1
|
Luo S, Zhou X, Wu M, Wang G, Wang L, Feng X, Wu H, Luo R, Lu M, Ju J, Wang W, Yuan L, Luo X, Peng D, Yang L, Zhang Q, Chen M, Liang S, Dong X, Hao G, Zhang Y, Liu Z. Optimizing Nav1.7-Targeted Analgesics: Revealing Off-Target Effects of Spider Venom-Derived Peptide Toxins and Engineering Strategies for Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406656. [PMID: 39248322 PMCID: PMC11558128 DOI: 10.1002/advs.202406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.
Collapse
|
2
|
DU C, Yuan F, Duan X, Rong M, Meng E, Liu C. Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:194-200. [PMID: 38268403 PMCID: PMC11057981 DOI: 10.3724/zdxbyxb-2023-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVES To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its sequence and structure. METHODS Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry; its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry; its structure was established based on iterative thread assembly refinement online analysis. RESULTS A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 μmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its structure showed that SsTx-P2 shared a conserved helical structure. CONCLUSIONS The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
Collapse
Affiliation(s)
- Canwei DU
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China.
| | - Fuchu Yuan
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Xinyi Duan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Mingqiang Rong
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China.
| |
Collapse
|
3
|
Defaye M, Bradaia A, Abdullah NS, Agosti F, Iftinca M, Delanne-Cuménal M, Soubeyre V, Svendsen K, Gill G, Ozmaeian A, Gheziel N, Martin J, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Basso L, Bourinet E, Chiu IM, Altier C. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J Clin Invest 2024; 134:e176474. [PMID: 38690737 PMCID: PMC11060736 DOI: 10.1172/jci176474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-β response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mélissa Delanne-Cuménal
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Soubeyre
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gurveer Gill
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
| | - Aye Ozmaeian
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nadine Gheziel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jérémy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Andreyanov M, Heinrich R, Berlin S. Design of Ultrapotent Genetically Encoded Inhibitors of Kv4.2 for Gating Neural Plasticity. J Neurosci 2024; 44:e2295222023. [PMID: 38154956 PMCID: PMC10869153 DOI: 10.1523/jneurosci.2295-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
The Kv4.2 potassium channel plays established roles in neuronal excitability, while also being implicated in plasticity. Current means to study the roles of Kv4.2 are limited, motivating us to design a genetically encoded membrane tethered Heteropodatoxin-2 (MetaPoda). We find that MetaPoda is an ultrapotent and selective gating-modifier of Kv4.2. We narrow its site of contact with the channel to two adjacent residues within the voltage sensitive domain (VSD) and, with docking simulations, suggest that the toxin binds the VSD from within the membrane. We also show that MetaPoda does not require an external linker of the channel for its activity. In neurons (obtained from female and male rat neonates), MetaPoda specifically, and potently, inhibits all Kv4 currents, leaving all other A-type currents unaffected. Inhibition of Kv4 in hippocampal neurons does not promote excessive excitability, as is expected from a simple potassium channel blocker. We do find that MetaPoda's prolonged expression (1 week) increases expression levels of the immediate early gene cFos and prevents potentiation. These findings argue for a major role of Kv4.2 in facilitating plasticity of hippocampal neurons. Lastly, we show that our engineering strategy is suitable for the swift engineering of another potent Kv4.2-selective membrane-tethered toxin, Phrixotoxin-1, denoted MetaPhix. Together, we provide two uniquely potent genetic tools to study Kv4.2 in neuronal excitability and plasticity.
