, P-320-P Van Vliet Centre, Edmonton, Alberta T6G 2H9 Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The purpose of this study was to investigate the sources of ATP in the 1A arteriole, and to investigate age-related changes in ATP overflow. Arterioles (1A) from the red portion of the gastrocnemius muscle were isolated, cannulated and pressurized in a microvessel chamber with field stimulation electrodes. ATP overflow was determined using probes specific for ATP and null probes that were constructed similar to the ATP probes, but did not contain the enzyme coating. ATP concentrations were determined using a normal curve (0.78 to 25 micromol l(-1) ATP). ATP overflow occurred in two phases. Phase one began in the first 20 s following stimulation and phase two started 35 s after field stimulation. Tetrodotoxin, a potent neurotoxin that blocks action potential generation in nerves, abolished both phases of ATP overflow. alpha1-Receptor blockade resulted in a small decrease in ATP overflow in phase two, but endothelial removal resulted in an increase in ATP overflow. ATP overflow was lowest in 6-month-old rats and highest in 12- and 2-month-old rats (P<0.05). ATP overflow measured via biosensors was of neural origin with a small contribution from the vascular smooth muscle. The endothelium seems to play an important role in attenuating ATP overflow in 1A arterioles.
Collapse
Affiliation(s)
- Heidi A Kluess
- Department of Health Science, Kinesiology, Recreation and Dance, 308V HPER Building, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | |
Collapse
|
15
|
Kindig AE, Hayes SG, Kaufman MP. Purinergic 2 receptor blockade prevents the responses of group IV afferents to post-contraction circulatory occlusion. J Physiol 2006; 578:301-8. [PMID: 17038431 PMCID: PMC2075108 DOI: 10.1113/jphysiol.2006.119271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP, by activating purinergic 2 (P2) receptors on group III and IV afferents, is thought to evoke the metabolic component of the exercise pressor reflex. Previously we have shown that injection of PPADS, a P2 receptor antagonist, into the arterial supply of skeletal muscle of decerebrated cats attenuated the responses of group III and IV afferents to static contraction while the muscles were freely perfused. We have now tested the hypothesis that injection of PPADS (10 mg kg(-1)) attenuated the responses of group III (n = 13) and group IV afferents (n = 9) to post-contraction circulatory occlusion. In the present study, we found that PPADS attenuated the group III afferent responses to static contraction during circulatory occlusion (P < 0.05). Likewise, PPADS abolished the group IV afferent responses to static contraction during occlusion (P = 0.001). During a 1 minute period of post-contraction circulatory occlusion, four of the 13 group III afferents and eight of the nine group IV afferents maintained their increased discharge. A Fischer's exact probability test revealed that more group IV afferents than group III afferents were stimulated by post-contraction circulatory occlusion (P < 0.02). In addition, the nine group IV afferents increased their mean discharge rate over baseline levels during the post-contraction circulatory occlusion period, whereas the 13 group III afferents did not (P < 0.05). PPADS abolished this post-contraction increase in discharge by the group IV afferents (P < 0.05). Our findings suggest that P2 receptors on group IV afferents play a role in evoking the metabolic component of the exercise pressor reflex.
Collapse
Affiliation(s)
- Angela E Kindig
- TB-172, Division of Cardiovascular Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
16
|
Brothers RM, Haslund ML, Wray DW, Raven PB, Sander M. Exercise-induced inhibition of angiotensin II vasoconstriction in human thigh muscle. J Physiol 2006; 577:727-37. [PMID: 16973706 PMCID: PMC1890428 DOI: 10.1113/jphysiol.2006.113977] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is well established that metabolic inhibition of adrenergic vasoconstriction contributes to the maintenance of adequate perfusion to exercising skeletal muscle. However, little is known regarding nonadrenergic vasoconstriction during exercise. We tested the hypothesis that a non-adrenergic vasoconstrictor, angiotensin II (AngII), would be less sensitive to metabolic inhibition than an alpha1-agonist, phenylephrine (PE), in the exercising human thigh. In 11 healthy men, femoral blood flow (FBF, ultrasound Doppler and thermodilution) and blood pressure were evaluated during wide-ranging doses of intra-arterial (femoral) infusions of PE and AngII at rest and during two workloads of steady-state knee-extensor exercise (7 W and 27 W). At rest, the maximal decrease in femoral artery diameter (FAD) during AngII (9.0+/-0.2 to 8.4+/-0.4 mm) was markedly less than during PE (9.0+/-0.3 to 5.7+/-0.5 mm), whereas maximal reductions in FBF and femoral vascular conductance (FVC) were similar during AngII (FBF: -65+/-6 and FVC: -66+/-6%) and PE (-57+/-5 and -59+/-4%). During exercise, FAD was not changed by AngII, but moderately decreased by PE. The maximal reductions in FBF and FVC were blunted during exercise compared to rest for both AngII (7 W: -28+/-5 and -40+/-5%; 27 W: -15+/-4% and -29+/-5%) and PE (7 W: -30+/-4 and -37+/-6%; 27 W: -15+/-2 and -24+/-6%), with no significant differences between drugs. The major new findings are (1) an exercise-induced intensity-dependent metabolic attenuation of non-adrenergic vasoconstriction in the human leg; and (2) functional evidence that AngII-vasoconstriction is predominantly distal, whereas alpha1-vasoconstriction is proximal and distal within the muscle vascular bed of the human thigh.
