1
|
Blazeski A, Garcia-Cardena G, Kamm RD. Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces. IEEE Rev Biomed Eng 2024; PP:211-230. [PMID: 40030454 DOI: 10.1109/rbme.2024.3514378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue and consider how these investigations might benefit from the inclusion of mechanical cues.
Collapse
|
2
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
3
|
Chandy M, Hill T, Jimenez-Tellez N, Wu JC, Sarles SE, Hensel E, Wang Q, Rahman I, Conklin DJ. Addressing Cardiovascular Toxicity Risk of Electronic Nicotine Delivery Systems in the Twenty-First Century: "What Are the Tools Needed for the Job?" and "Do We Have Them?". Cardiovasc Toxicol 2024; 24:435-471. [PMID: 38555547 PMCID: PMC11485265 DOI: 10.1007/s12012-024-09850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.
Collapse
Affiliation(s)
- Mark Chandy
- Robarts Research Institute, Western University, London, N6A 5K8, Canada
| | - Thomas Hill
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 S. Preston St., Delia Baxter, Rm. 404E, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
5
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Strash N, DeLuca S, Janer Carattini GL, Chen Y, Wu T, Helfer A, Scherba J, Wang I, Jain M, Naseri R, Bursac N. Time-dependent effects of BRAF-V600E on cell cycling, metabolism, and function in engineered myocardium. SCIENCE ADVANCES 2024; 10:eadh2598. [PMID: 38266090 PMCID: PMC10807800 DOI: 10.1126/sciadv.adh2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.
Collapse
Affiliation(s)
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham NC, USA
| | | | - Yifan Chen
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Jacob Scherba
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Isabella Wang
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Mehul Jain
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Ramona Naseri
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Nenad Bursac
- Department of Cell Biology, Duke University, Durham NC, USA
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| |
Collapse
|
7
|
Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:228. [PMID: 37649113 PMCID: PMC10469435 DOI: 10.1186/s13287-023-03470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
8
|
Kant RJ, Dwyer KD, Lee JH, Polucha C, Kobayashi M, Pyon S, Soepriatna AH, Lee J, Coulombe KLK. Patterned Arteriole-Scale Vessels Enhance Engraftment, Perfusion, and Vessel Branching Hierarchy of Engineered Human Myocardium for Heart Regeneration. Cells 2023; 12:1698. [PMID: 37443731 PMCID: PMC10340601 DOI: 10.3390/cells12131698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Heart regeneration after myocardial infarction (MI) using human stem cell-derived cardiomyocytes (CMs) is rapidly accelerating with large animal and human clinical trials. However, vascularization methods to support the engraftment, survival, and development of implanted CMs in the ischemic environment of the infarcted heart remain a key and timely challenge. To this end, we developed a dual remuscularization-revascularization therapy that is evaluated in a rat model of ischemia-reperfusion MI. This study details the differentiation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for engineering cardiac tissue containing patterned engineered vessels 400 μm in diameter. Vascularized engineered human myocardial tissues (vEHMs) are cultured in static conditions or perfused in vitro prior to implantation and evaluated after two weeks. Immunohistochemical staining indicates improved engraftment of hiPSC-CMs in in vitro-perfused vEHMs with greater expression of SMA+ vessels and evidence of inosculation. Three-dimensional vascular reconstructions reveal less tortuous and larger intra-implant vessels, as well as an improved branching hierarchy in in vitro-perfused vEHMs relative to non-perfused controls. Exploratory RNA sequencing of explanted vEHMs supports the hypothesis that co-revascularization impacts hiPSC-CM development in vivo. Our approach provides a strong foundation to enhance vEHM integration, develop hierarchical vascular perfusion, and maximize hiPSC-CM engraftment for future regenerative therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kareen L. K. Coulombe
- School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA; (R.J.K.)
| |
Collapse
|
9
|
Kannan S, Miyamoto M, Zhu R, Lynott M, Guo J, Chen EZ, Colas AR, Lin BL, Kwon C. Trajectory reconstruction identifies dysregulation of perinatal maturation programs in pluripotent stem cell-derived cardiomyocytes. Cell Rep 2023; 42:112330. [PMID: 37014753 PMCID: PMC10545814 DOI: 10.1016/j.celrep.2023.112330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
A limitation in the application of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) is the failure of these cells to achieve full functional maturity. The mechanisms by which directed differentiation differs from endogenous development, leading to consequent PSC-CM maturation arrest, remain unclear. Here, we generate a single-cell RNA sequencing (scRNA-seq) reference of mouse in vivo CM maturation with extensive sampling of previously difficult-to-isolate perinatal time periods. We subsequently generate isogenic embryonic stem cells to create an in vitro scRNA-seq reference of PSC-CM-directed differentiation. Through trajectory reconstruction, we identify an endogenous perinatal maturation program that is poorly recapitulated in vitro. By comparison with published human datasets, we identify a network of nine transcription factors (TFs) whose targets are consistently dysregulated in PSC-CMs across species. Notably, these TFs are only partially activated in common ex vivo approaches to engineer PSC-CM maturation. Our study can be leveraged toward improving the clinical viability of PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Renjun Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michaela Lynott
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Jason Guo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elaine Zhelan Chen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexandre R Colas
- Sanford Burham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Brian Leei Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
11
|
Mahapatra S, Sharma MVR, Brownson B, Gallicano VE, Gallicano GI. Cardiac inducing colonies halt fibroblast activation and induce cardiac/endothelial cells to move and expand via paracrine signaling. Mol Biol Cell 2022; 33:ar96. [PMID: 35653297 DOI: 10.1091/mbc.e22-02-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myocardial fibrosis (MF), a common event that develops after myocardial infarction, initially is a reparative process but eventually leads to heart failure and sudden cardiac arrest. In MF, the infarct area is replaced by a collagenous-based scar induced by "excessive" collagen deposition from activated cardiac fibroblasts. The scar prevents ventricular wall thinning; however, over time it expands to noninfarcted myocardium. Therapies to prevent fibrosis include reperfusion, anti-fibrotic agents, and ACE inhibitors. Paracrine factor (PF)/stem cell research has recently gained significance as a therapy. We consistently find that cardiac inducing colonies (CiCs) (derived from human germline pluripotent stem cells) secrete PFs at physiologically relevant concentrations that suppress cardiac fibroblast activation and excessive extracellular matrix protein secretion. These factors also affect human cardiomyocytes and endothelial cells by inducing migration/proliferation of both populations into a myocardial wound model. Finally, CiC factors modulate matrix turnover and proinflammation. Taking the results together, we show that CiCs could help tip the balance from fibrosis toward repair.
