1
|
Faisal ZG, Jameel MM, Abdullah OA. Isolation and Identification of Black Oil-Degrading Bacteria From Lubricant-Contaminated Soil in Northern Baghdad, Iraq. ScientificWorldJournal 2025; 2025:4009105. [PMID: 40260096 PMCID: PMC12011454 DOI: 10.1155/tswj/4009105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025] Open
Abstract
Black oil is a refined petroleum product that poses a significant environmental risk. It contains complex multihydrocarbons that decompose slowly, so black oil remains in the environment for a long time, causing various toxic effects. This study isolates and identifies an indigenous bacterium from soil samples contaminated with waste lubricating oil and evaluates its potential for degrading black crude oil. Twelve species of black oil-degrading bacteria were isolated from six soil samples of automobile and motorcycle workshops in the Al-Tarmiyah District of Baghdad, Iraq. Isolated bacteria were identified based on morphological and VITEK 2 system as Pseudomonas aeruginosa, Bacillus cereus, Burkholderia cepacia, Pseudomonas fluorescens, Acinetobacter lwoffii, Acinetobacter radioresistens, Stenotrophomonas maltophilia, and Streptococcus parasanguinis. Among these, based on the measurement of optical density and chromatogram analysis, B. cereus exhibited the maximum efficiency in degrading black oil, followed by P. aeruginosa. Therefore, these indigenous bacteria have the potential to be used in black oil removal from contaminated sites and the expansion of bioremediation approaches.
Collapse
Affiliation(s)
- Zeena Ghazi Faisal
- Department of Biology, College of Education, Al-Iraqia University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Ahmed A, Geed SR. Sustainable refinery waste management through biotechnological interventions: Health impacts, historical successes, and emerging solutions. ENVIRONMENTAL RESEARCH 2025; 270:120967. [PMID: 39884536 DOI: 10.1016/j.envres.2025.120967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/25/2024] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
In today's highly competitive and interconnected global market, economic achievement and prosperity are essential needs for every individual. However, in recent years, the "science of sustainability" has gained popularity due to mounting evidence of the damaging impacts of environmental issues. Lately, the expansion of petroleum industries and refineries has led to a substantial rise in the production of refinery oily waste. The treatment of such waste presents significant environmental challenges, necessitating the development of sustainable solutions. This review explores the latest advancements in biological processes for treating it, focusing on their efficacy and limitations. These processes are still facing challenges such as slow degradation rates, nutrient availability, and pollutant toxicity, which can hinder efficiency. To address these, efforts are being made to develop more viable biological treatments including exploration of microbial strains, optimizing process conditions, bioreactor systems, and integrating advanced bioremediation techniques. Potential applications of these processes across different contaminated sites are discussed along with commercially available technologies. Drawbacks related to bioprocess scale-up, cost-effectiveness, and regulatory constraints are also addressed. Additionally, it incorporates pertinent case studies that serve as illustrations of successful implementations of biological strategies. Ultimately, this sets the stage for practical bioremediation implementation as a solution for refinery waste management.
Collapse
Affiliation(s)
- Ashique Ahmed
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Rameshrao Geed
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Sarkar A, Bhattacharjee S. Biofilm-mediated bioremediation of xenobiotics and heavy metals: a comprehensive review of microbial ecology, molecular mechanisms, and emerging biotechnological applications. 3 Biotech 2025; 15:78. [PMID: 40060289 PMCID: PMC11889332 DOI: 10.1007/s13205-025-04252-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/20/2025] [Indexed: 04/13/2025] Open
Abstract
Environmental pollution, driven by rapid industrialization and urbanization, has emerged as a critical global challenge in the twenty-first century. This comprehensive review explores the potential of bacterial biofilms in bioremediation, focusing on their ability to degrade and transform a wide array of pollutants, including heavy metals, persistent organic pollutants (POPs), oil spills, pesticides, and emerging contaminants, such as pharmaceuticals and microplastics. The unique structural and functional characteristics of biofilms, including their extracellular polymeric substance (EPS) matrix, enhanced genetic exchange, and metabolic cooperation, contribute to their superior pollutant degradation capabilities compared to planktonic bacteria. Recent advancements in biofilm-mediated bioremediation include the application of genetically engineered microorganisms, nanoparticle-biofilm interactions, and innovative biofilm reactor designs. The CRISPR-Cas9 system has shown promise in enhancing the degradative capabilities of biofilm-forming bacteria while integrating nanoparticles with bacterial biofilms demonstrates significant improvements in pollutant degradation efficiency. As global pollution rises, biofilm-based bioremediation emerges as a cost-effective and environmentally friendly approach to address diverse contaminants. This review signifies the need for further research to optimize these techniques and harness their full potential in addressing pressing environmental challenges.
Collapse
Affiliation(s)
- Argajit Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura 799022 India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura 799022 India
| |
Collapse
|
4
|
Ehis-Eriakha CB, Chikere CB, Akaranta O, Akemu SE. A comparative assesment of biostimulants in microbiome-based ecorestoration of polycyclic aromatic hydrocarbon polluted soil. Braz J Microbiol 2025; 56:203-224. [PMID: 39602070 PMCID: PMC11885757 DOI: 10.1007/s42770-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/09/2024] [Indexed: 11/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose severe environmental and public health risks due to their harmful and persistent nature. Therefore, developing sustainable and effective methods for PAH remediation is crucial. This study explores the biostimulation potential of various nutrient supplements in enhancing the metabolic activities of indigenous oleophilic bacteria to PAH degradation and removal. The physicochemical and microbiological characterization of the soil sample obtained from the aged crude oil spill site prior to bioremediation revealed the presence of PAH and other hydrocarbons, reduced nutrient availability as well as an appreciable population of PAH degrading bacteria such as strains of Pseudomonas, Enterobacter, Kosakonia and Staphylococcus. The polluted soil treatment was conducted in six microcosms representing each nutrient supplement: casmes-CM, cocodust-CCD and osmocote-OSM slow-release fertilizers, NPK 20:10:10, casmes + cow dung - CM + CD and a control (unamended soil). Each pot contained 4 kg of soil spiked with 4% Escravos crude oil to a final concentration of 989 mg/kg of PAH, respectively. All treatments enhanced the activity of the indigenous bacteria to promote PAH removal (> 50%) after 35 days although CM + CD had the highest biostimulation effect (B. E.) of 56% with 71.77% PAH attenuation followed by NPK treatment with B. E. of 54.9% and 70.4% PAH removal, respectively. The order of degradation of PAHs from lowest to highest is: control > casmes > osmocote > cocodust > NPK > CM + CD. First-order kinetic model revealed soil microcosm amended with CM + CD had a higher k value (0.0342 day-1) and lower t½ (18.48 day) and this was relatively followed by NPK treated soil. Biostimulation is an effective bioremediation approach to PAH degradation, however, a combined nutrient regimen in the presence of PAH-degrading microbes is more potent and eco-friendly in driving this process.
Collapse
Affiliation(s)
- Chioma Bertha Ehis-Eriakha
- Department of Microbiology, Edo State University Uzairue, Uzairue, Edo State, Nigeria.
- World Bank Centre of Excellence, Centre for Oilfield Chemicals and Research, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.
| | - Chioma Blaise Chikere
- World Bank Centre of Excellence, Centre for Oilfield Chemicals and Research, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
- Department of Microbiology, University of Port Harcourt, Rivers State, Port Harcourt, Nigeria
| | - Onyewuchi Akaranta
- World Bank Centre of Excellence, Centre for Oilfield Chemicals and Research, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
- Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | | |
Collapse
|
5
|
da Silva FE, Spaolonzi MP, Vieira MGA, Pergher SBC. Ordered Mesopore Channels of SBA-15 for Contaminant Adsorption: Characterization, Kinetic, Equilibrium, and Thermodynamic Studies. Molecules 2025; 30:1040. [PMID: 40076265 PMCID: PMC11902132 DOI: 10.3390/molecules30051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
SBA-15 is used in various processes, including adsorption, due to its textural properties, mesoporous channels, and silanol groups on the surface. These characteristics make it a promising material for the adsorption of emerging contaminants. This work evaluated the potential use of SBA-15 for the adsorption of bisphenol A (BPA), ciprofloxacin (CIP), and losartan (LS). This study showed that the material has highly ordered mesoporous channels and silanol groups on the surface, which influenced the affinity tests. SBA-15 exhibited the highest adsorption capacity (0.1317 mmol g-1) and removal percentage (60%) for CIP among the contaminants assessed. The adsorption mechanism was elucidated, revealing different interactions for each molecule. The kinetic curves for CIP adsorption indicated that the process reached saturation in 20 min, the equilibrium isotherm showed the highest adsorption at 15 °C, and the thermodynamic study shows an exothermic behavior and spontaneous process. The simplified batch design estimated that 27 g of SBA-15 is required to treat 10 L of 0.2 mmol L-1 initial CIP concentration solution and achieve 90% adsorption removal. This material demonstrated satisfactory performance in absorbing emerging contaminants.