Collapse
Affiliation(s)
- Michael Andreyanov
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
5
|
Chiu CY, Tsaur ML. K + channel Kv4.1 is expressed in the nociceptors/secondary nociceptive neurons and participates in pain regulation. Eur J Pain 2022; 26:2238-2256. [PMID: 36097791 DOI: 10.1002/ejp.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 09/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Kv4 channels are key components controlling neuronal excitability at membrane potentials below action potential thresholds. It remains elusive whether Kv4.1 participates in pain regulation. METHODS We raised a Kv4.1 antibody to map Kv4.1+ neurons in the superficial dorsal horn of spinal cord and dorsal root ganglion (DRG) of rats. Behavioral, biochemical, and immunohistochemical methods were used to examine whether the activity of Kv4.1+ neurons or Kv4.1 expression level is altered after peripheral nerve injury. RESULTS In lamina I of spinal cord, Kv4.1 immunoreactivity (IR) was detected in neurokinin-1 receptor positive (NK1R)+ projection neurons (the secondary nociceptive neurons) and NK1R+ excitatory interneurons. Kv4.1, KChIP2 and DPP10 were co-expressed in these neurons. Peripheral nerve injury evoked by lumbar spinal nerve ligation (SNL) immediately induced phosphorylated extracellular regulated protein kinase (pERK, an indicator of enhanced neuronal activity) in lamina I Kv4.1+ neurons and lamina II Kv4.2/Kv4.3+ neurons of the spinal cord. Furthermore, Kv4.1 appeared in 59.9% of DRG neurons with variable sizes. Kv4.1 mRNA and protein levels in DRG neurons were gradually decreased after SNL. Following intrathecal injection of Kv4.1 antisense oligodeoxynucleotide (ASO) into naive rats, Kv4.1 protein level was reduced in the DRG, and mechanical but not thermal hypersensitivity was induced. CONCLUSIONS Kv4.1 appears in the secondary nociceptive neurons, and peripheral nerve injury increases the activity of these neurons. Kv4.1 expression in DRG neurons (including half of the nociceptors) is gradually reduced after peripheral nerve injury, and knockdown of Kv4.1 in DRG neurons induces pain. Thus, Kv4.1 participates in pain regulation. SIGNIFICANCE Based on the expression of Kv4.1 and Kv4.3 in the nociceptors, Kv4.1 in the secondary nociceptive neurons, Kv4.1 in spinal lamina I excitatory interneurons that regulate the activity of the secondary nociceptive neurons, as well as Kv4.2 and Kv4.3 in spinal lamina II excitatory interneurons that also regulate the activity of the secondary nociceptive neurons, developing Kv4 activators or genetic manipulation to increase Kv4 channel activity in these pain-related Kv4+ neurons will be useful in future pain therapeutics.
Collapse
Affiliation(s)
- Chi-Yuan Chiu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Li Q, Qin L, Li J. Effects of bradykinin on voltage-gated K V 4 channels in muscle dorsal root ganglion neurons of rats with experimental peripheral artery disease. J Physiol 2021; 599:3567-3580. [PMID: 34036586 PMCID: PMC8284427 DOI: 10.1113/jp281704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During exercise, bradykinin (BK), a muscle metabolite in ischaemic muscles, exaggerates autonomic responses to activation of muscle afferent nerves in peripheral artery disease (PAD). We examined whether BK inhibits activity of KV 4 channels in muscle afferent neurons of PAD rats induced by femoral artery occlusion. We demonstrated that: 1) femoral occlusion attenuates KV 4 currents in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles and decreases the threshold of action potential firing; 2) BK has a greater inhibitory effect on KV 4 currents in muscle DRG neurons of PAD rats; and 3) expression of KV 4.3 is downregulated in DRGs of PAD rats and inhibition of KV 4.3 significantly decreases activity of KV 4 currents in muscle DRG neurons. Femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit activity of KV 4 channels in muscle afferent neurons and this is likely involved in the exaggerated exercise pressor reflex in PAD. ABSTRACT Muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses are exaggerated during exercise in patients with peripheral artery diseases (PAD) and in PAD rats induced by femoral artery occlusion. However, the precise signalling pathways and molecular mediators responsible for these abnormal autonomic responses in PAD are poorly understood. A-type voltage-gated K+ (KV ) channels are quintessential regulators of cellular excitability in the various tissues. Among KV channels, KV 4 (i.e. KV 4.1 and KV 4.3) in primary sensory neurons mainly participate in physiological functions in regulation of mechanical and chemical sensation. However, little is known about the role of KV 4 in regulating neuronal activity in muscle afferent neurons of PAD. In addition, bradykinin (BK) is considered as a muscle metabolite contributing to the exaggerated exercise pressor reflex in PAD rats with femoral artery occlusion. Our data demonstrated that: 1) KV 4 currents are attenuated in dorsal root ganglion (DRG) neurons innervating the hindlimb muscles of PAD rats, along with a decreasing threshold of action potential firing; 2) KV 4 currents are inhibited by application of BK onto muscle DRG neurons of PAD rats to a greater degree; and 3) expression of KV 4.3 is downregulated in the DRGs of PAD rats and KV 4.3 channel is a major contributor to the activity of KV 4 currents in muscle DRG neurons. In conclusion, data suggest that femoral artery occlusion-induced limb ischaemia and/or ischaemia-induced metabolites (i.e. BK) inhibit the activity of KV 4 channels in muscle afferent neurons likely leading to the exaggerated exercise pressor reflex observed in PAD.