Collapse
Affiliation(s)
- Samiksha Mahapatra
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| | | | - Breanna Brownson
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Rye High School, Rye, NY 10580
| | - Vaughn E Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145.,Thomas Edison High School, Alexandria, VA 22310
| | - G Ian Gallicano
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20057-145
| |
Collapse
|
12
|
Shen S, Sewanan LR, Shao S, Halder SS, Stankey P, Li X, Campbell SG. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports 2022; 17:2037-2049. [PMID: 35931080 PMCID: PMC9481907 DOI: 10.1016/j.stemcr.2022.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have wide potential application in basic research, drug discovery, and regenerative medicine, but functional maturation remains challenging. Here, we present a method whereby maturation of hiPSC-CMs can be accelerated by simultaneous application of physiological Ca2+ and frequency-ramped electrical pacing in culture. This combination produces positive force-frequency behavior, physiological twitch kinetics, robust β-adrenergic response, improved Ca2+ handling, and cardiac troponin I expression within 25 days. This study provides insights into the role of Ca2+ in hiPSC-CM maturation and offers a scalable platform for translational and clinical research.
Collapse
Affiliation(s)
- Shi Shen
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Lorenzo R Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Shao
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Saiti S Halder
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Paul Stankey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xia Li
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
14
|
Wang Y, Yu M, Hao K, Lei W, Tang M, Hu S. Cardiomyocyte Maturation-the Road is not Obstructed. Stem Cell Rev Rep 2022; 18:2966-2981. [PMID: 35788883 DOI: 10.1007/s12015-022-10407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent one of the most promising ways to treat cardiovascular diseases. High-purity cardiomyocytes (CM) from different cell sources could be obtained at present. However, the immature nature of these cardiomyocytes hinders its further clinical application. From immature to mature state, it involves structural, functional, and metabolic changes in cardiomyocytes. Generally, two types of culturing (2D and 3D) systems have been reported to induce cardiomyocyte maturation. 2D culture mainly achieves the maturation of cardiomyocytes through long-term culture, co-culture, supplementation of small molecule compounds, and the application of biophysical cues. The combined use of biomaterial's surface topography and biophysical cues also facilitates the maturation of cardiomyocytes. Cardiomyocyte maturation is a complex process involving many signaling pathways, and current methods fail to fully reproduce this process. Therefore, analyzing the signaling pathway network related to the maturation and producing hPSC-CMs with adult-like phenotype is a challenge. In this review, we summarized the structural and functional differences between hPSC-CMs and mature cardiomyocytes, and introduced various methods to induce cardiomyocyte maturation.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Kaili Hao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Mingliang Tang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
15
|
Micó-Carnero M, Casillas-Ramírez A, Sánchez-González A, Rojano-Alfonso C, Peralta C. The Role of Neuregulin-1 in Steatotic and Non-Steatotic Liver Transplantation from Brain-Dead Donors. Biomedicines 2022; 10:978. [PMID: 35625715 PMCID: PMC9138382 DOI: 10.3390/biomedicines10050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Brain death (BD) and steatosis are key risk factors to predict adverse post-transplant outcomes. We investigated the role of Neuregulin-1 (NRG1) in rat steatotic and non-steatotic liver transplantation (LT) from brain death donors (DBD). METHODS NRG1 pathways were characterized after surgery. RESULTS NRG1 and p21-activated kinase 1 (PAK1) levels increased in steatotic and non-steatotic grafts from DBDs. The abolishment of NRG1 effects reduced PAK1. When the effect of either NRG1 nor PAK1 was inhibited, injury and regenerative failure were exacerbated. The benefits of the NRG-1-PAK1 axis in liver grafts from DBDs were associated with increased vascular endothelial growth factor-A (VEGFA) and insulin growth factor-1 (IGF1) levels, respectively. Indeed, VEGFA administration in non-steatotic livers and IGF1 treatment in steatotic grafts prevented damage and regenerative failure resulting from the inhibition of either NRG1 or PAK-1 activity in each type of liver. Exogenous NRG1 induced greater injury than BD induction. CONCLUSIONS This study indicates the benefits of endogenous NRG1 in liver grafts from DBDs and underscores the specificity of the NRG1 signaling pathway depending on the type of liver: NRG1-PAK1-VEGFA in non-steatotic livers and NRG1-PAK1-IGF1 in steatotic livers. Exogenous NRG1 is not an appropriate strategy to apply to liver grafts from DBD.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Alfredo Sánchez-González
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
16
|
Huebsch N, Charrez B, Neiman G, Siemons B, Boggess SC, Wall S, Charwat V, Jæger KH, Cleres D, Telle Å, Lee-Montiel FT, Jeffreys NC, Deveshwar N, Edwards AG, Serrano J, Snuderl M, Stahl A, Tveito A, Miller EW, Healy KE. Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat Biomed Eng 2022; 6:372-388. [PMID: 35478228 PMCID: PMC10344596 DOI: 10.1038/s41551-022-00884-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
The immature physiology of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) limits their utility for drug screening and disease modelling. Here we show that suitable combinations of mechanical stimuli and metabolic cues can enhance the maturation of hiPSC-derived cardiomyocytes, and that the maturation-inducing cues have phenotype-dependent effects on the cells' action-potential morphology and calcium handling. By using microfluidic chips that enhanced the alignment and extracellular-matrix production of cardiac microtissues derived from genetically distinct sources of hiPSC-derived cardiomyocytes, we identified fatty-acid-enriched maturation media that improved the cells' mitochondrial structure and calcium handling, and observed divergent cell-source-dependent effects on action-potential duration (APD). Specifically, in the presence of maturation media, tissues with abnormally prolonged APDs exhibited shorter APDs, and tissues with aberrantly short APDs displayed prolonged APDs. Regardless of cell source, tissue maturation reduced variabilities in spontaneous beat rate and in APD, and led to converging cell phenotypes (with APDs within the 300-450 ms range characteristic of human left ventricular cardiomyocytes) that improved the modelling of the effects of pro-arrhythmic drugs on cardiac tissue.