Collapse
Affiliation(s)
- Francisco Emanuel da Silva
- Institute of Chemistry, Universidade Federal do Rio Grande do Norte, Senador Salgado Filho Av., 3000, Natal 59078-970, RN, Brazil;
| | - Marcela Pires Spaolonzi
- School of Chemical Engineering, Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas 13083-872, SP, Brazil; (M.P.S.); (M.G.A.V.)
| | - Melissa G. A. Vieira
- School of Chemical Engineering, Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas 13083-872, SP, Brazil; (M.P.S.); (M.G.A.V.)
| | - Sibele B. C. Pergher
- Institute of Chemistry, Universidade Federal do Rio Grande do Norte, Senador Salgado Filho Av., 3000, Natal 59078-970, RN, Brazil;
| |
Collapse
|
6
|
Brito MG, López NI, Raiger Iustman LJ. Unraveling the effects of polyhydroxyalkanoates accumulation in Pseudomonas extremaustralis growth and survival under different pH conditions. Extremophiles 2024; 29:9. [PMID: 39699694 DOI: 10.1007/s00792-024-01375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are intracellular polymers that enhance bacterial fitness against various environmental stressors. Pseudomonas extremaustralis 14-3b is an Antarctic bacterium capable of accumulating, short-chain-length PHAs (sclPHAs), composed of C3-C5 monomers, as well as medium-chain-length PHAs (mclPHAs) containing ≥ C6 monomers. Since pH changes are pivotal in bacterial physiology, influencing microbial growth and metabolic processes, we propose that accumulated PHA increases P. extremaustralis fitness to cope with pH changes. To test this, we analyzed the production of sclPHA and mclPHA at different pH levels and its effect on bacterial survival against pH stress. P. extremaustralis was able to grow and accumulate PHA when the culture media pH ranged from 6.0 to 9.5, showing a marked loss of viability outside this range. Additionally, based on the analysis of different PHA-deficient mutants, we found that when exposed to both acidic and alkaline conditions, sclPHA and mclPHA conferred different protection against pH stress, with sclPHA making the main contribution. These results highlight the importance of PHA in supporting survival in pH-stressful environments.
Collapse
Affiliation(s)
- María Gabriela Brito
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, 1428, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, 1428, Buenos Aires, Argentina
| | - Laura J Raiger Iustman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, 1428, Buenos Aires, Argentina.
| |
Collapse
|
7
|
D'Incau E, Spaudo A, Henry S, Ouvrard S. Phytotoxic response of ryegrass (Lolium multiflorum L.) to extreme exposure to two anionic surfactants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117320. [PMID: 39549569 DOI: 10.1016/j.ecoenv.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Bioremediation is an effective and environment-friendly treatment used to clean up hydrocarbon-contaminated soil. However, the effectiveness of this treatment is often limited by the low bioavailability of the target contaminants. Surfactants addition thus appears as a way to increase solubility of these hydrophobic molecules and consequently improve their bioavailability. The use of biological surfactants is often favoured over synthetic ones because they are claimed to be non-toxic to the environment though few studies have addressed this issue. The present work evaluated the effects of a synthetic surfactant, sodium dodecyl sulphate (SDS) and a biosurfactant (rhamnolipids) on germination and growth of ryegrass over a wide range of concentrations, between one up to ten times their respective critical micellar concentration (CMC). Experimental results showed that SDS inhibited seed germination of Lolium multiflorum at high concentrations (10 × CMC), unlike rhamnolipids, which did not induce any toxicity symptom at germination stage. At the growth stage, high rhamnolipid concentrations induced chronic phytotoxicity by significantly reducing root length, decreasing biomass production and disrupting the enzymatic defence system. Thus, biosurfactants are less toxic than synthetic ones but their application at high doses in bioremediation treatments might still induce phytotoxicity symptoms and thus negatively affect the environment.
Collapse
Affiliation(s)
| | - Antoine Spaudo
- Université de Lorraine, INRAE, LSE, Nancy F-54000, France
| | - Sonia Henry
- Université de Lorraine, INRAE, LSE, Nancy F-54000, France
| | | |
Collapse
|
8
|
Li P, Zhou X, Wei T, Wang J, Gao Y. Potential mechanisms of synthetic endophytic bacterial community to reduce PAHs accumulation in vegetables. ENVIRONMENT INTERNATIONAL 2024; 194:109129. [PMID: 39556956 DOI: 10.1016/j.envint.2024.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
The functional endophytic bacterial community can effectively degrade polycyclic aromatic hydrocarbons (PAHs), thereby reducing their accumulation in vegetables grown on contaminated sites. However, the biological mechanisms underlying this reduction remain unclear. In this study, we analyzed the efficacy of different colonization methods of the functional endophytic bacterial community m5 in reducing PAHs in vegetables, with a particular focus on the leaf painting method. The results demonstrated that various colonization methods effectively reduced PAHs in vegetables, with leaf painting proving to be a cost-effective and efficient approach. Compared to the non-inoculated control, PAH content in the edible parts of amaranth was reduced by 40.63 % using the leaf painting method. High-throughput sequencing and quantitative PCR revealed that leaf painting altered the bacterial community structure and key components of the bacterial network, enhancing bacterial cooperation. After 20 days of colonization, the abundance of phe and nidA genes in vegetables increased significantly, by tens to hundreds of times, compared to uninoculated controls, thereby promoting the degradation of PAHs in vegetables. This study enhances our understanding of the biological mechanisms by which endophytic bacterial communities reduce PAHs in vegetables.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Wei
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
9
|
Sharif S, Wunder C, Amendt J, Qamar A. Variations in cuticular hydrocarbons of Calliphora vicina (Diptera: Calliphoridae) empty puparia: Insights for estimating late postmortem intervals. Int J Legal Med 2024; 138:2717-2733. [PMID: 39103637 DOI: 10.1007/s00414-024-03296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
Necrophagous flies, particularly blowflies, serve as vital indicators in forensic entomology and ecological studies, contributing to minimum postmortem interval estimations and environmental monitoring. The study investigates variations in the predominant cuticular hydrocarbons (CHCs) viz. n-C25, n-C27, n-C28, and n-C29 of empty puparia of Calliphora vicina Robineau-Desvoidy, 1830, (Diptera: Calliphoridae) across diverse environmental conditions, including burial, above-ground and indoor settings, over 90 days. Notable trends include a significant decrease in n-C25 concentrations in buried and above-ground conditions over time, while n-C27 concentrations decline in buried and above-ground conditions but remain stable indoors. Burial conditions show significant declines in n-C27 and n-C29 concentrations over time, indicating environmental influences. Conversely, above-ground conditions exhibit uniform declines in all hydrocarbons. Indoor conditions remain relatively stable, with weak correlations between weathering time and CHC concentrations. Additionally, machine learning techniques, specifically Extreme Gradient Boosting (XGBoost), are employed for age estimation of empty puparia, yielding accurate predictions across different outdoor and indoor conditions. These findings highlight the subtle responses of CHC profiles to environmental stimuli, underscoring the importance of considering environmental factors in forensic entomology and ecological research. The study advances the understanding of insect remnant degradation processes and their forensic implications. Furthermore, integrating machine learning with entomological expertise offers standardized methodologies for age determination, enhancing the reliability of entomological evidence in legal contexts and paving the way for future research and development.