Collapse
Affiliation(s)
- Qin Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Lu Qin
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jianhua Li
- Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
8
|
Abstract
Transient outward potassium currents were first described nearly 60 years ago, since then major strides have been made in understanding their molecular basis and physiological roles. From the large family of voltage-gated potassium channels members of 3 subfamilies can produce such fast-inactivating A-type potassium currents. Each subfamily gives rise to currents with distinct biophysical properties and pharmacological profiles and a simple workflow is provided to aid the identification of channels mediating A-type currents in native cells. Their unique properties and regulation enable A-type K+ channels to perform varied roles in excitable cells including repolarisation of the cardiac action potential, controlling spike and synaptic timing, regulating dendritic integration and long-term potentiation as well as being a locus of neural plasticity.
Collapse
Affiliation(s)
- Jamie Johnston
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Fu M, Zhang L, Xie X, Wang N, Xiao Z. Differential contributions of voltage-gated potassium channel subunits in enhancing temporal coding in the bushy cells of the ventral cochlear nucleus. J Neurophysiol 2021; 125:1954-1972. [PMID: 33852808 DOI: 10.1152/jn.00435.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.
Collapse
Affiliation(s)
- Mingyu Fu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Xie
- Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ningqian Wang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
10
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Shen H, Gan M, Yang H, Zou J. An integrated cell isolation and purification method for rat dorsal root ganglion neurons. J Int Med Res 2019; 47:3253-3260. [PMID: 31213102 PMCID: PMC6683899 DOI: 10.1177/0300060519855585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective Neurobiology studies are increasingly focused on the dorsal root ganglion (DRG), which plays an important role in neuropathic pain. Existing DRG neuron primary culture methods have considerable limitations, including challenging cell isolation and poor cell yield, which cause difficulty in signaling pathway studies. The present study aimed to establish an integrated primary culture method for DRG neurons. Methods DRGs were obtained from fetal rats by microdissection, and then dissociated with trypsin. The dissociated neurons were treated with 5-fluorouracil to promote growth of neurons from the isolated cells. Then, reverse transcription polymerase chain reaction and immunofluorescence assays were used to identify and purify DRG neurons. Results Isolated DRGs were successfully dissociated and showed robust growth as individual DRG neurons in neurobasal medium. Both mRNA and protein assays confirmed that DRG neurons expressed neurofilament-200 and neuron-specific enolase. Conclusions Highly purified, stable DRG neurons could be easily harvested and grown for extended periods by using this integrated cell isolation and purification method, which may help to elucidate the mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
- Huaishuang Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minfeng Gan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Noh MC, Stemkowski PL, Smith PA. Long-term actions of interleukin-1β on K +, Na + and Ca 2+ channel currents in small, IB 4-positive dorsal root ganglion neurons; possible relevance to the etiology of neuropathic pain. J Neuroimmunol 2019; 332:198-211. [PMID: 31077855 DOI: 10.1016/j.jneuroim.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022]
Abstract
Excitation of dorsal root ganglion (DRG) neurons by interleukin 1β (IL-1β) is implicated in the onset of neuropathic pain. To understand its mechanism of action, isolectin B4 positive (IB4+) DRG neurons were exposed to 100pM IL-1β for 5-6d. A reversible increase in action potential (AP) amplitude reflected increased TTX-sensitive sodium current (TTX-S INa). An irreversible increase in AP duration reflected decreased Ca2+- sensitive K+ conductance (BK(Ca) channels). Different processes thus underlie regulation of the two channel types. Since changes in AP shape facilitated Ca2+ influx, this explains how IL-1β facilitates synaptic transmission in the dorsal horn; thereby provoking pain.