Collapse
Affiliation(s)
- Nathaniel Huebsch
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
- Department of Biomedical Engineering, The Washington University in Saint Louis, Saint Louis, MO, USA
| | - Berenice Charrez
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Gabriel Neiman
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Brian Siemons
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Steven C Boggess
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | | | - Verena Charwat
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | | | - David Cleres
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | | | - Felipe T Lee-Montiel
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Nicholas C Jeffreys
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Nikhil Deveshwar
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA
| | - Andrew G Edwards
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Jonathan Serrano
- Department of Pathology, New York University Langone Health and Medical School, New York, NY, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health and Medical School, New York, NY, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | | | - Evan W Miller
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
17
|
Li L, Shang L, Kang W, Lingqian D, Ge S. Neuregulin‐1 promotes the proliferation, migration and angiogenesis of human periodontal ligament stem cells
in vitro. Cell Biol Int 2022; 46:792-805. [PMID: 35077607 DOI: 10.1002/cbin.11770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Li
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
- Department of StomatologyLinyi People's HospitalLinyiShandong ProvinceChina
| | - Lingling Shang
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Wenyan Kang
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Du Lingqian
- Department of StomatologyThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvinceChina
| | - Shaohua Ge
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| |
Collapse
|
18
|
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have profound utility in generating functional human engineered cardiac tissues (ECT) for heart repair. However, the field at large is concerned about the relative immaturity of these hiPSC-CMs as we aim to develop clinically relevant models for regenerative therapy and drug testing. Herein, we develop a novel calcium (Ca2+) conditioning protocol that maintains ECTs in a physiological range of Ca2+ and assesses contractility in increasing calcium environments. Lactate-based selection served as a method to purify and shift the metabolic profile of hiPSC-CMs to evaluate the role of metabolism on Ca2+ sensitivity. After 2 weeks, we observe 2-fold greater peak twitch stress in high-Ca2+ conditioned ECTs, despite having lower stiffness and no change in Ca2+ sensitivity of twitch force. Interestingly, the force-calcium relationship reveals higher Ca2+ sensitivity in lactate conditioned tissues, suggesting that metabolic maturation alters mitochondrial Ca2+ buffering and regulation. Ca2+ sensitivity and force amplitude are not coupled, as lactate conditioned tissues produce force comparable to that of controls in high calcium environments. An upregulation of calcium handling protein gene expression likely contributes to the greater Ca2+ sensitivity in lactate conditioned hiPSC-CMs. Our findings support the use of physiological Ca2+ to enhance the functional maturation of excitation-contraction coupling in hiPSC-CMs and demonstrate that metabolic changes induced by lactate conditioning alter cardiomyocyte sensitivity to external Ca2+. These conditioning methods may be used to advance the development of engineered human cardiac tissue for translational applications in vitro and in vivo as a regenerative therapy.
Collapse
Affiliation(s)
- Alicia J Minor
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
- Corresponding author: Kareen L.K. Coulombe, PhD, Brown University, Center for Biomedical Engineering, School of Engineering, 184 Hope Street, Box D, Providence, RI 02912, USA. Tel: 401-863-2318;
| |
Collapse
|
19
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
20
|
Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021; 14:366-385. [PMID: 34711701 PMCID: PMC8611306 DOI: 10.15283/ijsc21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Wiesinger A, Boink GJJ, Christoffels VM, Devalla HD. Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells. Stem Cell Reports 2021; 16:2589-2606. [PMID: 34653403 PMCID: PMC8581056 DOI: 10.1016/j.stemcr.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA) signaling plays an important role during heart development in establishing anteroposterior polarity, formation of inflow and outflow tract progenitors, and growth of the ventricular compact wall. RA is also utilized as a key ingredient in protocols designed for generating cardiac cell types from pluripotent stem cells (PSCs). This review discusses the role of RA in cardiogenesis, currently available protocols that employ RA for differentiation of various cardiovascular lineages, and plausible transcriptional mechanisms underlying this fate specification. These insights will inform further development of desired cardiac cell types from human PSCs and their application in preclinical and clinical research.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Cardiology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Bliley JM, Vermeer MCSC, Duffy RM, Batalov I, Kramer D, Tashman JW, Shiwarski DJ, Lee A, Teplenin AS, Volkers L, Coffin B, Hoes MF, Kalmykov A, Palchesko RN, Sun Y, Jongbloed JDH, Bomer N, de Boer RA, Suurmeijer AJH, Pijnappels DA, Bolling MC, van der Meer P, Feinberg AW. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Sci Transl Med 2021; 13:13/603/eabd1817. [PMID: 34290054 DOI: 10.1126/scitranslmed.abd1817] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
The role that mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes. However, most EHT systems cannot model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood). Here, we have developed a new dynamic EHT (dyn-EHT) model that enables us to tune preload and have unconstrained contractile shortening of >10%. To do this, three-dimensional (3D) EHTs were integrated with an elastic polydimethylsiloxane strip providing mechanical preload and afterload in addition to enabling contractile force measurements based on strip bending. Our results demonstrated that dynamic loading improves the function of wild-type EHTs on the basis of the magnitude of the applied force, leading to improved alignment, conduction velocity, and contractility. For disease modeling, we used hiPSC-derived cardiomyocytes from a patient with arrhythmogenic cardiomyopathy due to mutations in the desmoplakin gene. We demonstrated that manifestation of this desmosome-linked disease state required dyn-EHT conditioning and that it could not be induced using 2D or standard 3D EHT approaches. Thus, a dynamic loading strategy is necessary to provoke the disease phenotype of diastolic lengthening, reduction of desmosome counts, and reduced contractility, which are related to primary end points of clinical disease, such as chamber thinning and reduced cardiac output.