Collapse
Affiliation(s)
- Swaima Sharif
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Cora Wunder
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
- Institute of Legal Medicine, Johannes Gutenberg University Medical Center, Am Pulverturm 3, 55131, Mainz, Germany
| | - Jens Amendt
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Ayesha Qamar
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
10
|
Sethi G, Saini R, Banerjee T, Singh N. Bioaugmentation: a strategy for enhanced degradation of pesticides in biobed. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:654-662. [PMID: 39313869 DOI: 10.1080/03601234.2024.2406132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Biopurification system (BPS) or biobeds are low-cost system for decontamination of on-farm generated pesticide waste. A biobed contains a mixture of soil, lignocellulosic biomass and organic matter source (compost/peat) and works on the principal of retention of pesticide in high organic matter matrix and its subsequent degradation by microbes. Bioaugmentation, a green technology, is defined as the improvement of the degradative capacity of biobeds by augmenting specific microorganisms. During last 20 years, several studies have evaluated pesticide degradation in biobeds augmented with bacterial and fungal species and prominent microorganism include genus Pseudomonas, Sphingomonas, Arthrobacter, Phanerochaete, Stereum, Delftia, Trametes, Streptomyces etc. Degradation of pesticides belonging to major classes have been studied in the bioaugmented biobeds. Studies suggested that some pesticides were degraded faster in the bioaugmented biobeds subject to survival and proliferation of degrading microbe. However, no effect of bioaugmentation was observed on degradation of some pesticides and no clear reason for the same was evident. Bioaugmentation with pesticide degrading microorganisms/consortium in combination with rhizosphere-assisted biodegradation could be an optimal strategy for accelerating the degradation of pesticides in biobeds.
Collapse
Affiliation(s)
- Garima Sethi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Renu Saini
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
11
|
Miranda SM, Belo I, Lopes M. Yarrowia lipolytica growth, lipids, and protease production in medium with higher alkanes and alkenes. World J Microbiol Biotechnol 2024; 40:318. [PMID: 39261393 PMCID: PMC11390925 DOI: 10.1007/s11274-024-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Two strains of Yarrowia lipolytica (CBS 2075 and DSM 8218) were first studied in bioreactor batch cultures, under different controlled dissolved oxygen concentrations (DOC), to assess their ability to assimilate aliphatic hydrocarbons (HC) as a carbon source in a mixture containing 2 g·L-1 of each alkane (dodecane and hexadecane), and 2 g·L-1 hexadecene. Both strains grew in the HC mixture without a lag phase, and for both strains, 30 % DOC was sufficient to reach the maximum values of biomass and lipids. To enhance lipid-rich biomass and enzyme production, a pulse fed-batch strategy was tested, for the first time, with the addition of one or three pulses of concentrated HC medium. The addition of three pulses of the HC mixture (total of 24 g·L-1 HC) did not hinder cell proliferation, and high protease (> 3000 U·L-1) and lipids concentrations of 3.4 g·L-1 and 4.3 g·L-1 were achieved in Y. lipolytica CBS 2075 and DSM 8218 cultures, respectively. Lipids from the CBS 2075 strain are rich in C16:0 and C18:1, resembling the composition of palm oil, considered suitable for the biodiesel industry. Lipids from the DSM 8218 strain were predominantly composed of C16:0 and C16:1, the latter being a valuable monounsaturated fatty acid used in the pharmaceutical industry. Y. lipolytica cells exhibited high intrinsic surface hydrophobicity (> 69 %), which increased in the presence of HC. A reduction in surface tension was observed in both Y. lipolytica cultures, suggesting the production of extracellular biosurfactants, even at low amounts. This study marks a significant advancement in the valorization of HC for producing high-value products by exploring the hydrophobic compounds metabolism of Y. lipolytica.
Collapse
Affiliation(s)
- Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Marlene Lopes
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
12
|
Feng F, Yang Y, Liu Q, Wu S, Yun Z, Xu X, Jiang Y. Insights into the characteristics of changes in dissolved organic matter fluorescence components on the natural attenuation process of toluene. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134952. [PMID: 38944985 DOI: 10.1016/j.jhazmat.2024.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Natural attenuation (NA) is of great significance for the remediation of contaminated groundwater, and how to identify NA patterns of toluene in aquifers more quickly and effectively poses an urgent challenge. In this study, the NA of toluene in two typical soils was conducted by means of soil column experiment. Based on column experiments, dissolved organic matter (DOM) was rapidly identified using fluorescence spectroscopy, and the relationship between DOM and the NA of toluene was established through structural equation modeling analysis. The adsorption rates of toluene in clay and sandy soil were 39 % and 26 %, respectively. The adsorption capacity and total NA capacity of silty clay were large. The occurrence of fluorescence peaks of protein-like components and specific products indicated the occurrence of biodegradation. Arenimonas, Acidovorax and Brevundimonas were the main degrading bacteria identified in Column A, while Pseudomonas, Azotobacter and Mycobacterium were the main ones identified in Column B. The pH, ORP, and Fe(II) were the most important factors affecting the composition of microbial communities, which in turn affected the NA of toluene. These results provide a new way to quickly identify NA of toluene.
Collapse
Affiliation(s)
- Fan Feng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuxuan Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhichao Yun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
13
|
Nieto EE, Jurburg SD, Steinbach N, Festa S, Morelli IS, Coppotelli BM, Chatzinotas A. DNA stable isotope probing reveals the impact of trophic interactions on bioaugmentation of soils with different pollution histories. MICROBIOME 2024; 12:146. [PMID: 39113100 PMCID: PMC11305082 DOI: 10.1186/s40168-024-01865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bioaugmentation is considered a sustainable and cost-effective methodology to recover contaminated environments, but its outcome is highly variable. Predation is a key top-down control mechanism affecting inoculum establishment, however, its effects on this process have received little attention. This study focused on the impact of trophic interactions on bioaugmentation success in two soils with different pollution exposure histories. We inoculated a 13C-labelled pollutant-degrading consortium in these soils and tracked the fate of the labelled biomass through stable isotope probing (SIP) of DNA. We identified active bacterial and eukaryotic inoculum-biomass consumers through amplicon sequencing of 16S rRNA and 18S rRNA genes coupled to a novel enrichment factor calculation. RESULTS Inoculation effectively increased PAH removal in the short-term, but not in the long-term polluted soil. A decrease in the relative abundance of the inoculated genera was observed already on day 15 in the long-term polluted soil, while growth of these genera was observed in the short-term polluted soil, indicating establishment of the inoculum. In both soils, eukaryotic genera dominated as early incorporators of 13C-labelled biomass, while bacteria incorporated the labelled biomass at the end of the incubation period, probably through cross-feeding. We also found different successional patterns between the two soils. In the short-term polluted soil, Cercozoa and Fungi genera predominated as early incorporators, whereas Ciliophora, Ochrophyta and Amoebozoa were the predominant genera in the long-term polluted soil. CONCLUSION Our results showed differences in the inoculum establishment and predator community responses, affecting bioaugmentation efficiency. This highlights the need to further study predation effects on inoculum survival to increase the applicability of inoculation-based technologies. Video Abstract.
Collapse
Affiliation(s)
- Esteban E Nieto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina.
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Stephanie D Jurburg
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nicole Steinbach
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sabrina Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Irma S Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de La Provincia de Buenos Aires, La Plata, Argentina
| | - Bibiana M Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET), CINDEFI (UNLP, CCT-La Plata Street 50 N°227, 1900, La Plata, Argentina
| | - Antonis Chatzinotas
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
14
|
Siddique A, Al Disi Z, AlGhouti M, Zouari N. Diversity of hydrocarbon-degrading bacteria in mangroves rhizosphere as an indicator of oil-pollution bioremediation in mangrove forests. MARINE POLLUTION BULLETIN 2024; 205:116620. [PMID: 38955089 DOI: 10.1016/j.marpolbul.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Mangrove ecosystems, characterized by high levels of productivity, are susceptible to anthropogenic activities, notably oil pollution arising from diverse origins including spills, transportation, and industrial effluents. Owing to their role in climate regulation and economic significance, there is a growing interest in developing mangrove conservation strategies. In the Arabian Gulf, mangroves stand as the sole naturally occurring green vegetation due to the region's hot and arid climate. However, they have faced persistent oil pollution for decades. This review focuses on global mangrove distribution, with a specific emphasis on Qatar's mangroves. It highlights the ongoing challenges faced by mangroves, particularly in relation to the oil industry, and the impact of oil pollution on these vital ecosystems. It outlines major oil spill incidents worldwide and the diverse hydrocarbon-degrading bacterial communities within polluted areas, elucidating their potential for bioremediation. The use of symbiotic interactions between mangrove plants and bacteria offers a more sustainable, cost-effective and environmentally friendly alternative. However, the success of these bioremediation strategies depends on a deep understanding of the dynamics of bacterial communities, environmental factors and specific nature of the pollutants.
