1
|
Jaguva Vasudevan AA, Balakrishnan K, Franken A, Krikoni A, Häussinger D, Luedde T, Münk C. Murine leukemia virus resists producer cell APOBEC3A by its Glycosylated Gag but not target cell APOBEC3A. Virology 2021; 557:1-14. [PMID: 33581610 DOI: 10.1016/j.virol.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The human APOBEC3A (A3A) polynucleotide cytidine deaminase has been shown to have antiviral activity against HTLV-1 but not HIV-1, when expressed in the virus producer cell. In viral target cells, high levels of endogenous A3A activity have been associated with the restriction of HIV-1 during infection. Here we demonstrate that A3A derived from both target cells and producer cells can block the infection of Moloney-MLV (MLV) and related AKV-derived strains of MLV in a deaminase-dependent mode. Furthermore, glycosylated Gag (glycoGag) of MLV inhibits the encapsidation of human A3A, but target cell A3A was not affected by glycoGag and exerted deamination of viral DNA. Importantly, our results clearly indicate that poor glycoGag expression in MLV gag-pol packaging constructs as compared to abundant levels in full-length amphotropic MLV makes these viral vectors sensitive to A3A-mediated restriction. This raises the possibility of acquiring A3A-induced mutations in retroviral gene therapy applications.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - André Franken
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Aikaterini Krikoni
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
2
|
Elfaitouri A, Herrmann B, Bölin-Wiener A, Wang Y, Gottfries CG, Zachrisson O, Pipkorn R, Rönnblom L, Blomberg J. Epitopes of microbial and human heat shock protein 60 and their recognition in myalgic encephalomyelitis. PLoS One 2013; 8:e81155. [PMID: 24312270 PMCID: PMC3842916 DOI: 10.1371/journal.pone.0081155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/08/2013] [Indexed: 12/04/2022] Open
Abstract
Myalgic encephalomyelitis (ME, also called Chronic Fatigue Syndrome), a common disease with chronic fatigability, cognitive dysfunction and myalgia of unknown etiology, often starts with an infection. The chaperonin human heat shock protein 60 (HSP60) occurs in mitochondria and in bacteria, is highly conserved, antigenic and a major autoantigen. The anti-HSP60 humoral (IgG and IgM) immune response was studied in 69 ME patients and 76 blood donors (BD) (the Training set) with recombinant human and E coli HSP60, and 136 30-mer overlapping and targeted peptides from HSP60 of humans, Chlamydia, Mycoplasma and 26 other species in a multiplex suspension array. Peptides from HSP60 helix I had a chaperonin-like activity, but these and other HSP60 peptides also bound IgG and IgM with an ME preference, theoretically indicating a competition between HSP60 function and antibody binding. A HSP60-based panel of 25 antigens was selected. When evaluated with 61 other ME and 399 non-ME samples (331 BD, 20 Multiple Sclerosis and 48 Systemic Lupus Erythematosus patients), a peptide from Chlamydia pneumoniae HSP60 detected IgM in 15 of 61 (24%) of ME, and in 1 of 399 non-ME at a high cutoff (p<0.0001). IgM to specific cross-reactive epitopes of human and microbial HSP60 occurs in a subset of ME, compatible with infection-induced autoimmunity.
Collapse
Affiliation(s)
- Amal Elfaitouri
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Björn Herrmann
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Agnes Bölin-Wiener
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yilin Wang
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | | | - Lars Rönnblom
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Abstract
Endogenous retroviruses (ERVs) were identified and characterized in three avian genomes to gain insight into early retroviral evolution. Using the computer program RetroTector to detect relatively intact ERVs, we identified 500 ERVs in the chicken genome, 150 in the turkey genome, and 1,200 in the zebra finch genome. Previous studies suggested that endogenous alpharetroviruses were present in chicken genomes. In this analysis, a small number of alpharetroviruses were seen in the chicken and turkey genomes; however, these were greatly outnumbered by beta-like, gamma-like, and alphabeta proviruses. While the avian ERVs belonged to the same major groups as mammalian ERVs, they were more heterogeneous. In particular, the beta-like viruses revealed an evolutionary continuum with the gradual acquisition and loss of betaretroviral markers and a transition from beta to alphabeta and then to alpharetroviruses. Thus, it appears that birds may resemble a melting pot for early ERV evolution. Many of the ERVs were integrated in clusters on chromosomes, often near centromeres. About 25% of the chicken ERVs were in or near cellular transcription units; this is nearly random. The majority of these integrations were in the sense orientation in introns. A higher-than-random number of integrations were >100 kb from the nearest gene. Deep-sequencing studies of chicken embryo fibroblasts revealed that about 20% of the 500 ERVs were transcribed and translated. A subset of these were also transcribed in vivo in chickens, showing tissue-specific patterns of expression. IMPORTANCE Studies of avian endogenous retroviruses (ERVs) have given us a glimpse of an earlier retroviral world. Three different classes of ERVs were observed with many features of mammalian retroviruses, as well as some important differences. Many avian ERVs were transcribed and translated.