Collapse
Affiliation(s)
- R Matthew Brothers
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA, and Copenhagen Muscle Research Centre, Department of Cardiology, National Hospital, Blegdamsvej 9, DK-2100 Copenhagen O, Denmark
| | | | | | | | | |
Collapse
|
17
|
Buckwalter JB, Hamann JJ, Clifford PS. Neuropeptide Y1receptor vasoconstriction in exercising canine skeletal muscles. J Appl Physiol (1985) 2005; 99:2115-20. [PMID: 16099895 DOI: 10.1152/japplphysiol.00427.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Existing evidence suggests that neuropeptide Y (NPY) acts as a neurotransmitter in vascular smooth muscle and is coreleased with norepinephrine from sympathetic nerves. We hypothesized that release of NPY stimulates NPY Y(1) receptors in the skeletal muscle vasculature to produce vasoconstriction during dynamic exercise. Eleven mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. In resting dogs (n = 4), a 2.5-mg bolus of BIBP-3226 (NPY Y(1) antagonist) infused into the femoral artery increased external iliac conductance by 150 +/- 82% (1.80 +/- 0.44 to 3.50 +/- 0.14 ml.min(-1).mmHg(-1); P < 0.05). A 10-mg bolus of BIBP-3226 infused into the femoral artery in dogs (n = 7) exercising on a treadmill at a moderate intensity (6 miles/h) increased external iliac conductance by 28 +/- 6% (6.00 +/- 0.49 to 7.64 +/- 0.61 ml.min(-1).mmHg(-1); P < 0.05), whereas the solvent vehicle did not (5.74 +/- 0.51 to 5.98 +/- 0.43 ml.min(-1).mmHg(-1); P > 0.05). During exercise, BIBP-3226 abolished the reduction in conductance produced by infusions of the NPY Y(1) agonist [Leu(31),Pro(34)]NPY (-19 +/- 3 vs. 0.5 +/- 1%). Infusions of BIBP-3226 (n = 7) after alpha-adrenergic receptor antagonism with prazosin and rauwolscine also increased external iliac conductance (6.82 +/- 0.43 to 8.22 +/- 0.48 ml.min(-1).mmHg(-1); P < 0.05). These data support the hypothesis that NPY Y(1) receptors produce vasoconstriction in exercising skeletal muscle. Furthermore, the NPY Y(1) receptor-mediated tone appears to be independent of alpha-adrenergic receptor-mediated vasoconstriction.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology, Medical College of Wisconsin, Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | | | |
Collapse
|
18
|
Kluess HA, Buckwalter JB, Hamann JJ, Clifford PS. Elevated temperature decreases sensitivity of P2X purinergic receptors in skeletal muscle arteries. J Appl Physiol (1985) 2005; 99:995-8. [PMID: 15890753 DOI: 10.1152/japplphysiol.00319.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that elevated temperatures would attenuate but that reduced temperatures would potentiate the tension mediated by vascular P2X purinergic receptors. The femoral arteries of 24 rats were dissected out and placed in modified Krebs-Henseleit buffer. Arteries were cut into 2-mm sections and mounted in organ tissue baths. Maximal tension (g) was measured during a KCl and norepinephrine challenge. Tension was measured during doses of alpha,beta-methylene ATP (10(-7) to 10(-3) M), phenylephrine (10(-7) to 10(-4) M), and acetylcholine (10(-9) to 10(-5) M), with tissue bath temperature adjusted to 35, 37, and 41 degrees C. Dose-response curves were fit using nonlinear regression analysis to calculate the EC50 and slope. The peak tension was lower with alpha,beta-methylene ATP during 41 degrees C (1.49 +/- 0.14 g) compared with 35 degrees C (2.08 +/- 0.09 g) and 37 degrees C (1.94 +/- 0.09 g; P < 0.05). Slope and EC50 were not affected by temperature. Tension produced by phenylephrine and relaxation to acetylcholine were not affected by temperature. These data indicate that the vasoconstrictor response to alpha,beta-methylene ATP is sensitive to temperature. Moderate cooling does not potentiate P2X-mediated vasoconstriction, but elevated temperature attenuates the vasoconstrictor response to P2X purinergic receptors.