Collapse
Affiliation(s)
- Afrah Siddique
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Zulfa Al Disi
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar; Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad AlGhouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar.
| |
Collapse
|
15
|
Lahti-Leikas K, Niemistö E, Talvenmäki H, Saartama N, Sun Y, Mercier L, Romantschuk M. Hydrotreated vegetable oil migrates through soil and degrades faster than fossil diesel and hydrotreated vegetable oil-fossil diesel blend. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53177-53192. [PMID: 39174830 PMCID: PMC11379761 DOI: 10.1007/s11356-024-34760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
HVO has been noted as a more sustainable fuel, not only leading to lower total CO2 emissions, but also resulting in lower emissions of toxic substances upon fuel burning. The environmental impact of HVO and HVO diesel blends when accidentally spilled into the soil and ground water has, however, received little attention. While HVO and diesel exhibit nearly identical viscosity and density, their behavior in soils differs due to varying water solubility and fuel additives. In laboratory- and pilot-scale soil columns and lysimeters, we compared the migration and biostimulation-enhanced degradation of HVO, HVO-diesel blend (HVO15), and fossil diesel over 120 days. Additionally, we investigated the impact of fuel additives on migration by comparing HVO without additives to HVO15 and diesel in wet and dry soil columns over 21 days. Notably, HVO migrated through soil more rapidly and in greater quantities than diesel. In wet soil, 69% of added HVO, 8.4% of HVO15, and 21% of diesel leached through as light non-aqueous phase liquid (LNAPL). Dry soil showed smaller differences in fuel migration, but HVO did not mobilize when water was added, unlike HVO15 and diesel. Biostimulation reduced HVO leaching by 15% more than HVO15 and 48% more than diesel. Overall, HVO's behavior in soil differs significantly from fossil diesel, with factors like lower water solubility, reduced mobilization from dry soil, and higher in situ degradability contributing to its reduced environmental risk compared to fossil fuel alternatives in accident scenarios.
Collapse
Affiliation(s)
- Katariina Lahti-Leikas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | - Emilia Niemistö
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Harri Talvenmäki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Niina Saartama
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Yan Sun
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Léon Mercier
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| |
Collapse
|
16
|
Mariano DC, Dias GM, Castro MR, Tschoeke DA, de Oliveira FJ, Sérvulo EFC, Neves BC. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024; 10:e34336. [PMID: 39082007 PMCID: PMC11284384 DOI: 10.1016/j.heliyon.2024.e34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Environmental pollution associated with the petroleum industry is a major problem worldwide. Microbial degradation is extremely important whether in the extractive process or in bioremediation of contaminants. Assessing the local microbiota and its potential for degradation is crucial for implementing effective bioremediation strategies. Herein, contaminated soil samples of onshore oil fields from a semiarid region in the Northeast of Brazil were investigated using metagenomics and metataxonomics. These soils exhibited hydrocarbon contamination and high salinity indices, while a control sample was collected from an uncontaminated area. The shotgun analysis revealed the predominance of Actinomycetota and Pseudomonadota, while 16S rRNA gene amplicon analysis of the samples showed Actinomycetota, Bacillota, and Pseudomonadota as the most abundant. The Archaea domain phylotypes were assigned to Thermoproteota and Methanobacteriota. Functional analysis and metabolic profile of the soil microbiomes exhibited a broader metabolic repertoire in the uncontaminated soil, while degradation pathways and surfactant biosynthesis presented higher values in the contaminated soils, where degradation pathways of xenobiotic and aromatic compounds were also present. Biosurfactant synthetic pathways were abundant, with predominance of lipopeptides. The present work uncovers several microbial drivers of oil degradation and mechanisms of adaptation to high salinity, which are pivotal traits for sustainable soil recovery strategies.
Collapse
Affiliation(s)
- Danielly C.O. Mariano
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Escola de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Michele Rocha Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
- Departamento de Biologia, Instituto Federal do Rio de Janeiro (IFRJ), Brazil
| | - Diogo Antonio Tschoeke
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Bianca Cruz Neves
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
17
|
Delanau C, Aspray T, Pawlett M, Coulon F. Investigating the influence of sulphur amendment and temperature on microbial activity in bioremediation of diesel-contaminated soil. Heliyon 2024; 10:e30235. [PMID: 38707471 PMCID: PMC11066420 DOI: 10.1016/j.heliyon.2024.e30235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
This study investigated the effectiveness of incorporating sulphur (S) with nitrogen (N) and phosphorus (P) for enhancing microbial activity in diesel-contaminated soil during ex-situ bioremediation. While N and P amendments are commonly used to stimulate indigenous microorganisms, the potential benefits of adding S have received less attention. The study found that historically contaminated soil with a moderate concentration of total petroleum hydrocarbons (TPH; 1270 mg/kg) did not have nutrient limitation, and incubation temperature was found to be more critical for enhancing microbial activity. However, soil spiked with an additional 5000 mg/kg of diesel showed increased activity following NP and NPS amendment. Interestingly, NPS amendment at 10 °C resulted in higher microbial activity than at 20 °C, indicating the potential for a tailored nutrient amendment approach to optimize bioremediation in cold conditions. Overall, this study suggests that incorporating S with N and P can enhance microbial activity in diesel-contaminated soil during ex-situ bioremediation. Furthermore, the study highlights the importance of considering incubation temperature in designing a nutrient amendment approach for bioremediation, especially in cold conditions. These findings can guide the design and implementation of future effective bioremediation strategies for petroleum hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Clara Delanau
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Thomas Aspray
- Environmental Reclamation Services Ltd, Westerhill Road, Bishopbriggs, Glasgow, G64 2QH, Scotland, United Kingdom
| | - Mark Pawlett
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| |
Collapse
|
18
|
Lee KC, Archer SDJ, Kansour MK, Al-Mailem DM. Bioremediation of oily hypersaline soil via autochthonous bioaugmentation with halophilic bacteria and archaea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171279. [PMID: 38428597 DOI: 10.1016/j.scitotenv.2024.171279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Kuwaiti hypersaline soil samples were contaminated with 5 % (w/w) weathered Kuwaiti light crude oil and bioaugmented with autochthonous halophilic hydrocarbonoclastic archaeal and bacterial strains, two each, individually and as consortia. Residual oil contents were determined, and microbial communities were analyzed by culture-dependent and culture-independent approaches initially and seasonally for one year. After one year of the bioremediation process, the mean oil degradation rate was similar across all treated soils including the controlled unbioaugmented one. Oil hydrocarbons were drastically reduced in all soil samples with values ranging from 82.7 % to 93 %. During the bioremediation process, the number of culturable oil-degrading bacteria increased to a range of 142 to 344 CFUx104 g-1 after 12 months of bioaugmentation. Although culture-independent analysis showed a high proportion of inoculants initially, none could be cultured throughout the bioremediation procedure. Within a year, microbial communities changed continually, and 33 species of halotolerant/halophilic hydrocarbonoclastic bacteria were isolated and identified belonged mainly to the three major bacterial phyla Actinobacteria, Proteobacteria, and Firmicutes. The archaeal phylum Halobacterota represented <1 % of the microbial community's relative abundance, which explains why none of its members were cultured. Improving the biodegradability of an already balanced environment by autochthonous bioaugmentation is more involved than just adding the proper oil degraders. This study emphasizes the possibility of a relatively large resistant population, a greater diversity of oil-degrading microorganisms, and the highly selective impacts of oil contamination on hypersaline soil bacterial communities.