Collapse
Affiliation(s)
- Jacqueline M Bliley
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mathilde C S C Vermeer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Rebecca M Duffy
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ivan Batalov
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Duco Kramer
- Department of Dermatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Joshua W Tashman
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel J Shiwarski
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Andrew Lee
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alexander S Teplenin
- Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Linda Volkers
- Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Brian Coffin
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Martijn F Hoes
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Anna Kalmykov
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rachelle N Palchesko
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yan Sun
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Nils Bomer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Daniel A Pijnappels
- Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Maria C Bolling
- Department of Dermatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands.
| | - Adam W Feinberg
- Regenerative Biomaterials and Therapeutics Group, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. .,Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. BIOLOGY 2021; 10:biology10080730. [PMID: 34439963 PMCID: PMC8389603 DOI: 10.3390/biology10080730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC-CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.
Collapse
|
24
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Wang X, Chen XX, Yu HT, Tan Y, Lin Q, Keller BB, Zheng Y, Cai L. Engineered cardiac tissues: a novel in vitro model to investigate the pathophysiology of mouse diabetic cardiomyopathy. Acta Pharmacol Sin 2021; 42:932-941. [PMID: 33037406 PMCID: PMC8149662 DOI: 10.1038/s41401-020-00538-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/13/2020] [Indexed: 01/12/2023]
Abstract
Rodent diabetic models, used to understand the pathophysiology of diabetic cardiomyopathy (DCM), remain several limitations. Engineered cardiac tissues (ECTs) have emerged as robust 3D in vitro models to investigate structure-function relationships as well as cardiac injury and repair. Advanced glycation end-products (AGEs), produced through glycation of proteins or lipids in response to hyperglycemia, are important pathogenic factor for the development of DCM. In the current study, we developed a murine-based ECT model to investigate cardiac injury produced by AGEs. We treated ECTs composed of neonatal murine cardiac cells with AGEs and observed AGE-related functional, cellular, and molecular alterations: (1) AGEs (150 µg/mL) did not cause acute cytotoxicity, which displayed as necrosis detected by medium LDH release or apoptosis detected by cleaved caspase 3 and TUNEL staining, but negatively impacted ECT function on treatment day 9; (2) AGEs treatment significantly increased the markers of fibrosis (TGF-β, α-SMA, Ctgf, Collagen I-α1, Collagen III-α1, and Fn1) and hypertrophy (Nppa and Myh7); (3) AGEs treatment significantly increased ECT oxidative stress markers (3-NT, 4-HNE, HO-1, CAT, and SOD2) and inflammation response markers (PAI-1, TNF-α, NF-κB, and ICAM-1); and (4) AGE-induced pathogenic responses were all attenuated by pre-application of AGE receptor antagonist FPS-ZM1 (20 µM) or the antioxidant glutathione precursor N-acetylcysteine (5 mM). Therefore, AGEs-treated murine ECTs recapitulate the key features of DCM's functional, cellular and molecular pathogenesis, and may serve as a robust in vitro model to investigate cellular structure-function relationships, signaling pathways relevant to DCM and pharmaceutical intervention strategies.
Collapse
Affiliation(s)
- Xiang Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, 40202, USA
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin-Xin Chen
- Department of Burn Surgery, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Hai-Tao Yu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, 40202, USA
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Qian Lin
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, 40202, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY, 40202, USA
| | - Yang Zheng
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
26
|
Batalov I, Jallerat Q, Kim S, Bliley J, Feinberg AW. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci Rep 2021; 11:11502. [PMID: 34075068 PMCID: PMC8169656 DOI: 10.1038/s41598-021-87550-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Cardiac two-dimensional tissues were engineered using biomimetic micropatterns based on the fibronectin-rich extracellular matrix (ECM) of the embryonic heart. The goal of this developmentally-inspired, in vitro approach was to identify cell-cell and cell-ECM interactions in the microenvironment of the early 4-chambered vertebrate heart that drive cardiomyocyte organization and alignment. To test this, biomimetic micropatterns based on confocal imaging of fibronectin in embryonic chick myocardium were created and compared to control micropatterns designed with 2 or 20 µm wide fibronectin lines. Results show that embryonic chick cardiomyocytes have a unique density-dependent alignment on the biomimetic micropattern that is mediated in part by N-cadherin, suggesting that both cell-cell and cell-ECM interactions play an important role in the formation of aligned myocardium. Human induced pluripotent stem cell-derived cardiomyocytes also showed density-dependent alignment on the biomimetic micropattern but were overall less well organized. Interestingly, the addition of human adult cardiac fibroblasts and conditioning with T3 hormone were both shown to increase human cardiomyocyte alignment. In total, these results show that cardiomyocyte maturation state, cardiomyocyte-cardiomyocyte and cardiomyocyte-fibroblast interactions, and cardiomyocyte-ECM interactions can all play a role when engineering anisotropic cardiac tissues in vitro and provides insight as to how these factors may influence cardiogenesis in vivo.