Collapse
Affiliation(s)
- Myung-Chul Noh
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Patrick L Stemkowski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter A Smith
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
13
|
Zemel BM, Ritter DM, Covarrubias M, Muqeem T. A-Type K V Channels in Dorsal Root Ganglion Neurons: Diversity, Function, and Dysfunction. Front Mol Neurosci 2018; 11:253. [PMID: 30127716 PMCID: PMC6088260 DOI: 10.3389/fnmol.2018.00253] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
A-type voltage-gated potassium (Kv) channels are major regulators of neuronal excitability that have been mainly characterized in the central nervous system. By contrast, there is a paucity of knowledge about the molecular physiology of these Kv channels in the peripheral nervous system, including highly specialized and heterogenous dorsal root ganglion (DRG) neurons. Although all A-type Kv channels display pore-forming subunits with similar structural properties and fast inactivation, their voltage-, and time-dependent properties and modulation are significantly different. These differences ultimately determine distinct physiological roles of diverse A-type Kv channels, and how their dysfunction might contribute to neurological disorders. The importance of A-type Kv channels in DRG neurons is highlighted by recent studies that have linked their dysfunction to persistent pain sensitization. Here, we review the molecular neurophysiology of A-type Kv channels with an emphasis on those that have been identified and investigated in DRG nociceptors (Kv1.4, Kv3.4, and Kv4s). Also, we discuss evidence implicating these Kv channels in neuropathic pain resulting from injury, and present a perspective of outstanding challenges that must be tackled in order to discover novel treatments for intractable pain disorders.
Collapse
Affiliation(s)
- Benjamin M. Zemel
- Vollum Institute, Oregon Health and Science University, Portland, OR, United States
| | - David M. Ritter
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Manuel Covarrubias
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Life Sciences at Thomas Jefferson University, Philadelphia, PA, United States
| | - Tanziyah Muqeem
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College and Jefferson College of Life Sciences at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Mandge D, Manchanda R. A biophysically detailed computational model of urinary bladder small DRG neuron soma. PLoS Comput Biol 2018; 14:e1006293. [PMID: 30020934 PMCID: PMC6066259 DOI: 10.1371/journal.pcbi.1006293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/30/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Bladder small DRG neurons, which are putative nociceptors pivotal to urinary bladder function, express more than a dozen different ionic membrane mechanisms: ion channels, pumps and exchangers. Small-conductance Ca2+-activated K+ (SKCa) channels which were earlier thought to be gated solely by intracellular Ca2+ concentration ([Ca]i) have recently been shown to exhibit inward rectification with respect to membrane potential. The effect of SKCa inward rectification on the excitability of these neurons is unknown. Furthermore, studies on the role of KCa channels in repetitive firing and their contributions to different types of afterhyperpolarization (AHP) in these neurons are lacking. In order to study these phenomena, we first constructed and validated a biophysically detailed single compartment model of bladder small DRG neuron soma constrained by physiological data. The model includes twenty-two major known membrane mechanisms along with intracellular Ca2+ dynamics comprising Ca2+ diffusion, cytoplasmic buffering, and endoplasmic reticulum (ER) and mitochondrial mechanisms. Using modelling studies, we show that inward rectification of SKCa is an important parameter regulating neuronal repetitive firing and that its absence reduces action potential (AP) firing frequency. We also show that SKCa is more potent in reducing AP spiking than the large-conductance KCa channel (BKCa) in these neurons. Moreover, BKCa was found to contribute to the fast AHP (fAHP) and SKCa to the medium-duration (mAHP) and slow AHP (sAHP). We also report that the slow inactivating A-type K+ channel (slow KA) current in these neurons is composed of 2 components: an initial fast inactivating (time constant ∼ 25-100 ms) and a slow inactivating (time constant ∼ 200-800 ms) current. We discuss the implications of our findings, and how our detailed model can help further our understanding of the role of C-fibre afferents in the physiology of urinary bladder as well as in certain disorders.
