1
|
Wang Z, Wang X, Sheng X, Zhao L, Qian J, Zhang J, Wang J. Unraveling the Antibacterial Mechanism of Plasma-Activated Lactic Acid against Pseudomonas ludensis by Untargeted Metabolomics. Foods 2023; 12:foods12081605. [PMID: 37107401 PMCID: PMC10137701 DOI: 10.3390/foods12081605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Plasma-activated liquid is a novel non-thermal antibacterial agent against a wide spectrum of foodborne bacteria, yet fewer studies focused on its disinfection of meat spoilage bacteria. In this study, the antibacterial properties of plasma-activated lactic acid (PALA) on Pseudomonas lundensis, isolated and identified from spoilage beef, were investigated. A plasma jet was used to treat lactic acid (0.05-0.20%) for 60-120 s. The results presented that the 0.2% LA solution treated with plasma for 120 s caused a 5.64 log reduction. Additionally, the surface morphology, membrane integrity and permeability were altered slightly and verified by scanning electron microscopy, double staining of SYTO-9 and propidium iodide, and a K+ test kit. The intracellular organization of the cells, observed by transmission electron microscopy, was damaged significantly. Increased intracellular reactive oxygen species (ROS) levels exceeded the antioxidant ability of glutathione (GSH), leading to a reduction in the activity of malate dehydrogenase (MDH), succinic dehydrogenase (SDH) and intracellular ATP levels. Metabolomics analysis indicated that the energy and synthesis of essential components, such as DNA and amino acid-related metabolic pathways, were disturbed. In conclusion, this research established a theoretical basis for the use of PALA in refrigerated beef preservation by shedding light on the bacteriostatic effect of PALA against Pseudomonas lundensis.
Collapse
Affiliation(s)
- Zhaobin Wang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoting Wang
- College (School) of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiaowei Sheng
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Luling Zhao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Qian
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Luo S, Yang XI, Wu S, Liu M, Zhang X, Sun X, Li Y, Wang X, Wang X, Hu X. Blue Light for Inactivation of Meatborne Pathogens and Maintaining the Freshness of Beef. J Food Prot 2022; 85:553-562. [PMID: 34882203 DOI: 10.4315/jfp-21-234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Beef is rich in various nutrients but easily spoils due to bacterial contamination; thus, a bactericidal method is needed to inactivate meatborne pathogens while maintaining the freshness of beef. The present study was conducted to investigate for the first time the bactericidal effect of blue light (BL) at 415 nm against four meatborne pathogens (methicillin-resistant Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes) both in vitro and inoculated onto the surface of fresh beef. The populations of the four pathogens on the nonirradiated control beef did not change significantly (P > 0.05), whereas a dose-dependent inactivation effect was found for BL-treated beef both in vitro and in vivo. On the beef cuts, BL at 109.44 J/cm2 inactivated 90% of inoculated cells of the tested strains (P < 0.05), and this inactivation effect was sustained during 7 days of cold storage. Insignificant changes in lipid oxidation rate, water holding capacity, and cooking loss were found during storage between the control beef and the beef irradiated at 109.44 J/cm2 at the same time. BL had a minor and nonsignificant effect on surface color and free amino acid concentrations. The pH of the treated beef increased more slowly (P < 0.05) than did that of untreated beef. These results suggest that BL could be a novel bactericide and could help maintain the freshness of beef. HIGHLIGHTS
Collapse
Affiliation(s)
- Shuanghua Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - X I Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, University Avenue and Library Road, Massey University, Palmerston North 4442, New Zealand and
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiujuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoying Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanbu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan 430070, People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
3
|
Effect of Gaseous Chlorine Dioxide Treatment on the Quality Characteristics of Buckwheat-Based Composite Flour and Storage Stability of Fresh Noodles. Processes (Basel) 2021. [DOI: 10.3390/pr9091522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the effects of gaseous chlorine dioxide treatment on the physicochemical properties of buckwheat-based composited flour (buckwheat-wheat-gluten) and shelf-life of fresh buckwheat noodles (FBNs), as well as the textural qualities and sensory properties of noodles were investigated. Chlorine dioxide treatment significantly reduced the total plate count (TPC) and the total flavonoids content in the mixed flour (p < 0.05), but the whiteness, development time and stability time were all increased. During storage, the microbial growth and darkening rate of FBNs made from chlorine dioxide treated buckwheat-based composite flour (CDBF) were delayed significantly, slowing the deterioration and improving storage stability of buckwheat noodles. In addition, chlorine dioxide treatment had no apparent adverse effect on the cooking loss and sensory characteristics during noodle storage. This finding would provide a new concept for the production of “low bacterial buckwheat-based flour” and have important consequences for the application of gaseous chlorine dioxide in food industry.
Collapse
|