Collapse
Affiliation(s)
- Heidi A Kluess
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|
19
|
Kluess HA, Buckwalter JB, Hamann JJ, Clifford PS. Acidosis attenuates P2X purinergic vasoconstriction in skeletal muscle arteries. Am J Physiol Heart Circ Physiol 2004; 288:H129-32. [PMID: 15374827 DOI: 10.1152/ajpheart.00574.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasoconstriction via alpha(2)-receptors is known to be sensitive to acidic pH, but little is known about the pH sensitivity of P2X receptors. ATP is a cotransmitter released with norepinephrine from the sympathetic nerves and causes vasoconstriction via P2X purinergic receptors on vascular smooth muscle. We hypothesized that reductions in pH would attenuate P2X-mediated vasoconstriction in iliofemoral artery rings. Twenty-five rats were killed, and the iliac and femoral arteries were dissected out and placed in modified Krebs-Henseleit buffer. The arteries were cut into 2-mm sections and mounted in an organ tissue bath. Tension (g) was measured during a potassium chloride and norepinephrine challenge (maximal tension). The arteries were then exposed to alpha,beta-methylene ATP (10(-7)-10(-3) M; n = 13) or phenylephrine (10(-7)-10(-4) M; n = 6) with a tissue bath pH of 7.8, 7.4, and 7.0. Dose-response curves were fit with nonlinear regression analysis to calculate the EC(50) and slope. The peak tension with alpha,beta-methylene ATP was lower during pH 7.0 (1.37 +/- 0.09 g) compared with pH 7.8 (1.90 +/- 0.12 g). EC(50) was highest with pH 7.4 (-5.38 +/- 0.18 log M alpha,beta-methylene ATP) and lowest with pH 7.0 (-4.9 +/- 0.10 log M alpha,beta-methylene ATP). The slopes of the dose-response curves were not different. Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) abolished contraction caused by the addition of alpha,beta-methylene ATP (n = 6). There was no effect of pH on phenylephrine dose-response curves. These data indicate that the vasoconstrictor response to alpha,beta-methylene ATP is sensitive to pH and that lower pH attenuates the response of P2X purinergic receptors.
Collapse
Affiliation(s)
- Heidi A Kluess
- Department of Anesthesiology and Physiology, Medical College of Wisconsin, Milwaukee, WI , USA
| | | | | | | |
Collapse
|
20
|
Abstract
Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research.
Collapse
Affiliation(s)
- Gail D Thomas
- Hypertension Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8586, USA.
| | | |
Collapse
|
21
|
Buckwalter JB, Hamann JJ, Kluess HA, Clifford PS. Vasoconstriction in exercising skeletal muscles: a potential role for neuropeptide Y? Am J Physiol Heart Circ Physiol 2004; 287:H144-9. [PMID: 15210450 DOI: 10.1152/ajpheart.00071.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that neuropeptide Y (NPY) acts as a neurotransmitter in vascular smooth muscle and is released with norepinephrine from sympathetic nerves. We hypothesized that NPY Y1 receptor stimulation would produce vasoconstriction in resting and exercising skeletal muscle. Nine mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective NPY Y1 receptor agonist [Leu31,Pro34]NPY was infused as a bolus into the femoral artery catheter at rest and during mild, moderate, and heavy exercise. Intra-arterial infusions of [Leu31,Pro34]NPY elicited reductions ( P < 0.05) in vascular conductance of 38 ± 3, 25 ± 2, 17 ± 1, and 11 ± 1% at rest, 3 miles/h, 6 miles/h, and 6 miles/h and 10% grade, respectively. The agonist infusions did not affect ( P > 0.05) blood flow in the contralateral iliac artery. To examine whether nitric oxide (NO) is responsible for the attenuated vasoconstrictor response during exercise to NPY Y1 receptor stimulation, the infusions were repeated after NO synthase blockade. These infusions yielded reductions ( P < 0.05) in vascular conductance of 47 ± 3, 23 ± 2, 19 ± 3, and 12 ± 2% at rest, 3 miles/h, 6 miles/h, and 6 miles/h and 10% grade, respectively. NPY Y1 receptor responsiveness was attenuated ( P < 0.05) during exercise compared with rest. Blockade of NO production did not affect ( P > 0.05) the attenuation of NPY Y1 receptor responsiveness during exercise. These data support the hypothesis that NPY Y1 receptors can produce vasoconstriction in exercising skeletal muscle.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53295, USA.