Collapse
Affiliation(s)
- Darshan Mandge
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Rohit Manchanda
- Computational Neurophysiology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
15
|
Regulation of Nociceptive Glutamatergic Signaling by Presynaptic Kv3.4 Channels in the Rat Spinal Dorsal Horn. J Neurosci 2018. [PMID: 29540546 DOI: 10.1523/jneurosci.3212-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic voltage-gated K+ (Kv) channels in dorsal root ganglion (DRG) neurons are thought to regulate nociceptive synaptic transmission in the spinal dorsal horn. However, the Kv channel subtypes responsible for this critical role have not been identified. The Kv3.4 channel is particularly important because it is robustly expressed in DRG nociceptors, where it regulates action potential (AP) duration. Furthermore, Kv3.4 dysfunction is implicated in the pathophysiology of neuropathic pain in multiple pain models. We hypothesized that, through their ability to modulate AP repolarization, Kv3.4 channels in DRG nociceptors help to regulate nociceptive synaptic transmission. To test this hypothesis, we investigated Kv3.4 immunoreactivity (IR) in the rat cervical superficial dorsal horn (sDH) in both sexes and implemented an intact spinal cord preparation to investigate glutamatergic synaptic currents from second order neurons in the sDH under conditions that selectively inhibit the Kv3.4 current. We found presynaptic Kv3.4 IR in peptidergic and nonpeptidergic nociceptive fibers of the sDH. The Kv3.4 channel is hypersensitive to 4-aminopyridine and tetraethylammonium (TEA). Accordingly, 50 μm 4-aminopyridine and 500 μm TEA significantly prolong the AP, slow the maximum rate of repolarization in small-diameter DRG neurons, and potentiate monosynaptic excitatory postsynaptic currents (EPSCs) in dorsal horn laminae I and II through a presynaptic mechanism. In contrast, highly specific inhibitors of BK, Kv7, and Kv1 channels are less effective modulators of the AP and have little to no effect on EPSCs. The results strongly suggest that presynaptic Kv3.4 channels are major regulators of nociceptive synaptic transmission in the spinal cord.SIGNIFICANCE STATEMENT Intractable neuropathic pain can result from disease or traumatic injury and many studies have been conducted to determine the underlying pathophysiological changes. Voltage-gated ion channels, including the K+ channel Kv3.4, are dysregulated in multiple pain models. Kv3.4 channels are ubiquitously expressed in the dorsal root ganglion (DRG), where they are major regulators of DRG excitability. However, little is known about the ionic mechanisms that regulate nociceptive synaptic transmission at the level of the first synapse in the spinal cord, which is critical to pain transmission in both intact and pathological states. Here, we show that Kv3.4 channels have a significant impact on glutamatergic synaptic transmission in the dorsal horn, further illuminating its potential as a molecular pain therapeutic target.
Collapse
|
16
|
Bátai IZ, Horváth Á, Pintér E, Helyes Z, Pozsgai G. Role of Transient Receptor Potential Ankyrin 1 Ion Channel and Somatostatin sst4 Receptor in the Antinociceptive and Anti-inflammatory Effects of Sodium Polysulfide and Dimethyl Trisulfide. Front Endocrinol (Lausanne) 2018; 9:55. [PMID: 29535682 PMCID: PMC5835328 DOI: 10.3389/fendo.2018.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) non-selective ligand-gated cation channels are mostly expressed in primary sensory neurons. Polysulfides (POLYs) are Janus-faced substances interacting with numerous target proteins and associated with both protective and detrimental processes. Activation of TRPA1 in sensory neurons, consequent somatostatin (SOM) liberation and action on sst4 receptors have recently emerged as mediators of the antinociceptive effect of organic trisulfide dimethyl trisulfide (DMTS). In the frame of the present study, we set out to compare the participation of this mechanism in antinociceptive and anti-inflammatory effects of inorganic sodium POLY and DMTS in carrageenan-evoked hind-paw inflammation. Inflammation of murine hind paws was induced by intraplantar injection of carrageenan (3% in 30 µL saline). Animals were treated intraperitoneally with POLY (17 µmol/kg) or DMTS (250 µmol/kg) or their respective vehicles 30 min prior paw challenge and six times afterward every 60 min. Mechanical pain threshold and swelling of the paws were measured by dynamic plantar aesthesiometry and plethysmometry at 2, 4, and 6 h after initiation of inflammation. Myeloperoxidase (MPO) activity in the hind paws were detected 6 h after challenge by luminescent imaging. Mice genetically lacking TRPA1 ion channels, sst4 receptors and their wild-type counterparts were used to examine the participation of these proteins in POLY and DMTS effects. POLY counteracted carrageenan-evoked mechanical hyperalgesia in a TRPA1 and sst4 receptor-dependent manner. POLY did not influence paw swelling and MPO activity. DMTS ameliorated all examined inflammatory parameters. Mitigation of mechanical hyperalgesia and paw swelling by DMTS were mediated through sst4 receptors. These effects were present in TRPA1 knockout animals, too. DMTS inhibited MPO activity with no participation of the sensory neuron-SOM axis. While antinociceptive effects of POLY are transmitted by activation of peptidergic nerves via TRPA1, release of SOM and its effect on sst4 receptors, those of DMTS partially rely on SOM release triggered by other routes. SOM is responsible for the inhibition of paw swelling by DMTS, but TRPA1 does not contribute to its release. Modulation of MPO activity by DMTS is independent of TRPA1 and sst4.