Collapse
|
4
|
Delviks-Frankenberry K, Cingoz O, Coffin JM, Pathak VK. Recombinant origin, contamination, and de-discovery of XMRV. Curr Opin Virol 2012; 2:499-507. [PMID: 22818188 PMCID: PMC3426297 DOI: 10.1016/j.coviro.2012.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/20/2023]
Abstract
The discovery and de-discovery of the xenotropic murine leukemia virus-related virus (XMRV) has been a tumultuous roller-coaster ride for scientists and patients. The initial associations of XMRV with chronic fatigue syndrome and prostate cancer, while providing much hope and optimism, have now been discredited and/or retracted following overwhelming evidence that (1) numerous patient cohorts from around the world are XMRV-negative, (2) the initial reports of XMRV-positive patients were due to contamination with mouse DNA, XMRV plasmid DNA, or virus from the 22Rv1 cell line and (3) XMRV is a laboratory-derived virus generated in the mid 1990s through recombination during passage of a prostate tumor xenograft in immuno-compromised mice. While these developments are disappointing to scientists and patients, they provide a valuable road map of potential pitfalls to the would-be microbe hunters.
Collapse
Affiliation(s)
| | - Oya Cingoz
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston MA
| | - John M. Coffin
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston MA
| | - Vinay K. Pathak
- Viral Mutation Section, NCI, HIV DRP, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
5
|
Maggi F, Bazzichi L, Sernissi F, Mazzetti P, Lanini L, Scarpellini P, Consensi A, Giacomelli C, Macera L, Vatteroni ML, Bombardieri S, Pistello M. Absence of xenotropic murine leukemia virus-related virus in Italian patients affected by chronic fatigue syndrome, fibromyalgia, or rheumatoid arthritis. Int J Immunopathol Pharmacol 2012; 25:523-9. [PMID: 22697086 DOI: 10.1177/039463201202500224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The xenotropic murine leukemia virus-related virus (XMRV) has been recently linked to chronic fatigue syndrome in a US cohort in whom the virus was demonstrated in 67% patients vs 3.7% healthy controls. Albeit this finding was not substantiated by subsequent reports and eventually considered a laboratory contamination, the matter is still the object of intense debate and scrutiny in various cohorts of patients. In this work we examined well-clinically characterized Italian patients affected by chronic fatigue syndrome, and also fibromyalgia and rheumatoid arthritis, two chronic illnesses of basically unknown etiology which show quite a few symptoms in common with chronic fatigue syndrome. Although we used recently updated procedures and controls, the XMRV was not found in 65 patients with chronic fatigue syndrome diagnosis, 55 with fibromyalgia, 25 with rheumatoid arthritis, nor in 25 healthy controls. These results add to the ever-growing number of surveys reporting the absence of XMRV in chronic fatigue syndrome patients and suggest that the virus is also absent in fibromyalgia and rheumatoid arthritis.
Collapse
|
6
|
No evidence for xenotropic murine leukemia-related virus infection in Sweden using internally controlled multiepitope suspension array serology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1399-410. [PMID: 22787191 DOI: 10.1128/cvi.00391-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many syndromes have a large number of differential diagnoses, a situation which calls for multiplex diagnostic systems. Myalgic encephalomyelitis (ME), also named chronic fatigue syndrome (CFS), is a common disease of unknown etiology. A mouse retrovirus, xenotropic murine leukemia-related virus (XMRV), was found in ME/CFS patients and blood donors, but this was not corroborated. However, the paucity of serological investigations on XMRV in humans prompted us to develop a serological assay which cover many aspects of XMRV antigenicity. It is a novel suspension array method, using a multiplex IgG assay with nine recombinant proteins from the env and gag genes of XMRV and 38 peptides based on known epitopes of vertebrate gammaretroviruses. IgG antibodies were sought in 520 blood donors and 85 ME/CFS patients and in positive- and negative-control sera from animals. We found no differences in seroreactivity between blood donors and ME/CFS patients for any of the antigens. This did not support an association between ME/CFS and XMRV infection. The multiplex serological system had several advantages: (i) biotinylated protein G allowed us to run both human and animal sera, which is essential because of a lack of XMRV-positive humans; (ii) a novel quality control was a pan-peptide positive-control rabbit serum; and (iii) synthetic XMRV Gag peptides with degenerate positions covering most of the variation of murine leukemia-like viruses did not give higher background than nondegenerate analogs. The principle may be used for creation of variant tolerant peptide serologies. Thus, our system allows rational large-scale serological assays with built-in quality control.
