1
|
Ferrão MAG, da Fonseca AFA, Volpi PS, de Souza LC, Comério M, Filho ACV, Riva-Souza EM, Munoz PR, Ferrão RG, Ferrão LFV. Genomic-assisted breeding for climate-smart coffee. THE PLANT GENOME 2024; 17:e20321. [PMID: 36946358 DOI: 10.1002/tpg2.20321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Coffee is a universal beverage that drives a multi-industry market on a global basis. Today, the sustainability of coffee production is threatened by accelerated climate changes. In this work, we propose the implementation of genomic-assisted breeding for climate-smart coffee in Coffea canephora. This species is adapted to higher temperatures and is more resilient to biotic and abiotic stresses. After evaluating two populations, over multiple harvests, and under severe drought weather condition, we dissected the genetic architecture of yield, disease resistance, and quality-related traits. By integrating genome-wide association studies and diallel analyses, our contribution is four-fold: (i) we identified a set of molecular markers with major effects associated with disease resistance and post-harvest traits, while yield and plant architecture presented a polygenic background; (ii) we demonstrated the relevance of nonadditive gene actions and projected hybrid vigor when genotypes from different geographically botanical groups are crossed; (iii) we computed medium-to-large heritability values for most of the traits, representing potential for fast genetic progress; and (iv) we provided a first step toward implementing molecular breeding to accelerate improvements in C. canephora. Altogether, this work is a blueprint for how quantitative genetics and genomics can assist coffee breeding and support the supply chain in the face of the current global changes.
Collapse
Affiliation(s)
- Maria Amélia G Ferrão
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Café, Brasília, Brazil
| | - Aymbire F A da Fonseca
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Empresa Brasileira de Pesquisa Agropecuária-Embrapa Café, Brasília, Brazil
| | - Paulo S Volpi
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Lucimara C de Souza
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Marcone Comério
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Abraão C Verdin Filho
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Elaine M Riva-Souza
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
| | - Patricio R Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Romário G Ferrão
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural-Incaper, ES, Brazil
- Multivix Group, ES, Brazil
| | - Luís Felipe V Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Qin T, Kazim A, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Sun C, Bai J. Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. Int J Mol Sci 2022; 23:ijms231911477. [PMID: 36232779 PMCID: PMC9569943 DOI: 10.3390/ijms231911477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crop growth and development are frequently affected by biotic and abiotic stresses. The adaptation of crops to stress is mostly achieved by regulating specific genes. The root system is the primary organ for nutrient and water uptake, and has an important role in drought stress response. The improvement of stress tolerance to increase crop yield potential and yield stability is a traditional goal of breeders in cultivar development using integrated breeding methods. An improved understanding of genes that control root development will enable the formulation of strategies to incorporate stress-tolerant genes into breeding for complex agronomic traits and provide opportunities for developing stress-tolerant germplasm. We screened the genes associated with root growth and development from diverse plants including Arabidopsis, rice, maize, pepper and tomato. This paper provides a theoretical basis for the application of root-related genes in molecular breeding to achieve crop drought tolerance by the improvement of root architecture.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ali Kazim
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Dormatey Richard
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| |
Collapse
|
3
|
Abdelrahman M, Selim ME, ElSayed MA, Ammar MH, Hussein FA, ElKholy NK, ElShamey EA, Khan N, Attia KA. Developing Novel Rice Genotypes Harboring Specific QTL Alleles Associated with High Grain Yield under Water Shortage Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2219. [PMID: 34686028 PMCID: PMC8538742 DOI: 10.3390/plants10102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/05/2022]
Abstract
Rice is considered a strategic crop for many countries around the world, being the main cash crop for farmers. Water shortage stress occurrence as a result of climate change is among the main threats challenging rice breeders in the last few decades. In the current study, 19 Fn-lines were developed from four populations by crossing a reverse thermo-responsive genic male sterile (rTGMS) line, M.J.5460S, with the three high-quality Egyptian commercial cultivars Giza177, Sakha105, Sakha106 and the promising line GZ7768 as male parents. These newly developed lines, along with their parents, and two water shortage stress-tolerant international genotypes (Azucena and IRAT170), were cultivated under water-shortage stress conditions and compared with their performance under well-watered conditions. Results indicated that the yielding ability of the 19 newly developed lines exceeded those for the two Egyptian parents (Giza177 and Sakha105) under well-watered conditions. The lines M.J5460S/GIZA177-3 and M.J5460S/GIZA177-12 were the best performing genotypes under water shortage stress conditions. The genetic and heritability in broad sense estimates indicated that direct selection for grain yield (GY) under water-shortage stress is highly effective in the current study. Molecular marker analysis revealed that M.J5460S/GIZA177-3 had accumulated the quantitative trait loci (QTL)s, on the chromosomes 2, 3, and 9, which contribute to GY under water-shortage stress from their high yielding tolerant ancestor, M.J5460S. It could be concluded that those lines are high yielding under both well-watered and water-stress conditions harboring several QTLs for yield enhancement under both conditions and that the markers RM555, RM14551, RM3199, RM257, RM242, and RM410 are among the markers that could be used in marker-assisted selection (MAS) breeding programs for such stress condition.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.A.); (M.E.S.); (M.A.E.); (M.H.A.); (F.A.H.); (N.K.E.)
