1
|
Zalas D, Bobkowski W, Piskorski J, Guzik P. Heart Rate Asymmetry in Healthy Children. J Clin Med 2023; 12:jcm12031194. [PMID: 36769841 PMCID: PMC9918166 DOI: 10.3390/jcm12031194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Heart rate asymmetry (HRA) is a physiological phenomenon characterized by an unequal contribution of heart rate decelerations and accelerations to different heart rate variability (HRV) features. While HRA has been demonstrated in adults' ECGs of different duration, a similar investigation in healthy children has not been conducted. This study investigated the variance- and number-based HRA features in 96 healthy children (50 girls and 46 boys, aged 3-18 years) using 24-h ECGs. Additionally, we studied sex differences in HRA. To quantify HRA, variance-based and relative contributions of heart rate decelerations to short-term (C1d), long-term (C2d), and total (CTd) HRV, and the number of all heartbeats (Nd) were computed. Heart rate decelerations contributed more to C1d, but less to C2d and CTd, and were less frequent than heart rate accelerations. Short-term HRA was better expressed in boys. The majority of children (93.7%) had short-term HRA, 88.5% had long-term HRA, 88.5% had total HRA, and 99.0% had more accelerations than decelerations. No sex differences were observed for the rate of various HRA features. Heart rate asymmetry is a common phenomenon in healthy children, as observed in 24-h ECGs. Our findings can be used as reference data for future clinical studies on HRA in children.
Collapse
Affiliation(s)
- Dominika Zalas
- Department of Pediatric Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Waldemar Bobkowski
- Department of Pediatric Cardiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jarosław Piskorski
- Institute of Physics, University of Zielona Gora, 65-516 Zielona Góra, Poland
| | - Przemysław Guzik
- Department of Cardiology-Intensive Therapy, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Correspondence:
| |
Collapse
|
2
|
Analysis of Short-Term Heart Rate Asymmetry in High-Performance Athletes and Non-Athletes. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heart rate asymmetry (HRA) refers to how asymmetrically the acceleration and deceleration patterns in heartbeat fluctuations are distributed. There is limited evidence regarding HRA changes in athletes and their association with autonomic regulation. This study aimed to compare the short-term HRA of high-performance athletes and non-athletes during an autonomic function test by calculating relevant HRA measures. This exploratory study obtained beat-to-beat RR interval time series from 15 high-performance athletes and 12 non-athletes during a standardized autonomic function test. This test includes rest, postural change, controlled respiration, prolonged orthostatism, exercise, and recovery phases. The following HRA parameters were computed from the RR time series for both groups: asymmetric spread index (ASI), slope index (SI), Porta’s index (PI), Guzik’s index (GI), and Ehlers’ index (EI). We found significant differences (p < 0.01) in the mean value of several HRA parameters between athletes and non-athletes and across the autonomic function test phases, mainly in postural change and recovery phases. Our results indicate that high-performance athletes manifest a higher number and magnitude of cardiac decelerations than non-athletes after an orthostatic challenge, as indicated by GI and EI. In addition, lower HRA was found in athletes in the recovery phase than in non-athletes, as indicated by ASI.
Collapse
|
3
|
Burin D, Kawashima R. Repeated Exposure to Illusory Sense of Body Ownership and Agency Over a Moving Virtual Body Improves Executive Functioning and Increases Prefrontal Cortex Activity in the Elderly. Front Hum Neurosci 2021; 15:674326. [PMID: 34135743 PMCID: PMC8200494 DOI: 10.3389/fnhum.2021.674326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
We previously showed that the illusory sense of ownership and agency over a moving body in immersive virtual reality (displayed in a first-person perspective) can trigger subjective and physiological reactions on the real subject’s body and, therefore, an acute improvement of cognitive functions after a single session of high-intensity intermittent exercise performed exclusively by one’s own virtual body, similar to what happens when we actually do physical activity. As well as confirming previous results, here, we aimed at finding in the elderly an increased improvement after a longer virtual training with similar characteristics. Forty-two healthy older subjects (28 females, average age = 71.71 years) completed a parallel-group randomized controlled trial (RCT; UMIN000039843, umin.ac.jp) including an adapted version of the virtual training previously used: while sitting, participants observed the virtual body in a first-person perspective (1PP) or a third-person perspective (3PP) performing 20 min of virtual high-intensity intermittent exercise (vHIE; the avatar switched between fast and slow walking every 2 min). This was repeated twice a week for 6 weeks. During the vHIE, we measured the heart rate and administered questionnaires to evaluate illusory body ownership and agency. Before the beginning of the intervention, immediately after the first session of vHIE, and at the end of the entire intervention, we evaluated the cognitive performance at the Stroop task with online recording of the hemodynamic activity over the left dorsolateral prefrontal cortex. While we confirm previous results regarding the virtual illusion and its physiological effects, we did not find significant cognitive or neural improvement immediately after the first vHIE session. As a novelty, in the 1PP group only, we detected a significant decrease in the response time of the Stroop task in the post-intervention assessment compared to its baseline; coherently, we found an increased activation on left dorsolateral prefrontal cortex (lDLPFC) after the entire intervention. While the current results strengthen the impact of the virtual full-body illusion and its physiological consequences on the elderly as well, they might have stronger and more established body representations. Perhaps, a longer and increased exposure to those illusions is necessary to initiate the cascade of events that culminates to an improved cognitive performance.