Collapse
|
7
|
Genomic amplification of an endogenous retrovirus in zebrafish T-cell malignancies. Adv Hematol 2012; 2012:627920. [PMID: 22745640 PMCID: PMC3382231 DOI: 10.1155/2012/627920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/17/2012] [Indexed: 02/02/2023] Open
Abstract
Genomic instability plays a crucial role in oncogenesis. Somatically acquired mutations can disable some genes and inappropriately activate others. In addition, chromosomal rearrangements can amplify, delete, or even fuse genes, altering their functions and contributing to malignant phenotypes. Using array comparative genomic hybridization (aCGH), a technique to detect numeric variations between different DNA samples, we examined genomes from zebrafish (Danio rerio) T-cell leukemias of three cancer-prone lines. In all malignancies tested, we identified recurring amplifications of a zebrafish endogenous retrovirus. This retrovirus, ZFERV, was first identified due to high expression of proviral transcripts in thymic tissue from larval and adult fish. We confirmed ZFERV amplifications by quantitative PCR analyses of DNA from wild-type fish tissue and normal and malignant D. rerio T cells. We also quantified ZFERV RNA expression and found that normal and neoplastic T cells both produce retrovirally encoded transcripts, but most cancers show dramatically increased transcription. In aggregate, these data imply that ZFERV amplification and transcription may be related to T-cell leukemogenesis. Based on these data and ZFERV's phylogenetic relation to viruses of the murine-leukemia-related virus class of gammaretroviridae, we posit that ZFERV may be oncogenic via an insertional mutagenesis mechanism.
Collapse
|
8
|
Murine gammaretrovirus group G3 was not found in Swedish patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia. PLoS One 2011; 6:e24602. [PMID: 22022360 PMCID: PMC3192035 DOI: 10.1371/journal.pone.0024602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/15/2011] [Indexed: 01/08/2023] Open
Abstract
Background The recent report of gammaretroviruses of probable murine origin in humans, called xenotropic murine retrovirus related virus (XMRV) and human murine leukemia virus related virus (HMRV), necessitated a bioinformatic search for this virus in genomes of the mouse and other vertebrates, and by PCR in humans. Results Three major groups of murine endogenous gammaretroviruses were identified. The third group encompassed both exogenous and endogenous Murine Leukemia Viruses (MLVs), and most XMRV/HMRV sequences reported from patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Two sensitive real-time PCRs for this group were developed. The predicted and observed amplification range for these and three published XMRV/HMRV PCRs demonstrated conspicuous differences between some of them, partly explainable by a recombinatorial origin of XMRV. Three reverse transcription real-time PCRs (RTQPCRs), directed against conserved and not overlapping stretches of env, gag and integrase (INT) sequences of XMRV/HMRV were used on human samples. White blood cells from 78 patients suffering from ME/CFS, of which 30 patients also fulfilled the diagnostic criteria for fibromyalgia (ME/CFS/FM) and in 7 patients with fibromyalgia (FM) only, all from the Gothenburg area of Sweden. As controls we analyzed 168 sera from Uppsala blood donors. We controlled for presence and amplifiability of nucleic acid and for mouse DNA contamination. To score as positive, a sample had to react with several of the XMRV/HMRV PCRs. None of the samples gave PCR reactions which fulfilled the positivity criteria. Conclusions XMRV/HMRV like proviruses occur in the third murine gammaretrovirus group, characterized here. PCRs developed by us, and others, approximately cover this group, except for the INT RTQPCR, which is rather strictly XMRV specific. Using such PCRs, XMRV/HMRV could not be detected in PBMC and plasma samples from Swedish patients suffering from ME/CFS/FM, and in sera from Swedish blood donors.
Collapse
|