| | - Mahmoud E. Selim
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.A.); (M.E.S.); (M.A.E.); (M.H.A.); (F.A.H.); (N.K.E.)
| | - Mahmoud A. ElSayed
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.A.); (M.E.S.); (M.A.E.); (M.H.A.); (F.A.H.); (N.K.E.)
| | - Megahed H. Ammar
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.A.); (M.E.S.); (M.A.E.); (M.H.A.); (F.A.H.); (N.K.E.)
| | - Fatma A. Hussein
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.A.); (M.E.S.); (M.A.E.); (M.H.A.); (F.A.H.); (N.K.E.)
| | - Neama K. ElKholy
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.A.); (M.E.S.); (M.A.E.); (M.H.A.); (F.A.H.); (N.K.E.)
| | - Essam A. ElShamey
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt; (M.A.); (M.E.S.); (M.A.E.); (M.H.A.); (F.A.H.); (N.K.E.)
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, Florida University, Gainesville, FL 32611, USA;
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Akpertey A, Padi FK, Meinhardt L, Zhang D. Effectiveness of Single Nucleotide Polymorphism Markers in Genotyping Germplasm Collections of Coffea canephora Using KASP Assay. FRONTIERS IN PLANT SCIENCE 2021; 11:612593. [PMID: 33569071 PMCID: PMC7868401 DOI: 10.3389/fpls.2020.612593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Accurate genotype identification is imperative for effective use of Coffea canephora L. germplasm to breed new varieties with tolerance or resistance to biotic and abiotic stresses (including moisture stress and pest and disease stresses such as coffee berry borer and rust) and for high yield and improved cup quality. The present study validated 192 published single nucleotide polymorphism (SNP) markers and selected a panel of 120 loci to examine parentage and labeling errors, genetic diversity, and population structure in 400 C. canephora accessions assembled from different coffee-producing countries and planted in a field gene bank in Ghana. Of the 400 genotypes analyzed, both synonymous (trees with same SNP profiles but different names, 12.8%) and homonymous (trees with same name but different SNP profiles, 5.8%) mislabeling were identified. Parentage analysis showed that 33.3% of the progenies derived from controlled crossing and 0% of the progenies derived from an open pollinated biclonal seed garden had parentage (both parents) corresponding to breeder records. The results suggest mislabeling of the mother trees used in seed gardens and pollen contamination from unwanted paternal parents. After removing the duplicated accessions, Bayesian clustering analysis partitioned the 270 unique genotypes into two main populations. Analysis of molecular variance (AMOVA) showed that the between-population variation accounts for 41% of the total molecular variation and the genetic divergence was highly significant (Fst = 0.256; P < 0.001). Taken together, our results demonstrate the effectiveness of using the selected SNP panel in gene bank management, varietal identification, seed garden management, nursery verification, and coffee bean authentication for C. canephora breeding programs.
Collapse
Affiliation(s)
| | | | - Lyndel Meinhardt
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
5
|
Marker-trait association for grain weight of spring barley in well-watered and drought environments. Mol Biol Rep 2019; 46:2907-2918. [PMID: 30904979 DOI: 10.1007/s11033-019-04750-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/07/2019] [Indexed: 01/08/2023]
Abstract
Climate change will increase the effect of drought stress which is one of major constrains for barley production and productivity in Egypt. Identification and development new cultivars having a high drought tolerance combined with a high yield are urgently needed. In this study, a set of 60 highly homozygous and diverse barley genotypes was evaluated in well-watered (N) and dry (D) environments for two successive seasons. Five yield traits were scored; plant height, spike length, days to flowering, grain yield per spike (GYPS), and thousand kernel weight (TKW). High genetic variation was found among genotypes in all studied traits under N and D. High heritability for all traits was observed in both seasons. The drought susceptibility index (DSI) for GYPS and TKW was estimated to determine the tolerant and susceptible genotypes in both seasons. As a result, four spring barley genotypes were considered drought tolerant for TKW and GYPS in both seasons. A set of ten single sequence repeats primers, developed from wheat genome, were tested in the 60 genotypes. All SSR primers had a high polymorphism among the genotypes producing 82 marker alleles. Single marker analysis was performed for DSI, TKW, and GYPS in both seasons. Twenty QTLs were found to be associated with low DSI and high GYPS and TKW in N and D. The marker alleles associated with the 20 QTL were screened in the four tolerant genotypes. PNBYT15 included only one marker allele associated with one QTL, while, SCYT-28 included six marker alleles controlling nine QTL. The high genetic variation and heritability for the studied traits indicated that these traits could be used for selection for high yielding and drought tolerance. The four drought tolerant genotypes can be used for a further breeding program to improve drought tolerance in barley.
Collapse
|