Collapse
Affiliation(s)
- Kevin C Lee
- School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand.
| | - Stephen D J Archer
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Mayada K Kansour
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait.
| | - Dina M Al-Mailem
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait.
| |
Collapse
|
19
|
Badiyal A, Mahajan R, Rana RS, Sood R, Walia A, Rana T, Manhas S, Jayswal DK. Synergizing biotechnology and natural farming: pioneering agricultural sustainability through innovative interventions. FRONTIERS IN PLANT SCIENCE 2024; 15:1280846. [PMID: 38584951 PMCID: PMC10995308 DOI: 10.3389/fpls.2024.1280846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The world has undergone a remarkable transformation from the era of famines to an age of global food production that caters to an exponentially growing population. This transformation has been made possible by significant agricultural revolutions, marked by the intensification of agriculture through the infusion of mechanical, industrial, and economic inputs. However, this rapid advancement in agriculture has also brought about the proliferation of agricultural inputs such as pesticides, fertilizers, and irrigation, which have given rise to long-term environmental crises. Over the past two decades, we have witnessed a concerning plateau in crop production, the loss of arable land, and dramatic shifts in climatic conditions. These challenges have underscored the urgent need to protect our global commons, particularly the environment, through a participatory approach that involves countries worldwide, regardless of their developmental status. To achieve the goal of sustainability in agriculture, it is imperative to adopt multidisciplinary approaches that integrate fields such as biology, engineering, chemistry, economics, and community development. One noteworthy initiative in this regard is Zero Budget Natural Farming, which highlights the significance of leveraging the synergistic effects of both plant and animal products to enhance crop establishment, build soil fertility, and promote the proliferation of beneficial microorganisms. The ultimate aim is to create self-sustainable agro-ecosystems. This review advocates for the incorporation of biotechnological tools in natural farming to expedite the dynamism of such systems in an eco-friendly manner. By harnessing the power of biotechnology, we can increase the productivity of agro-ecology and generate abundant supplies of food, feed, fiber, and nutraceuticals to meet the needs of our ever-expanding global population.
Collapse
Affiliation(s)
- Anila Badiyal
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Rishi Mahajan
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ranbir Singh Rana
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ruchi Sood
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Tanuja Rana
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Shilpa Manhas
- Lovely Professional University, Phagwara, Punjab, India
| | - D. K. Jayswal
- National Agricultural Higher Education Project, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
20
|
Curiel-Alegre S, Khan AHA, Rad C, Velasco-Arroyo B, Rumbo C, Rivilla R, Durán D, Redondo-Nieto M, Borràs E, Molognoni D, Martín-Castellote S, Juez B, Barros R. Bioaugmentation and vermicompost facilitated the hydrocarbon bioremediation: scaling up from lab to field for petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32916-8. [PMID: 38517632 DOI: 10.1007/s11356-024-32916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.
Collapse
Affiliation(s)
- Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Rafael Rivilla
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - David Durán
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Eduard Borràs
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | - Daniele Molognoni
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | | | - Blanca Juez
- ACCIONA, C/ Valportillo II, 8. 28108, Madrid, Alcobendas, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain.
| |
Collapse
|
21
|
Saravanan A, Yaashikaa PR, Ramesh B, Shaji A, Deivayanai VC. Microorganism-mediated bioremediation of dyes from contaminated soil: Mechanisms, recent advances, and future perspectives. Food Chem Toxicol 2024; 185:114491. [PMID: 38325634 DOI: 10.1016/j.fct.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Many methods have been proposed for the remediation of dye-contaminated soils, a widespread form of environment pollution. Bioremediation, it is hoped, can combine ecological benefits with efficiency of dye decontamination. We review the types and sources of dye contaminants; their possible effects on plant, animal, and human health; and emerging strategies for microbial bioremediation. Challenges, limitations, recommendations for future research, and prospects for large-scale commercialization of microbial bioremediation are discussed.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
22
|
Kilonzi JM, Otieno S. Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation. STRESS BIOLOGY 2024; 4:11. [PMID: 38319394 PMCID: PMC10847075 DOI: 10.1007/s44154-023-00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/15/2023] [Indexed: 02/07/2024]
Abstract
Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.
Collapse
Affiliation(s)
- J M Kilonzi
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya.
| | - S Otieno
- Kenya Agricultural and Livestock Research Organization Tigoni, Limuru, P.O BOX 338-0217, Kenya
| |
Collapse
|
23
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
24
|
Sánchez Mata O, Aguilera Flores MM, Ureño García BG, Ávila Vázquez V, Cabañas García E, Franco Villegas EA. Bioremediation of Automotive Residual Oil-Contaminated Soils by Biostimulation with Enzymes, Surfactant, and Vermicompost. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6600. [PMID: 37623183 PMCID: PMC10454165 DOI: 10.3390/ijerph20166600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Contamination of soils by automotive residual oil represents a global environmental problem. Bioremediation is the technology most suitable to remove this contaminant from the medium. Therefore, this work aimed to evaluate the effectiveness of bioremediation of automotive residual oil-contaminated soils by biostimulation with enzymes, surfactant, and vermicompost. The bioremediation efficiency was examined using a factorial design of 24 to determine the effect of the time, pH and temperature conditions, biostimulation with enzyme-vermicompost, and biostimulation with enzyme-surfactant. Enzymes obtained from Ricinus communis L. seeds, commercial vermicompost, and Triton X-100 were used. Results showed that the highest removal efficiency (99.9%) was achieved at 49 days, with a pH of 4.5, temperature of 37 °C, and using biostimulation with enzyme-vermicompost (3% w/v-5% w/w). The addition of surfactant was not significant in increasing the removal efficiency. Therefore, the results provide adequate conditions to bioremediate automotive residual oil-contaminated soils by biostimulation using enzymes supported with vermicompost.
Collapse
Affiliation(s)
- Omar Sánchez Mata
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Miguel Mauricio Aguilera Flores
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Brenda Gabriela Ureño García
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Verónica Ávila Vázquez
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Emmanuel Cabañas García
- Scientific and Technological Studies Center No. 18, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico
| | - Efrén Alejandro Franco Villegas
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| |
Collapse
|
25
|
Dmitrieva ME, Malygina EV, Belyshenko AY, Shelkovnikova VN, Imidoeva NA, Morgunova MM, Telnova TY, Vlasova AA, Axenov-Gribanov DV. The Effects of a High Concentration of Dissolved Oxygen on Actinobacteria from Lake Baikal. Metabolites 2023; 13:830. [PMID: 37512537 PMCID: PMC10386110 DOI: 10.3390/metabo13070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Among the diversity of microorganisms, the rarest and least explored are microorganisms that live in conditions of high oxygen in the environment and can experience the effects of natural oxidative stress. Here we suggest that the actinobacteria of Lake Baikal, sampled in the littoral zone, may produce natural products with antioxidant activity. The current study aimed to assess the effects of experimentally increased amounts of oxygen and ozone on the morphology of actinobacteria, DNA mutations, and antioxidant potential. In this experiment, we cultivated actinobacteria in liquid culture under conditions of natural aeration and increased concentrations of dissolved oxygen and ozone. Over a period of three months, bacterial samples were collected every week for further analysis. Morphological changes were assessed using the Gram method. A search for DNA mutations was conducted for the highly conserved 16S rRNA gene. The evaluation of antioxidant activity was performed using the DPPH test. The biotechnological potential was evaluated using high-resolution liquid chromatography-mass spectrometry approaches supplemented with the dereplication of natural products. We demonstrated the synthesis of at least five natural products by the Streptomyces sp. strain only under conditions of increased oxygen and ozone levels. Additionally, we showed morphological changes in Streptomyces sp. and nucleotide mutations in Rhodococcus sp. exposed to increased concentrations of dissolved oxygen and oxidative stress. Consequently, we demonstrated that an increased concentration of oxygen can influence Lake Baikal actinobacteria.