Collapse
Affiliation(s)
- István Z. Bátai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Pozsgai
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- *Correspondence: Gábor Pozsgai,
| |
Collapse
|
17
|
de Moraes ER, Kushmerick C, Naves LA. Morphological and functional diversity of first-order somatosensory neurons. Biophys Rev 2017; 9:847-856. [PMID: 28889335 DOI: 10.1007/s12551-017-0321-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023] Open
Abstract
First-order somatosensory neurons transduce and convey information about the external or internal environment of the body to the central nervous system. They are pseudo unipolar neurons with cell bodies residing in one of several ganglia located near the central nervous system, with the short branch of the axon connecting to the spinal cord or the brain stem and the long branch extending towards the peripheral organ they innervate. Besides their sensory transducer and conductive role, somatosensory neurons also have trophic functions in the tissue they innervate and participate in local reflexes in the periphery. The cell bodies of these neurons are remarkably diverse in terms of size, molecular constitution, and electrophysiological properties. These parameters have provided criteria for classification that have proved useful to establish and study their functions. In this review, we discuss ways to measure and classify populations of neurons based on their size and action potential firing pattern. We also discuss attempts to relate the different populations to specific sensory modalities.
Collapse
Affiliation(s)
- Eder Ricardo de Moraes
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Christopher Kushmerick
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lígia Araujo Naves
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Lee S, Malykhina AP. Neuro-tracing approach to study kidney innervation: a technical note. Kidney Res Clin Pract 2017; 36:86-94. [PMID: 28393001 PMCID: PMC5331979 DOI: 10.23876/j.krcp.2017.36.1.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/04/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022] Open
Abstract
Neuro-tracing approach is a great option to study innervation of the visceral organs including the kidneys. Important factors contributing to the success of this technique include the choice of a neuro-tracer, and delivery methods to result in successful labeling of peripheral sensory and motor ganglia. The neuro-tracer is usually applied directly to the kidney accessed via a surgical opening of the abdominal wall under deep anesthesia. A series of local microinjections of the dye are performed followed by a wound closure, and recovery period from the surgery. An extra care should be taken to prevent neuro-tracer spillage and accidental labeling of the surrounding organs during injections of the dye. Retrograde neuro-tracers like Fast Blue do not cross synapses, therefore, only neuronal bodies located within dorsal root ganglion neurons and major peripheral ganglia will be labeled by this approach. Retrogradely labeled peripheral neurons could be freshly isolated and dissociated for electrophysiological recordings and biochemical analyses (gene and protein expression), whereas the whole fixed ganglia could be sectioned to undergo immunohisto- and immunocytochemical targeted staining.
Collapse
Affiliation(s)
- Sanghee Lee
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
19
|
Kanda H, Clodfelder-Miller BJ, Gu JG, Ness TJ, DeBerry JJ. Electrophysiological properties of lumbosacral primary afferent neurons innervating urothelial and non-urothelial layers of mouse urinary bladder. Brain Res 2016; 1648:81-89. [PMID: 27372884 DOI: 10.1016/j.brainres.2016.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
Pelvic nerve (PN) bladder primary afferent neurons were retrogradely labeled by intraparenchymal (IPar) microinjection of fluorescent tracer or intravesical (IVes) infusion of tracer into the bladder lumen. IPar and IVes techniques labeled two distinct populations of PN bladder neurons differentiated on the basis of dorsal root ganglion (DRG) soma labeling, dye distribution within the bladder, and intrinsic electrophysiological properties. IPar (Fast blue)- and IVes (DiI)-labeled neurons accounted for 91.5% (378.3±32.3) and 8% (33.0±26.0) of all labeled neurons, respectively (p<0.01), with only 2.0±1.2 neurons labeled by both techniques. When dyes were switched, IPar (DiI)- and IVes (Fast blue) labeled neurons accounted for 77.6% (103.0±25.8) and 22.4% (29.8±10.5), respectively (P<0.05), with 6.0±1.5 double-labeled neurons. Following IPar labeling, DiI was distributed throughout non-urothelial layers of the bladder. In contrast, dye was contained within the urothelium and occasionally the submucosa after IVes labeling. Electrophysiological properties of DiI-labeled IPar and IVes DRG neurons were characterized by whole-mount, in situ patch-clamp recordings. IPar- and IVes-labeled neurons differed significantly with respect to rheobase, input resistance, membrane capacitance, amplitude of inactivating and sustained K(+) currents, and rebound action potential firing, suggesting that the IVes population is more excitable. This study is the first to demonstrate that IVes labeling is a minimally invasive approach for retrograde labeling of PN bladder afferent neurons, to selectively identify urothelial versus non-urothelial bladder DRG neurons, and to elucidate electrophysiological properties of urothelial and non-urothelial afferents in an intact DRG soma preparation.