Collapse
Affiliation(s)
- Dalila Burin
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Aging International Research Center, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Aging International Research Center, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Pawłowski R, Buszko K, Newton JL, Kujawski S, Zalewski P. Heart Rate Asymmetry Analysis During Head-Up Tilt Test in Healthy Men. Front Physiol 2021; 12:657902. [PMID: 33927644 PMCID: PMC8076803 DOI: 10.3389/fphys.2021.657902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study is to assess the cardiovascular system response to orthostatic stress in a group of 133 healthy men using heart rate asymmetry (HRA) methods. HRA is a feature of variability in human heart rate which is dependent upon external and internal body conditions. The initial phases of head-up tilt test (HUTT), namely, supine and tilt, were chosen as the external body affecting factors. Various calculation methods of HRA, such as Porta's index (PI), Guzik's index (GI), and its variance based components, were used to assess the heart rate variability (HRV) and its asymmetry. We compared 5-min ECG recordings from both supine and tilt phases of HUT test. Short-term HRA was observed in 54.1% of men in supine phase and 65.4% of men in tilt phase. The study revealed significant increase of GI (from 0.50 to 0.52, p < 0.001) in the tilt phase as well as significant changes in HRV descriptors between HUTT phases. Our results showed that the variability of human heart rate and its asymmetry are sensitive to orthostatic stress. The study of short-term HRA is a potential additional tool to increase sensitivity in conditions where HUTT is a diagnostic tool, such as vasovagal syncope.
Collapse
Affiliation(s)
- Rafał Pawłowski
- Department of Biostatistics and Theory of Biomedical Systems, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Buszko
- Department of Biostatistics and Theory of Biomedical Systems, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Julia L Newton
- Population Health Sciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sławomir Kujawski
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Education, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Paweł Zalewski
- Department of Hygiene, Epidemiology, Ergonomics and Postgraduate Education, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
5
|
Shi B, Motin MA, Wang X, Karmakar C, Li P. Bivariate Entropy Analysis of Electrocardiographic RR-QT Time Series. ENTROPY 2020; 22:e22121439. [PMID: 33419293 PMCID: PMC7766536 DOI: 10.3390/e22121439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
QT interval variability (QTV) and heart rate variability (HRV) are both accepted biomarkers for cardiovascular events. QTV characterizes the variations in ventricular depolarization and repolarization. It is a predominant element of HRV. However, QTV is also believed to accept direct inputs from upstream control system. How QTV varies along with HRV is yet to be elucidated. We studied the dynamic relationship of QTV and HRV during different physiological conditions from resting, to cycling, and to recovering. We applied several entropy-based measures to examine their bivariate relationships, including cross sample entropy (XSampEn), cross fuzzy entropy (XFuzzyEn), cross conditional entropy (XCE), and joint distribution entropy (JDistEn). Results showed no statistically significant differences in XSampEn, XFuzzyEn, and XCE across different physiological states. Interestingly, JDistEn demonstrated significant decreases during cycling as compared with that during the resting state. Besides, JDistEn also showed a progressively recovering trend from cycling to the first 3 min during recovering, and further to the second 3 min during recovering. It appeared to be fully recovered to its level in the resting state during the second 3 min during the recovering phase. The results suggest that there is certain nonlinear temporal relationship between QTV and HRV, and that the JDistEn could help unravel this nuanced property.
Collapse
Affiliation(s)
- Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu 233030, China;
| | - Mohammod Abdul Motin
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, VIC 3110, Australia;
| | - Xinpei Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China;
| | - Chandan Karmakar
- School of Information Technology, Deakin University, Geelong, VIC 3225, Australia
- Correspondence: (C.K.); (P.L.)
| | - Peng Li
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (C.K.); (P.L.)
| |
Collapse
|
6
|
Burin D, Liu Y, Yamaya N, Kawashima R. Virtual training leads to physical, cognitive and neural benefits in healthy adults. Neuroimage 2020; 222:117297. [PMID: 32828927 DOI: 10.1016/j.neuroimage.2020.117297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Physical activity, such as high-intensity intermittent aerobic exercise (HIE), can improve executive functions. Although performing strength or aerobic training might be problematic or not feasible for someone. An experimental situation where there is no actual movement, but the body shows physiological reactions, is during the illusion through immersive virtual reality (IVR). We aimed to demonstrate whether a virtual HIE-based intervention (vHIE) performed exclusively by the own virtual body has physical, cognitive, and neural benefits on the real body. 45 healthy young adults (cross-over design) experienced HIE training in IVR (i.e., the virtual body performed eight sets of 30 s of running followed by 30 s of slow walking, while the subject is completely still) in two random-ordered conditions (administered in two sessions one week apart): the virtual body is displayed in first-person perspective (1PP) or third-person perspective (3PP). During the vHIE, we recorded the heart rate and subjective questionnaires to confirm the effectiveness of the illusion; before and after vHIE, we measured cortical hemodynamic changes in the participants' left dorsolateral prefrontal cortex (lDLPFC) using the fNIRS device during the Stroop task to test our main hypothesis. Preliminary, we confirmed that the illusion was effective: during the vHIE in 1PP, subjects' heart rate increased coherently with the virtual movements, and they reported subjective feelings of ownership and agency. Primarily, subjects were faster in executing the Stroop task after the vHIE in 1PP; also, the lDLPFC activity increased coherently. Clinically, these results might be exploited to train cognition and body simultaneously. Theoretically, we proved that the sense of body ownership and agency can affect other parameters, even in the absence of actual movements.
Collapse
Affiliation(s)
- Dalila Burin
- Smart Aging International Research Center (SAIRC), Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan; Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan.
| | - Yingxu Liu
- Smart Aging International Research Center (SAIRC), Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan
| | - Noriki Yamaya
- Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan
| | - Ryuta Kawashima
- Smart Aging International Research Center (SAIRC), Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan; Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryocho, Aobaku, Sendai 980-8575, Japan
| |
Collapse
|
7
|
|