Collapse
Affiliation(s)
- Maria E Dmitrieva
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Ekaterina V Malygina
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Alexander Y Belyshenko
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Victoria N Shelkovnikova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Natalia A Imidoeva
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Maria M Morgunova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Tamara Y Telnova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Anfisa A Vlasova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Denis V Axenov-Gribanov
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| |
Collapse
|
26
|
Lee YY, Lee SY, Cho KS. Long-term comparison of the performance of biostimulation and phytoextraction in soil contaminated with diesel and heavy metals. CHEMOSPHERE 2023:139332. [PMID: 37364638 DOI: 10.1016/j.chemosphere.2023.139332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The long-term remediation performance under the natural conditions is required to establish the appropriate remediation strategy for contaminated soil. The objective of this study was to compare the long-term remediation efficiency of biostimulation and phytoextraction in contaminated soil containing petroleum hydrocarbons (PHs) and heavy metals. Two types of contaminated soil (soil contaminated with diesel only and co-contaminated with diesel and heavy metals) were prepared. For the biostimulation treatments, the soil was amended with compost, whereas maize, a representative phytoremediation plant, was cultivated for the phytoextraction treatments. There was no significant difference in remediation performance of biostimulation and phytoextraction in the diesel-contaminated soil, in which the maximum total petroleum hydrocarbon (TPH) removability was 94-96% (p < 0.05). However, phytoextraction exhibited the higher removability for TPH and heavy metals than biostimulation in the co-contaminated soil. There was no considerable change in the TPH removal in biostimulation (16-25%), while phytoextraction showed a 75% of TPH removal rate in the co-contaminated soil. Additionally, no significant changes were observed in heavy metals concentration of biostimulation, whereas the removability of heavy metals was 33-63% in phytoextraction. Meanwhile, maize, which is a suitable plant for phytoextraction, showed a translocation factor (translocating efficiency from roots to shoots) value of >1. Correlation analysis revealed that soil properties (pH, water content, and organic content) negatively correlated with pollutants removal. Additionally, the soil bacterial communities were changed over the investigated period, and the types of pollutants exerted a significant influence on the bacterial community dynamics. This study performed a pilot-scale comparison of two types of biological remediation technologies under natural environmental conditions and provided information on changes in the bacterial community structures. This study can be useful for establishing appropriate biological remediation methods to restore soil contaminated with PHs and heavy metals.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
27
|
Sun Y, Liu Y, Yue G, Cao J, Li C, Ma J. Vapor-phase biodegradation and natural attenuation of petroleum VOCs in the unsaturated zone: A microcosm study. CHEMOSPHERE 2023:139275. [PMID: 37343641 DOI: 10.1016/j.chemosphere.2023.139275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/18/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Traditional natural attenuation studies focus on aqueous process in the saturated zone while vapor-phase biodegradation and natural attenuation in the unsaturated zone received much less attention. This study used microcosm experiments to explore the vapor-phase biodegradation and natural attenuation of 23 petroleum VOCs in the unsaturated zone including 7 monoaromatic hydrocarbons, 6 n-alkanes, 4 cycloalkanes, 3 alkylcycloalkanes and 3 fuel ethers. We found that monoaromatic hydrocarbon vapors were easily attenuated with significantly high first-order biodegradation rates (9.48 d-1-43.20 d-1) in live yellow earth, of which toluene and benzene had the highest biodegradation rates (43.20 d-1 and 28.32 d-1, respectively). The 13 aliphatic hydrocarbons and 3 fuel ethers all have relatively low attenuation rates (<0.54 d-1) in live soil and negligible biodegradation contribution. We explored the effects of soil types (black soil, yellow earth, lateritic red earth and quartz sand), soil moisture (2, 5, 10, and 17 wt%) contents and temperatures (4, 15, 25, 35 and 45 °C) on the vapor attenuation. Results showed that increasing soil organic matter (SOM) content, silt content, porosity and soil microorganism numbers enhanced contaminant attenuation and remediation efficiency. Increasing moisture content reduced the apparent first-order biodegradation rates of monoaromatic hydrocarbon vapors. The vapor-phase biodegradation had optimal temperature (∼25 °C in yellow earth) and increasing or decreasing temperature slowed down biodegradation rate. Overall, this study enhanced our understanding of vapor-phase biodegradation and natural attenuation of petroleum VOCs in the unsaturated zone, which is critical for the long-term management and remediation of petroleum contaminated site.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanbo Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Gangsen Yue
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinhui Cao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chong Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
28
|
Wang Z, Teng Y, Wang X, Xu Y, Li R, Hu W, Li X, Zhao L, Luo Y. Removal of cadmium and polychlorinated biphenyls by clover and the associated microbial community in a long-term co-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161983. [PMID: 36740062 DOI: 10.1016/j.scitotenv.2023.161983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Legumes such as clover are cost-effective and environmentally friendly components of strategies for remediating soils contaminated with heavy metals or organic pollutants. However, the mechanisms by which clover remediates co-contaminated soils are unclear. The present study explored the effects of phytoremediation by clover on pollutant removal and the microbial community in soil co-contaminated with cadmium (Cd) and polychlorinated biphenyls (PCBs). After 18 months of phytoremediation, Cd removal increased from 20.25 % in the control to 40.65 % in soil planted with clover, while PCB removal increased from 29.81 % to 60.02 %. High-throughput sequencing analysis showed that the relative abundances of the bacterial phylum Proteobacteria and the diazotrophic genus Rhizobium increased significantly after phytoremediation. Random forest analysis showed that bacterial and diazotrophic diversity significantly influenced Cd and PCB removal. Furthermore, co-occurrence network and correlation analyses revealed that Rhizobiales and Micromonosporales were the main bacteria associated with Cd removal, while Rhizobiales, Burkholderiales, and Xanthomonadales were identified as the main degraders of PCBs. PICRUSt functional prediction demonstrated that the gene bphC, which is related to PCB degradation, was significantly increased in the rhizosphere soil in the presence of clover. These results provide a better understanding for further studies of remediation efficiency by clover, rhizosphere microbial response and remediation mechanisms of co-contaminated soils under in situ conditions in the field.
Collapse
Affiliation(s)
- Zuopeng Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhua Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
29
|
Srivastava A, Valsala R. Numerical modeling to assess the effect of soil texture on transport and attenuation of petroleum hydrocarbons in unsaturated zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46132-46146. [PMID: 36710315 DOI: 10.1007/s11356-023-25557-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Soil texture in the unsaturated zone is a critical factor affecting the transport, accumulation, and attenuation rate of petroleum hydrocarbons (PHCs) in unsaturated conditions. The scope of this study is to investigate the soil texture impact on the fate of PHCs in unsaturated zones. The main objective is to formulate a coupled flow and multicomponent transport model for simulating the PHC plumes in various soil textures. Zeroth spatial moment (ZSM) of simulated PHC plumes is estimated to quantify the transient effect of soil textures on the dissolved PHC mass in the system. A BTEX (benzene, toluene, ethylbenzene, and xylene) spill is considered at the source zone for modeling. Simulations are carried out for clay, sand, and loam textures. The outcome of the study suggests that the infiltration rate in the unsaturated zone is minimal in clay texture. Wetting front depths and BTEX source depletion rates are found to be in the following order: clay < loam < sand. The migration depth of BTEX components in the sand texture is approximately twice the depth for clay and loam after 50 days. An increment in the BTEX source zone length by twofold enhances the dissolved BTEX mass in the unsaturated system by approximately 33% in all soil textures. Overall, the modeling and sensitivity studies conclude that the soil texture, vertical dispersivity, source zone length and composition, sorption characteristics, and volatility critically affect the depth and extent of BTEX migration in unsaturated zones.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Civil Engineering, IIT (ISM) Dhanbad, Dhanbad, Jharkhand, 826004, India
| | - Renu Valsala
- Department of Civil Engineering, IIT (ISM) Dhanbad, Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
30
|
Juárez-Cisneros G, Saucedo-Martínez BC, Sánchez-Yáñez JM. Bioelimination of Phytotoxic Hydrocarbons by Biostimulation and Phytoremediation of Soil Polluted by Waste Motor Oil. PLANTS (BASEL, SWITZERLAND) 2023; 12:1053. [PMID: 36903914 PMCID: PMC10005706 DOI: 10.3390/plants12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Soils contaminated by waste motor oil (WMO) affect their fertility, so it is necessary to recover them by means of an efficient and safe bioremediation technique for agricultural production. The objectives were: (a) to biostimulate the soil impacted by WMO by applying crude fungal extract (CFE) and Cicer arietinum as a green manure (GM), and (b) phytoremediation using Sorghum vulgare with Rhizophagus irregularis and/or Rhizobium etli to reduce the WMO below the maximum value according to NOM-138 SEMARNAT/SS or the naturally detected one. Soil impacted by WMO was biostimulated with CFE and GM and then phytoremediated by S. vulgare with R. irregularis and R. etli. The initial and final concentrations of WMO were analyzed. The phenology of S. vulgare and colonization of S. vulgaris roots by R. irregularis were measured. The results were statistically analyzed by ANOVA/Tukey's HSD test. The WMO in soil that was biostimulated with CFE and GM, after 60 days, was reduced from 34,500 to 2066 ppm, and the mineralization of hydrocarbons from 12 to 27 carbons was detected. Subsequently, phytoremediation with S. vulgare and R. irregularis reduced the WMO to 86.9 ppm after 120 days, which is a concentration that guarantees the restoration of soil fertility for safe agricultural production for human and animal consumption.