Collapse
Affiliation(s)
- Hirosato Kanda
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Buffie J Clodfelder-Miller
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
20
|
Induction of thermal and mechanical hypersensitivity by parathyroid hormone-related peptide through upregulation of TRPV1 function and trafficking. Pain 2016; 156:1620-1636. [PMID: 25970319 DOI: 10.1097/j.pain.0000000000000224] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurobiological mechanisms underlying chronic pain associated with cancers are not well understood. It has been hypothesized that factors specifically elevated in the tumor microenvironment sensitize adjacent nociceptive afferents. We show that parathyroid hormone-related peptide (PTHrP), which is found at elevated levels in the tumor microenvironment of advanced breast and prostate cancers, is a critical modulator of sensory neurons. Intraplantar injection of PTHrP led to the development of thermal and mechanical hypersensitivity in both male and female mice, which were absent in mice lacking functional transient receptor potential vanilloid-1 (TRPV1). The PTHrP treatment of cultured mouse sensory neurons enhanced action potential firing, and increased TRPV1 activation, which was dependent on protein kinase C (PKC) activity. Parathyroid hormone-related peptide induced robust potentiation of TRPV1 activation and enhancement of neuronal firing at mild acidic pH that is relevant to acidic tumor microenvironment. We also observed an increase in plasma membrane TRPV1 protein levels after exposure to PTHrP, leading to upregulation in the proportion of TRPV1-responsive neurons, which was dependent on the activity of PKC and Src kinases. Furthermore, co-injection of PKC or Src inhibitors attenuated PTHrP-induced thermal but not mechanical hypersensitivity. Altogether, our results suggest that PTHrP and mild acidic conditions could induce constitutive pathological activation of sensory neurons through upregulation of TRPV1 function and trafficking, which could serve as a mechanism for peripheral sensitization of nociceptive afferents in the tumor microenvironment.
Collapse
|
21
|
Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons. Cell Signal 2016; 28:979-88. [PMID: 27156838 DOI: 10.1016/j.cellsig.2016.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
Abstract
Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons.
Collapse
|
22
|
Mandge D, Manchanda R. Computational studies on bladder small dorsal root ganglion neurons: Modelling BK channels. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5376-9. [PMID: 26737506 DOI: 10.1109/embc.2015.7319606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The urinary bladder afferent neurons called the dorsal root ganglion (DRG) neurons carry information on diverse modalities such as stretch, pressure and nociception to the spinal cord. This information is carried in the form of electrical activity called action potentials (AP). The bladder small diameter DRG neurons that are considered to be putative nociceptors express several ion channels and active mechanisms which are responsible for generating this electrical activity. One of the channels that has been suggested to play a role in cell excitability is the large conductance calcium activated potassium channel (BK) channel. Its activation is governed by cell membrane potential and intracellular calcium concentration. Here, we present a computational model of the BK channel along with other ion channels and mechanisms present in the bladder small DRG neuron cell body. The BK channel simulations show properties that are similar to those shown by Isolectin B4 (IB4) negative cutaneous small DRG neurons. The bladder small DRG neurons have also been found to show some of these properties. Thus, we hypothesize that the bladder small DRG neurons are IB4 negative. This hypothesis is supported by experimental studies which suggest that about 80% of bladder small DRG neurons are IB4 negative. The model of bladder small DRG neuron also faithfully reproduced some of the electrical properties that have been reported experimentally. This model can thus be used to predict abnormal behaviour of the DRG neuron during pathological conditions.
Collapse
|