Collapse
Affiliation(s)
- Ivan Batalov
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Sean Kim
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Jacqueline Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA
| | - Adam W Feinberg
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA. .,Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
27
|
Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021; 5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Indexed: 12/17/2022]
Abstract
A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Hadel Al Asafen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
28
|
Tampakakis E, Mahmoud AI. The role of hormones and neurons in cardiomyocyte maturation. Semin Cell Dev Biol 2021; 118:136-143. [PMID: 33931308 DOI: 10.1016/j.semcdb.2021.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The heart undergoes profound morphological and functional changes as it continues to mature postnatally. However, this phase of cardiac development remains understudied. More recently, cardiac maturation research has attracted a lot of interest due to the need for more mature stem cell-derived cardiomyocytes for disease modeling, drug screening and heart regeneration. Additionally, neonatal heart injury models have been utilized to study heart regeneration, and factors regulating postnatal heart development have been associated with adult cardiac disease. Critical components of cardiac maturation are systemic and local biochemical cues. Specifically, cardiac innervation and the concentration of various metabolic hormones appear to increase perinatally and they have striking effects on cardiomyocytes. Here, we first report some of the key parameters of mature cardiomyocytes and then discuss the specific effects of neurons and hormonal cues on cardiomyocyte maturation. We focus primarily on the structural, electrophysiologic, metabolic, hypertrophic and hyperplastic effects of each factor. This review highlights the significance of underappreciated regulators of cardiac maturation and underscores the need for further research in this exciting field.
Collapse
Affiliation(s)
- Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
29
|
Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond) 2021; 134:2623-2643. [PMID: 33063822 PMCID: PMC7557502 DOI: 10.1042/cs20200230] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a rapidly evolving field. While initial concepts focused on the role that NRG may play in regulating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and proliferation, emerging data support a broader role for NRGs in the regulation of metabolism, inflammation, and fibrosis in response to injury. The constellation of effects modulated by NRGs may account for the findings that two distinct forms of recombinant NRG-1 have beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has recently emerged as an adipokine with similar potential to regulate cardiovascular responses to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac dysfunction associated with sepsis. Collectively, this literature supports the further examination of how this developmentally critical signaling system functions and how it might be leveraged to treat cardiovascular disease.
Collapse
|
30
|
Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther 2021; 12:177. [PMID: 33712058 PMCID: PMC7953594 DOI: 10.1186/s13287-021-02252-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Current methods to differentiate cardiomyocytes from human pluripotent stem cells (PSCs) inadequately recapitulate complete development and result in PSC-derived cardiomyocytes (PSC-CMs) with an immature or fetal-like phenotype. Embryonic and fetal development are highly dynamic periods during which the developing embryo or fetus is exposed to changing nutrient, oxygen, and hormone levels until birth. It is becoming increasingly apparent that these metabolic changes initiate developmental processes to mature cardiomyocytes. Mitochondria are central to these changes, responding to these metabolic changes and transitioning from small, fragmented mitochondria to large organelles capable of producing enough ATP to support the contractile function of the heart. These changes in mitochondria may not simply be a response to cardiomyocyte maturation; the metabolic signals that occur throughout development may actually be central to the maturation process in cardiomyocytes. Here, we review methods to enhance maturation of PSC-CMs and highlight evidence from development indicating the key roles that mitochondria play during cardiomyocyte maturation. We evaluate metabolic transitions that occur during development and how these affect molecular nutrient sensors, discuss how regulation of nutrient sensing pathways affect mitochondrial dynamics and function, and explore how changes in mitochondrial function can affect metabolite production, the cell cycle, and epigenetics to influence maturation of cardiomyocytes.
Collapse
Affiliation(s)
- Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Boroumand S, Haeri A, Nazeri N, Rabbani S. Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds, and Pharmacological Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:467-496. [PMID: 35194460 PMCID: PMC8842618 DOI: 10.22037/ijpr.2021.114730.15012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heart failure (HF) is one of the most important cardiovascular diseases (CVD), causing many die every year. Cardiac tissue engineering is a multidisciplinary field for creating functional tissues to improve the cardiac function of the damaged heart and get hope for end-stage patients. Recent works have focused on creating engineered cardiac tissue ex-vivo. Simultaneously, new approaches are used to study ways of induction of regeneration in the damaged heart after injury. The heart as a complex physiological pump consists of many cells such as cardiomyocytes (80–90% of the heart volume). These cardiomyocytes are elongated, aligned, and have beating properties. To create the heart muscle, which should be functional, soft and elastic scaffolds are required to resemble the native heart tissue. These mechanical characteristics are not compatible with all materials and should be well selected. Some scaffolds promote the viability and differentiation of stem cells. Each material has advantages and disadvantages with relevant influence behavior for cells. In this review, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, pharmacological agents, and engineering strategies in this manner. Moreover, we discuss the main challenges in cardiac tissue engineering that cause difficulties to construct heart muscle. We trust that researchers interested in developing cardiac tissue engineering will find the information reviewed here useful. Furthermore, we think that providing a unified framework will further the development of human engineered cardiac tissue constructs.
Collapse
Affiliation(s)
- Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Niloofar Nazeri
- Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
32
|
Li J, Hua Y, Miyagawa S, Zhang J, Li L, Liu L, Sawa Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. Int J Mol Sci 2020; 21:E8893. [PMID: 33255277 PMCID: PMC7727666 DOI: 10.3390/ijms21238893] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Relevant, predictive normal, or disease model systems are of vital importance for drug development. The difference between nonhuman models and humans could contribute to clinical trial failures despite ideal nonhuman results. As a potential substitute for animal models, human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) provide a powerful tool for drug toxicity screening, modeling cardiovascular diseases, and drug discovery. Here, we review recent hiPSC-CM disease models and discuss the features of hiPSC-CMs, including subtype and maturation and the tissue engineering technologies for drug assessment. Updates from the international multisite collaborators/administrations for development of novel drug discovery paradigms are also summarized.