Collapse
|
31
|
Zhou H, Gao X, Wang S, Zhang Y, Coulon F, Cai C. Enhanced Bioremediation of Aged Polycyclic Aromatic Hydrocarbons in Soil Using Immobilized Microbial Consortia Combined with Strengthening Remediation Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031766. [PMID: 36767132 PMCID: PMC9914441 DOI: 10.3390/ijerph20031766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 05/06/2023]
Abstract
Microbial biodegradation is considered as one of the most effective strategies for the remediation of soil contaminated with polycyclic aromatic hydrocarbons (PAHs). To improve the degradation efficiency of PAHs, PAH-degrading consortia combined with strengthening remediation strategies was used in this study. The PAH biodegrading performance of seven bacterial consortia constructed by different ratios of Mycobacterium gilvum MI, Mycobacterium sp. ZL7 and Rhodococcus rhodochrous Q3 was evaluated in an aqueous system containing phenanthrene, pyrene, benzo[a]pyrene and benzo[b]fluoranthene. Bacterial consortium H6 (Q3:ZL7:MI = 1:2:2) performed a high degrading efficiency of 59% in 8 days. The H6 was subsequently screened to explore its potential ability and performance to degrade aged PAHs in soils from a coking plant and the effects of strengthening strategies on the aged PAH degradation, including the addition of glucose or sodium dodecyl benzene sulfonate (SDBS) individually or as a mixture along immobilization of the inoculant on biochar. The highest degradation efficiencies, which were 15% and 60% for low-molecular-weight (LMW) PAHs and high-molecular-weight (HMW) PAHs, respectively, were observed in the treatment using immobilized microbial consortium H6 combined with the addition of glucose and SDBS after 24 days incubation. This study provides new insights and guidance for future remediation of aged PAH contaminated soils.
Collapse
Affiliation(s)
- Haixuan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiurong Gao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suhang Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youchi Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Chao Cai
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
32
|
Bekele GK, Gebrie SA, Abda EM, Sinshaw G, Haregu S, Negie ZW, Tafesse M, Assefa F. Kerosene Biodegradation by Highly Efficient Indigenous Bacteria Isolated From Hydrocarbon-Contaminated Sites. Microbiol Insights 2023; 16:11786361221150759. [PMID: 36895787 PMCID: PMC9989413 DOI: 10.1177/11786361221150759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/26/2022] [Indexed: 03/08/2023] Open
Abstract
Kerosene is widely used in Ethiopia as a household fuel (for lighting and heating), as a solvent in paint and grease, and as a lubricant in glass cutting. It causes environmental pollution and escorts to loss of ecological functioning and health problems. Therefore, this research was designed to isolate, identify, and characterize indigenous kerosene-degrading bacteria that are effective in cleaning ecological units that have been contaminated by kerosene. Soil samples were collected from hydrocarbon-contaminated sites (flower farms, garages, and old-aged asphalt roads) and spread-plated on mineral salt medium (Bushnell Hass Mineral Salts Agar Medium: BHMS), which consists of kerosene as the only carbon source. Seven kerosene-degrading bacterial species were isolated, 2 from flower farms, 3 from garage areas, and 2 from asphalt areas. Three genera from hydrocarbon-contaminated sites were identified, including Pseudomonas, Bacillus, and Acinetobacter using biochemical characterization and the Biolog database. Growth studies in the presence of various concentrations of kerosene (1% and 3% v/v) showed that the bacterial isolates could metabolize kerosene as energy and biomass. Thereby, a gravimetric study was performed on bacterial strains that proliferated well on a BHMS medium with kerosene. Remarkably, bacterial isolates were able to degrade 5% kerosene from 57.2% to 91% in 15 days. Moreover, 2 of the most potent isolates, AUG2 and AUG1, resulted in 85% and 91% kerosene degradation, respectively, when allowed to grow on a medium containing kerosene. In addition, 16S rRNA gene analysis indicated that strain AAUG1 belonged to Bacillus tequilensis, whereas isolate AAUG showed the highest similarity to Bacillus subtilis. Therefore, these indigenous bacterial isolates have the potential to be applied for kerosene removal from hydrocarbon-contaminated sites and the development of remediation approaches.
Collapse
Affiliation(s)
- Gessesse Kebede Bekele
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Solomon Abera Gebrie
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Gebiru Sinshaw
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Department of Biotechnology, Debre Berhan University, Addis Ababa, Ethiopia
| | - Simatsidk Haregu
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Zemene Worku Negie
- Department of Environmental Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Fasil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
33
|
Cauduro GP, Marmitt M, Ferraz M, Arend SN, Kern G, Modolo RCE, Leal AL, Valiati VH. Burkholderia vietnamiensis G4 as a biological agent in bioremediation processes of polycyclic aromatic hydrocarbons in sludge farms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:116. [PMID: 36394643 DOI: 10.1007/s10661-022-10733-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the main pollutants generated by the refining and use of oil. To search bioremediation alternatives for these compounds, mainly in situ, considering the biotic and abiotic variables that affect the contaminated sites is determinant for the success of bioremediation techniques. In this study, bioremediation strategies were evaluated in situ, including biostimulation and bioaugmentation for 16 priority PAHs present in activated sludge farms. B. vietnamiensis G4 was used as a biodegradation agent for bioaugmentation tests. The analyses occurred for 12 months, and temperature and humidity were measured to verify the effects of these factors on the biodegradation. We used the technique GC-MS to evaluate and quantify the degradation of PAHs over the time of the experiment. Of the four treatments applied, bioaugmentation with quarterly application proved to be the best strategy, showing the degradation of compounds of high (34.4% annual average) and low (21.9% annual average) molecular weight. A high degradation rate for high molecular weight compounds demonstrates that this technique can be successfully applied in bioremediation of areas with compounds considered toxic and stable in nature, contributing to the mitigation of impacts generated by PAHs.
Collapse
Affiliation(s)
- Guilherme Pinto Cauduro
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Marcela Marmitt
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Marlon Ferraz
- Laboratory of Fish Ecology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), São Leopoldo, RS, Brazil
| | - Sabrina Nicole Arend
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Gabriela Kern
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Regina Célia Espinosa Modolo
- Programa de Pós-Graduação Em Engenharia Civil, Escola Politécnica, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), São Leopoldo, RS, Brazil
| | - Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, SITEL/CORSAN, Companhia Riograndense de Saneamento, Polo Petroquímico Do Sul, Triunfo, RS, Brazil
| | - Victor Hugo Valiati
- Laboratory of Genetics and Molecular Biology, Programa de Pós-Graduação Em Biologia, Universidade Do Vale Do Rio Dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
| |
Collapse
|
34
|
Balakumar S, Mahesh N, Kamaraj M, Shyamalagowri S, Manjunathan J, Murugesan S, Aravind J, Babu PS. Outlook on bismuth-based photocatalysts for environmental applications: A specific emphasis on Z-scheme mechanisms. CHEMOSPHERE 2022; 303:135052. [PMID: 35618054 DOI: 10.1016/j.chemosphere.2022.135052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor photocatalysis is thought to be a viable solution for addressing the growing problem of environmental pollution. Bismuth (Bi) metal oxides can function as a direct plasmonic photocatalyst or cocatalyst to accelerate the photogenerated charge separation and thus improve their photocatalytic activity. Hence, Bi-based photocatalysts have received a lot of attention due to their extensive environmental applications, including pollutant remediation and energy concepts. Massive efforts have been undertaken in the recent decade to find superior Bi-metal oxides (Bi2XO6, X = MO, W, or Cr) and to uncover the corresponding photocatalytic reaction mechanism for the degradation of organic contaminants in water. Herein, the unique crystalline and electronic properties and main synthesis methods, as well as the major Bi-Based direct Z-scheme photocatalysts, are timely discussed and summarized in their usage in water treatment. Besides, the impact of Bi2XO6 in energy storage devices and solar energy conversion is reviewed as an energy application. Finally, the future development and challenges of Z-scheme-based Bi2XO6 photocatalysts are briefly explored, summarized, and forecasted.