| | | | | | | |
Collapse
|
22
|
Rosenmeier JB, Hansen J, González-Alonso J. Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol 2004; 558:351-65. [PMID: 15155791 PMCID: PMC1664919 DOI: 10.1113/jphysiol.2004.063107] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite increases in muscle sympathetic vasoconstrictor activity, skeletal muscle blood flow and O2 delivery increase during exercise in humans in proportion to the local metabolic demand, a phenomenon coupled to local reductions in the oxygenation state of haemoglobin and concomitant increases in circulating ATP. We tested the hypothesis that circulating ATP contributes to local blood flow and O2 delivery regulation by both inducing vasodilatation and blunting the augmented sympathetic vasoconstrictor activity. In eight healthy subjects, we first measured leg blood flow (LBF) and mean arterial pressure (MAP) during three hyperaemic conditions: (1) intrafemoral artery adenosine infusion (vasodilator control), (2) intrafemoral artery ATP infusion (vasodilator), and (3) mild knee-extensor exercise (approximately 20 W), and then compared the responses with the combined infusion of the vasoconstrictor drug tyramine, which evokes endogenous release of noradrenaline from sympathetic nerve endings. In all three hyperaemic conditions, LBF equally increased from approximately 0.5 +/- 0.1 l min(-1) at rest to approximately 3.6 +/- 0.3 l min(-1), with no change in MAP. Tyramine caused significant leg vasoconstriction during adenosine infusion (53 +/- 5 and 56 +/- 5% lower LBF and leg vascular conductance, respectively, P < 0.05), which was completely abolished by both ATP infusion and exercise. In six additional subjects resting in the sitting position, intrafemoral artery infusion of ATP increased LBF and leg vascular conductance 27 +/- 3-fold, despite concomitant increases in venous noradrenaline and muscle sympathetic nerve activity of 2.5 +/- 0.2- and 2.4 +/- 0.1-fold, respectively. Maximal ATP-induced vasodilatation at rest accounted for 78% of the peak LBF during maximal bicycling exercise. Our findings in humans demonstrate that circulating ATP is capable of regulating local skeletal muscle blood flow and O2 delivery by causing substantial vasodilatation and negating the effects of increased sympathetic vasoconstrictor activity.
Collapse
Affiliation(s)
- Jaya B Rosenmeier
- The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
23
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
24
|
Buckwalter JB, Taylor JC, Hamann JJ, Clifford PS. Do P2X purinergic receptors regulate skeletal muscle blood flow during exercise? Am J Physiol Heart Circ Physiol 2003; 286:H633-9. [PMID: 14551053 DOI: 10.1152/ajpheart.00572.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although there is evidence that sympathetic nerves release ATP as a neurotransmitter to produce vasoconstriction via P2X purinergic receptors, the role of these receptors in the regulation of blood flow to exercising skeletal muscle has yet to be determined. We hypothesized that there is tonic P2X receptor-mediated vasoconstriction in exercising skeletal muscle. To test this hypothesis, the effect of P2X receptor blockade on skeletal muscle blood flow was examined in six exercising mongrel dogs. P2X receptor antagonism was accomplished with pyridoxal-phosphate-6-azophenyl-2'4'-disulfonic acid (PPADs). Animals were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. PPADs (40 mg) was infused as a bolus into the femoral artery catheter during steady-state exercise at 6 miles/h. Intra-arterial infusion of PPADs increased iliac blood flow from 542 +/- 55 to 677 +/- 69 ml/min (P < 0.05) and iliac vascular conductance from 5.17 +/- 0.62 to 6.53 +/- 0.80 ml.min(-1).mmHg(-1). The PPADs infusion did not affect blood flow in the contralateral iliac artery. These data support the hypothesis that P2X purinergic receptors produce vasoconstriction in exercising skeletal muscle.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology, Medical College of Wisconsin, Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | | | | | |
Collapse
|