Collapse
Affiliation(s)
- Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Cell Design for Tissue Construction, Faculty of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
- Department of Design for Tissue Regeneration, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (J.L.); (Y.H.); (S.M.); (J.Z.); (L.L.)
| |
Collapse
|
33
|
Munarin F, Kant RJ, Rupert CE, Khoo A, Coulombe KLK. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 2020; 251:120033. [PMID: 32388033 PMCID: PMC8115013 DOI: 10.1016/j.biomaterials.2020.120033] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Heart regeneration after myocardial infarction requires new cardiomyocytes and a supportive vascular network. Here, we evaluate the efficacy of localized delivery of angiogenic factors from biomaterials within the implanted muscle tissue to guide growth of a more dense, organized, and perfused vascular supply into implanted engineered human cardiac tissue on an ischemia/reperfusion injured rat heart. We use large, aligned 3-dimensional engineered tissue with cardiomyocytes derived from human induced pluripotent stem cells in a collagen matrix that contains dispersed alginate microspheres as local protein depots. Release of angiogenic growth factors VEGF and bFGF in combination with morphogen sonic hedgehog from the microspheres into the local microenvironment occurs from the epicardial implant site. Analysis of the 3D vascular network in the engineered tissue via Microfil® perfusion and microCT imaging at 30 days shows increased volumetric network density with a wider distribution of vessel diameters, proportionally increased branching and length, and reduced tortuosity. Global heart function is increased in the angiogenic factor-loaded cardiac implants versus sham. These findings demonstrate for the first time the efficacy of a combined remuscularization and revascularization therapy for heart regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Fabiola Munarin
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Cassady E Rupert
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Amelia Khoo
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, 184 Hope St, Providence, RI, 02912, USA.
| |
Collapse
|
34
|
Human Cardiac Fibroblast Number and Activation State Modulate Electromechanical Function of hiPSC-Cardiomyocytes in Engineered Myocardium. Stem Cells Int 2020; 2020:9363809. [PMID: 32724316 PMCID: PMC7381987 DOI: 10.1155/2020/9363809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 11/27/2022] Open
Abstract
Cardiac tissue engineering using hiPSC-derived cardiomyocytes is a promising avenue for cardiovascular regeneration, pharmaceutical drug development, cardiotoxicity evaluation, and disease modeling. Limitations to these applications still exist due in part to the need for more robust structural support, organization, and electromechanical function of engineered cardiac tissues. It is well accepted that heterotypic cellular interactions impact the phenotype of cardiomyocytes. The current study evaluates the functional effects of coculturing adult human cardiac fibroblasts (hCFs) in 3D engineered tissues on excitation and contraction with the goal of recapitulating healthy, nonarrhythmogenic myocardium in vitro. A small population (5% of total cell number) of hCFs in tissues improves tissue formation, material properties, and contractile function. However, two perturbations to the hCF population create disease-like phenotypes in engineered cardiac tissues. First, increasing the percentage of hCFs to 15% resulted in tissues with increased ectopic activity and spontaneous excitation rate. Second, hCFs undergo myofibroblast activation in traditional two-dimensional culture, and this altered phenotype ablated the functional benefits of hCFs when incorporated into engineered cardiac tissues. Taken together, the results of this study demonstrate that human cardiac fibroblast number and activation state modulate electromechanical function of hiPSC-cardiomyocytes and that a low percentage of quiescent hCFs are a valuable cell source to advance a healthy electromechanical response of engineered cardiac tissue for regenerative medicine applications.
Collapse
|
35
|
Rupert CE, Irofuala C, Coulombe KLK. Practical adoption of state-of-the-art hiPSC-cardiomyocyte differentiation techniques. PLoS One 2020; 15:e0230001. [PMID: 32155214 PMCID: PMC7064240 DOI: 10.1371/journal.pone.0230001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are a valuable resource for cardiac therapeutic development; however, generation of these cells in large numbers and high purity is a limitation in widespread adoption. Here, design of experiments (DOE) is used to investigate the cardiac differentiation space of three hiPSC lines when varying CHIR99027 concentration and cell seeding density, and a novel image analysis is developed to evaluate plate coverage when initiating differentiation. Metabolic selection via lactate purifies hiPSC-cardiomyocyte populations, and the bioenergetic phenotype and engineered tissue mechanics of purified and unpurified hiPSC-cardiomyocytes are compared. Findings demonstrate that when initiating differentiation one day after hiPSC plating, low (3 μM) Chiron and 72 x 103 cells/cm2 seeding density result in peak cardiac purity (50-90%) for all three hiPSC lines. Our results confirm that metabolic selection with lactate shifts hiPSC-cardiomyocyte metabolism towards oxidative phosphorylation, but this more "mature" metabolic phenotype does not by itself result in a more mature contractile phenotype in engineered cardiac tissues at one week of culture in 3D tissues. This study provides widely adaptable methods including novel image analysis code and parameters for refining hiPSC-cardiomyocyte differentiation and describes the practical implications of metabolic selection of cardiomyocytes for downstream tissue engineering applications.
Collapse
Affiliation(s)
- Cassady E. Rupert
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Chinedu Irofuala
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| |
Collapse
|
36
|
Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J Mol Cell Cardiol 2019; 138:1-11. [PMID: 31655038 DOI: 10.1016/j.yjmcc.2019.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
Recent advances in the understanding and use of pluripotent stem cells have produced major changes in approaches to the diagnosis and treatment of human disease. An obstacle to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for regenerative medicine, disease modeling and drug discovery is their immature state relative to adult myocardium. We show the effects of a combination of biochemical factors, thyroid hormone, dexamethasone, and insulin-like growth factor-1 (TDI) on the maturation of hiPSC-CMs in 3D cardiac microtissues (CMTs) that recapitulate aspects of the native myocardium. Based on a comparison of the gene expression profiles and the structural, ultrastructural, and electrophysiological properties of hiPSC-CMs in monolayers and CMTs, and measurements of the mechanical and pharmacological properties of CMTs, we find that TDI treatment in a 3D tissue context yields a higher fidelity adult cardiac phenotype, including sarcoplasmic reticulum function and contractile properties consistent with promotion of the maturation of hiPSC derived cardiomyocytes.