Collapse
Affiliation(s)
- Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India.
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology - Ramapuram Campus, Chennai, 600089, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - J Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, 600117, Tamil Nadu, India
| | - S Murugesan
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - J Aravind
- Department of Bio-Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. TOXICS 2022; 10:toxics10080484. [PMID: 36006163 PMCID: PMC9413587 DOI: 10.3390/toxics10080484] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/04/2023]
Abstract
Environmental pollution brought on by xenobiotics and other related recalcitrant compounds have recently been identified as a major risk to both human health and the natural environment. Due to their toxicity and non-biodegradability, a wide range of pollutants, such as heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals are present in the environment. Bioremediation is an effective cleaning technique for removing toxic waste from polluted environments that is gaining popularity. Various microorganisms, including aerobes and anaerobes, are used in bioremediation to treat contaminated sites. Microorganisms play a major role in bioremediation, given that it is a process in which hazardous wastes and pollutants are eliminated, degraded, detoxified, and immobilized. Pollutants are degraded and converted to less toxic forms, which is a primary goal of bioremediation. Ex situ or in situ bioremediation can be used, depending on a variety of factors, such as cost, pollutant types, and concentration. As a result, a suitable bioremediation method has been chosen. This review focuses on the most recent developments in bioremediation techniques, how microorganisms break down different pollutants, and what the future holds for bioremediation in order to reduce the amount of pollution in the world.
Collapse
Affiliation(s)
- Saroj Bala
- Department of Microbiology, Punjab Agriculture University, Ludhiana 141001, India
| | - Diksha Garg
- Department of Microbiology, Punjab Agriculture University, Ludhiana 141001, India
| | - Banjagere Veerabhadrappa Thirumalesh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Minaxi Sharma
- Laboratoire de Chimie Verte et Produits Biobasés, Département Agro Bioscience et Chimie, Haute Ecole Provinciale de Hainaut-Condorcet, 11 Rue de la Sucrerie, 7800 Ath, Belgium
| | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de l’œuf, INRAE, L’Institut Agro Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: (B.S.I.); (M.T.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
- Correspondence: (B.S.I.); (M.T.)
| |
Collapse
|
36
|
Saeed M, Ilyas N, Jayachandran K, Shabir S, Akhtar N, Shahzad A, Sayyed RZ, Bano A. Advances in Biochar and PGPR engineering system for hydrocarbon degradation: A promising strategy for environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119282. [PMID: 35413406 DOI: 10.1016/j.envpol.2022.119282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 05/22/2023]
Abstract
In soil, polycyclic aromatic hydrocarbons (PAHs) have resulted in severe environmental deterioration, compromised soil characteristics, and negatively affect all life forms, including humans. Developing appropriate and effective clean-up technology is crucial in solving the contamination issues. The traditional methods to treat PHAs contaminated soil are less effective and not ecofriendly. Bioremediation, based on bioaugmentation and biostimulation approaches, is a promising strategy for remediating contaminated soil. The use of plant growth-promoting rhizobacteria (PGPR) as a bioaugmentation tool is an effective technique for treating hydrocarbon contaminated soil. Plant growth-promoting rhizobacteria (PGPR) are group of rhizospheric bacteria that colonize the roots of plants. Biochar is a carbon-rich residue, which acts as a source of nutrients, and is also a bio-stimulating candidate to enhance the activities of oil-degrading bacteria. The application of biochar as a nutrient source to bioremediate oil-contaminated soil is a promising approach for reducing PHA contamination. Biochar induces polyaromatic hydrocarbons (PAHs) immobilization and removes the contaminants by various methods such as ion exchange electrostatic attractions and volatilization. In comparison, PGPR produce multiple types of biosurfactants to enhance the adsorption of hydrocarbons and mineralize the hydrocarbons with the conversion to less toxic substances. During the last few decades, the use of PGPR and biochar in the bioremediation of hydrocarbons-contaminated soil has gained greater importance. Therefore, developing and applying a PGPR-biochar-based remediating system can help manage hazardous PAH contaminated soil. The goal of this review paper is to (i) provide an overview of the PGPR mechanism for degradation of hydrocarbons and (ii) discuss the contaminants absorbent by biochar and its characteristics (iii) critically discuss the combined effect of PGPR and biochar for degradation of hydrocarbons by decreasing their mobility and bioavailability. The present review focuses on techniques of bioaugmentation and biostimulation based on use of PGPR and biochar in remediating the oil-contaminated soil.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan; Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan.
| | | | - Sumera Shabir
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Asim Shahzad
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif AJ&K, Pakistan
| | - R Z Sayyed
- Department of Microbiology, P.S.G.V.P. Mandal's, Arts, Science, and Commerce College, Shahada, 425409, India
| | - Asghari Bano
- Department of Biosciences University of Wah, Quaid Avenue, Wah Cantt, Pakistan
| |
Collapse
|
37
|
Daâssi D, Qabil Almaghribi F. Petroleum-contaminated soil: environmental occurrence and remediation strategies. 3 Biotech 2022; 12:139. [PMID: 35646506 DOI: 10.1007/s13205-022-03198-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Soil is an environmental matrix that carries life for all living things. With the rise of human activities and the acceleration of population, the soil has been exposed in part to pollution by the discharge of various xenobiotics and persistent pollutants into it. The disposal of toxic substances such as polycyclic aromatic hydrocarbons (PAHs) alters soil properties, affects microbial biodiversity, and damages objects. Considering the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and clean-up of PAH-polluted sites represents an important technological and environmental challenge for sustainable growth and development. Though several treatment methods to remediate PAH-polluted soils exist, interesting bacteria, fungi, and their enzymes receive considerable attention. The aim of the present review is to discuss PAHs' impact on soil properties. Also, this review illustrates physicochemical and biological remediation strategies for treating PAH-contaminated soil. The degradation pathways and contributing factors of microbial PAH-degradation are elucidated. This review also assesses the use of conventional microbial remediation compared to the application of genetically engineered microorganisms (GEM) that can provide a cost-effective and eco-friendly PAH-bioremediation strategy.
Collapse
Affiliation(s)
- Dalel Daâssi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah Qabil Almaghribi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Isolation and Characterization of Diesel-Degrading Bacteria from Hydrocarbon-Contaminated Sites, Flower Farms, and Soda Lakes. Int J Microbiol 2022; 2022:5655767. [PMID: 35096070 PMCID: PMC8799363 DOI: 10.1155/2022/5655767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrocarbon-derived pollutants are becoming one of the most concerning ecological issues. Thus, there is a need to investigate and develop innovative, low-cost, eco-friendly, and fast techniques to reduce and/or eliminate pollutants using biological agents. The study was conducted to isolate, characterize, and identify potential diesel-degrading bacteria. Samples were collected from flower farms, lakeshores, old aged garages, asphalt, and bitumen soils and spread on selective medium (Bushnell Haas mineral salt agar) containing diesel as the growth substrate. The isolates were characterized based on their growth patterns using optical density measurement, biochemical tests, and gravimetric analysis and identified using the Biolog database and 16S rRNA gene sequencing techniques. Subsequently, six diesel degraders were identified and belong to Pseudomonas, Providencia, Roseomonas, Stenotrophomonas, Achromobacter, and Bacillus. Among these, based on gravimetric analysis, the three potent isolates AAUW23, AAUG11, and AAUG36 achieved 84%, 83.4%, and 83% diesel degradation efficiency, respectively, in 15 days. Consequently, the partial 16S rRNA gene sequences revealed that the two most potent bacterial strains (AAUW23 and AAUG11) were Pseudomonas aeruginosa, while AAUG36 was Bacillus subtilis. This study demonstrated that bacterial species isolated from hydrocarbon-contaminated and/or uncontaminated environments could be optimized to be used as potential bioremediation agents for diesel removal.
Collapse
|