Collapse
|
37
|
Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatr Cardiol 2019; 40:1367-1387. [PMID: 31388700 PMCID: PMC6786957 DOI: 10.1007/s00246-019-02165-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells (hPSCs) offer a multifaceted platform to study cardiac developmental biology, understand disease mechanisms, and develop novel therapies. Remarkable progress over the last two decades has led to methods to obtain highly pure hPSC-derived cardiomyocytes (hPSC-CMs) with reasonable ease and scalability. Nevertheless, a major bottleneck for the translational application of hPSC-CMs is their immature phenotype, resembling that of early fetal cardiomyocytes. Overall, bona fide maturation of hPSC-CMs represents one of the most significant goals facing the field today. Developmental biology studies have been pivotal in understanding the mechanisms to differentiate hPSC-CMs. Similarly, evaluation of developmental cues such as electrical and mechanical activities or neurohormonal and metabolic stimulations revealed the importance of these pathways in cardiomyocyte physiological maturation. Those signals cooperate and dictate the size and the performance of the developing heart. Likewise, this orchestra of stimuli is important in promoting hPSC-CM maturation, as demonstrated by current in vitro maturation approaches. Different shades of adult-like phenotype are achieved by prolonging the time in culture, electromechanical stimulation, patterned substrates, microRNA manipulation, neurohormonal or metabolic stimulation, and generation of human-engineered heart tissue (hEHT). However, mirroring this extremely dynamic environment is challenging, and reproducibility and scalability of these approaches represent the major obstacles for an efficient production of mature hPSC-CMs. For this reason, understanding the pattern behind the mechanisms elicited during the late gestational and early postnatal stages not only will provide new insights into postnatal development but also potentially offer new scalable and efficient approaches to mature hPSC-CMs.
Collapse
|
38
|
De Keulenaer GW, Feyen E, Dugaucquier L, Shakeri H, Shchendrygina A, Belenkov YN, Brink M, Vermeulen Z, Segers VFM. Mechanisms of the Multitasking Endothelial Protein NRG-1 as a Compensatory Factor During Chronic Heart Failure. Circ Heart Fail 2019; 12:e006288. [DOI: 10.1161/circheartfailure.119.006288] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a complex syndrome whose phenotypic presentation and disease progression depends on a complex network of adaptive and maladaptive responses. One of these responses is the endothelial release of NRG (neuregulin)-1—a paracrine growth factor activating ErbB2 (erythroblastic leukemia viral oncogene homolog B2), ErbB3, and ErbB4 receptor tyrosine kinases on various targets cells. NRG-1 features a multitasking profile tuning regenerative, inflammatory, fibrotic, and metabolic processes. Here, we review the activities of NRG-1 on different cell types and organs and their implication for heart failure progression and its comorbidities. Although, in general, effects of NRG-1 in heart failure are compensatory and beneficial, translation into therapies remains unaccomplished both because of the complexity of the underlying pathways and because of the challenges in the development of therapeutics (proteins, peptides, small molecules, and RNA-based therapies) for tyrosine kinase receptors. Here, we give an overview of the complexity to be faced and how it may be tackled.
Collapse
Affiliation(s)
- Gilles W. De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, ZNA Hospital, Antwerp, Belgium (G.W.D.K.)
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Anastasia Shchendrygina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Yury N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Marijke Brink
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland (M.B.)
| | - Zarha Vermeulen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Vincent F. M. Segers
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium (V.F.M.S.)
| |
Collapse
|
39
|
Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019; 7:164. [PMID: 31448277 PMCID: PMC6695570 DOI: 10.3389/fcell.2019.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
Collapse
Affiliation(s)
- Amanda Leitolis
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Anny W Robert
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Isabela T Pereira
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Alejandro Correa
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Marco A Stimamiglio
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
40
|
The Role of Reactive Oxygen Species in In Vitro Cardiac Maturation. Trends Mol Med 2019; 25:482-493. [PMID: 31080142 DOI: 10.1016/j.molmed.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/27/2022]
Abstract
Recent advances in developmental biology and biomedical engineering have significantly improved the efficiency and purity of cardiomyocytes (CMs) generated from pluripotent stem cells (PSCs). Regardless of the protocol used to derive CMs, these cells exhibit hallmarks of functional immaturity. In this Opinion, we focus on reactive oxygen species (ROS), signaling molecules that can potentially modulate cardiac maturation. We outline how ROS impacts nearly every aspect associated with cardiac maturation, including contractility, calcium handling, metabolism, and hypertrophy. Though the precise role of ROS in cardiac maturation has yet to be elucidated, ROS may provide a valuable perspective for understanding the molecular mechanisms for cardiac maturation under various conditions.
Collapse
|
41
|
Sewanan LR, Campbell SG. Modelling sarcomeric cardiomyopathies with human cardiomyocytes derived from induced pluripotent stem cells. J Physiol 2019; 598:2909-2922. [PMID: 30624779 DOI: 10.1113/jp276753] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) provide a unique opportunity to understand the pathophysiological effects of genetic cardiomyopathy mutations. In particular, these cells hold the potential to unmask the effects of mutations on contractile behaviour in vitro, providing new insights into genotype-phenotype relationships. With this goal in mind, several groups have established iPSC lines that contain sarcomeric gene mutations linked to cardiomyopathy in patient populations. Their studies have employed diverse systems and methods for performing mechanical measurements of contractility, ranging from single cell techniques to multicellular tissue-like constructs. Here, we review published results to date within the growing field of iPSC-based sarcomeric cardiomyopathy disease models. We devote special attention to the methods of mechanical characterization selected in each case, and how these relate to the paradigms of classical muscle mechanics. An appreciation of these somewhat subtle paradigms can inform efforts to compare the results of different studies and possibly reconcile discrepancies. Although more work remains to be done to improve and possibly standardize methods for producing, maturing, and mechanically interrogating iPSC-derived cardiomyocytes, the initial results indicate that this approach to modelling cardiomyopathies will continue to provide critical insights into these devastating diseases.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 2019; 598:2941-2956. [PMID: 30571853 DOI: 10.1113/jp276754] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A primary limitation in the use of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) for both patient health and scientific investigation is the failure of these cells to achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive structural, functional and metabolic changes during maturation. By contrast, PSC-CMs fail to fully undergo these developmental processes, instead remaining arrested at an embryonic stage of maturation. There is thus a significant need to understand the biological processes underlying proper CM maturation in vivo. Here, we discuss what is known regarding the initiation and coordination of CM maturation. We postulate that there is a critical perinatal window, ranging from embryonic day 18.5 to postnatal day 14 in mice, in which the maturation process is exquisitely sensitive to perturbation. While the initiation mechanisms of this process are unknown, it is increasingly clear that maturation proceeds through interconnected regulatory circuits that feed into one another to coordinate concomitant structural, functional and metabolic CM maturation. We highlight PGC1α, SRF and the MEF2 family as transcription factors that may potentially mediate this cross-talk. We lastly discuss several emerging technologies that will facilitate future studies into the mechanisms of CM maturation. Further study will not only produce a better understanding of its key processes, but provide practical insights into developing a robust strategy to produce mature PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Chulan Kwon
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
43
|
Kaiser NJ, Kant RJ, Minor AJ, Coulombe KLK. Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes. ACS Biomater Sci Eng 2018; 5:887-899. [PMID: 30775432 PMCID: PMC6372981 DOI: 10.1021/acsbiomaterials.8b01112] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
![]()
Natural
polymer hydrogels are used ubiquitously as scaffold materials
for cardiac tissue engineering as well as for soft tissue engineering
more broadly because of FDA approval, minimal immunogenicity, and
well-defined physiological clearance pathways. However, the relationships
between natural polymer hydrogels and resident cell populations in
directing the development of engineered tissues are poorly defined.
This interaction is of particular concern for tissues prepared
with iPSC-derived cell populations, in which population purity and
batch-to-batch variability become additional critical factors to consider.
Herein, the design space for a blended fibrin and collagen scaffold
is characterized for applications in creating engineered myocardium
with human iPSC-derived cardiomyocytes. Stiffness values of the acellular
hydrogel formulations approach those of native myocardium in compression,
but deviate significantly in tension when compared to rat myocardium
in both transverse and longitudinal fiber orientations. A response
surface methodology approach to understanding the relationship between
collagen concentration, fibrin concentration, seeding density, and
cardiac purity found a statistically significant predictive model
across three repeated studies that confirms that all of these factors
contribute to tissue compaction. In these constructs, increased fibrin
concentration and seeding density were each associated with increased
compaction, while increased collagen concentration was associated
with decreased compaction. Both the lowest (24.4% cTnT+) and highest (60.2% cTnT+) cardiomyocyte purities evaluated
were associated with decreased compaction, whereas the greatest compaction
was predicted to occur in constructs prepared with a 40–50%
cTnT+ population. Constructs prepared with purified cardiomyocytes
(≥75.5% cTnT+) compacted and formed syncytia well,
although increased fibrin concentration in these groups was associated
with decreased compaction, a reversal of the trend observed in unpurified
cardiomyocytes. This study demonstrates an analytical approach to
understanding cell–scaffold interactions in engineered tissues
and provides a foundation for the development of more sophisticated
and customized scaffold platforms for human cardiac tissue engineering.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
44
|
Scimone MT, Cramer III HC, Bar-Kochba E, Amezcua R, Estrada JB, Franck C. Modular approach for resolving and mapping complex neural and other cellular structures and their associated deformation fields in three dimensions. Nat Protoc 2018; 13:3042-3064. [DOI: 10.1038/s41596-018-0077-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
46
|
Liu M, Shi G, Zhou A, Rupert CE, Coulombe KLK, Dudley SC. Activation of the unfolded protein response downregulates cardiac ion channels in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2018; 117:62-71. [PMID: 29474817 DOI: 10.1016/j.yjmcc.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
RATIONALE Heart failure is characterized by electrical remodeling that contributes to arrhythmic risk. The unfolded protein response (UPR) is active in heart failure and can decrease protein levels by increasing mRNA decay, accelerating protein degradation, and inhibiting protein translation. OBJECTIVE Therefore, we investigated whether the UPR downregulated cardiac ion channels that may contribute to arrhythmogenic electrical remodeling. METHODS Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to study cardiac ion channels. Action potentials (APs) and ion channel currents were measured by patch clamp recording. The mRNA and protein levels of channels and the UPR effectors were determined by quantitative RT-PCR and Western blotting. Tunicamycin (TM, 50 ng/mL and 5 μg/mL), GSK2606414 (GSK, 300 nmol/L), and 4μ8C (5 μmol/L) were utilized to activate the UPR, inhibit protein kinase-like ER kinase (PERK) and inositol-requiring protein-1 (IRE1), respectively. RESULTS TM-induced activation of the UPR caused significant prolongation of the AP duration (APD) and a reduction of the maximum upstroke velocity (dV/dtmax) of the AP phase 0 in both acute (20-24 h) and chronic treatment (6 days). These changes were explained by reductions in the sodium, L-type calcium, the transient outward and rapidly/slowly activating delayed rectifier potassium currents. Nav1.5, Cav1.2, Kv4.3, and KvLQT1 channels showed concomitant reductions in mRNA and protein levels under activated UPR. Inhibition of PERK or IRE1 shortened the APD and reinstated dV/dtmax. The PERK branch regulated Nav1.5, Kv4.3, hERG, and KvLQT1. The IRE1 branch regulated Nav1.5, hERG, KvLQT1, and Cav1.2. CONCLUSIONS Activated UPR downregulates all major cardiac ion currents and results in electrical remodeling in hiPSC-CMs. Both PERK and IRE1 branches downregulate Nav1.5, hERG, and KvLQT1. The PERK branch specifically downregulates Kv4.3, while the IRE1 branch downregulates Cav1.2. Therefore, the UPR contributed to electrical remodeling, and targeting the UPR might be anti-arrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Guangbin Shi
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Anyu Zhou
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Cassady E Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Samuel C Dudley
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|