1
|
Pretto S, Yu Q, Bourdely P, Trusso Cafarello S, Van Acker HH, Verelst J, Richiardone E, Vanheer L, Roshanzadeh A, Schneppenheim F, Cresens C, Sassano ML, Dehairs J, Carion M, Ismail S, Agostinis P, Rocha S, Bald T, Swinnen J, Corbet C, Lunt SY, Thienpont B, Di Matteo M, Mazzone M. A functional single-cell metabolic survey identifies Elovl1 as a target to enhance CD8 + T cell fitness in solid tumours. Nat Metab 2025; 7:508-530. [PMID: 40065102 PMCID: PMC11946891 DOI: 10.1038/s42255-025-01233-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/04/2025] [Indexed: 03/28/2025]
Abstract
Reprogramming T cell metabolism can improve intratumoural fitness. By performing a CRISPR/Cas9 metabolic survey in CD8+ T cells, we identified 83 targets and we applied single-cell RNA sequencing to disclose transcriptome changes associated with each metabolic perturbation in the context of pancreatic cancer. This revealed elongation of very long-chain fatty acids protein 1 (Elovl1) as a metabolic target to sustain effector functions and memory phenotypes in CD8+ T cells. Accordingly, Elovl1 inactivation in adoptively transferred T cells combined with anti-PD-1 showed therapeutic efficacy in resistant pancreatic and melanoma tumours. The accumulation of saturated long-chain fatty acids in Elovl1-deficient T cells destabilized INSIG1, leading to SREBP2 activation, increased plasma membrane cholesterol and stronger T cell receptor signalling. Elovl1-deficient T cells increased mitochondrial fitness and fatty acid oxidation, thus withstanding the metabolic stress imposed by the tumour microenvironment. Finally, ELOVL1 in CD8+ T cells correlated with anti-PD-1 response in patients with melanoma. Altogether, Elovl1 targeting synergizes with anti-PD-1 to promote effective T cell responses.
Collapse
Affiliation(s)
- Samantha Pretto
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Qian Yu
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Pierre Bourdely
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joren Verelst
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Lotte Vanheer
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Amir Roshanzadeh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Franziska Schneppenheim
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Charlotte Cresens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Heverlee, Belgium
- VIB BioImaging Core, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Martin Carion
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Shehab Ismail
- Department of Chemistry, KU Leuven, Heverlee, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Heverlee, Belgium
| | - Tobias Bald
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johan Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Mendez R, Shaikh M, Lemke MC, Yuan K, Libby AH, Bai DL, Ross MM, Harris TE, Hsu KL. Predicting small molecule binding pockets on diacylglycerol kinases using chemoproteomics and AlphaFold. RSC Chem Biol 2023; 4:422-430. [PMID: 37292058 PMCID: PMC10246554 DOI: 10.1039/d3cb00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Minhaj Shaikh
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Kun Yuan
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Adam H Libby
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Mark M Ross
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
3
|
Patent highlights October–November 2021. Pharm Pat Anal 2022; 11:37-44. [DOI: 10.4155/ppa-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
4
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Arranz-Nicolás J, Martin-Salgado M, Rodríguez-Rodríguez C, Liébana R, Moreno-Ortiz MC, Leitner J, Steinberger P, Ávila-Flores A, Merida I. Diacylglycerol kinase ζ limits IL-2-dependent control of PD-1 expression in tumor-infiltrating T lymphocytes. J Immunother Cancer 2021; 8:jitc-2020-001521. [PMID: 33246984 PMCID: PMC7703416 DOI: 10.1136/jitc-2020-001521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The inhibitory functions triggered by the programmed cell death-1 (PD-1) receptor following binding to its ligand (PD-L1) protect healthy organs from cytotoxic T cells, and neutralize antitumor T cell attack. Antibody-based therapies to block PD-1/PD-L1 interaction have yielded notable results, but most patients eventually develop resistance. This failure is attributed to CD8+ T cells achieving hyporesponsive states from which recovery is hardly feasible. Dysfunctional T cell phenotypes are favored by a sustained imbalance in the diacylglycerol (DAG)- and Ca2+-regulated transcriptional programs. In mice, DAG kinase ζ (DGKζ) facilitates DAG consumption, limiting T cell activation and cytotoxic T cell responses. DGKζ deficiency facilitates tumor rejection in mice without apparent adverse autoimmune effects. Despite its therapeutic potential, little is known about DGKζ function in human T cells, and no known inhibitors target this isoform. Methods We used a human triple parameter reporter cell line to examine the consequences of DGKζ depletion on the transcriptional restriction imposed by PD-1 ligation. We studied the effect of DGKζ deficiency on PD-1 expression dynamics, as well as the impact of DGKζ absence on the in vivo growth of MC38 adenocarcinoma cells. Results We demonstrate that DGKζ depletion enhances DAG-regulated transcriptional programs, promoting interleukin-2 production and partially counteracting PD-1 inhibitory functions. DGKζ loss results in limited PD-1 expression and enhanced expansion of cytotoxic CD8+ T cell populations. This is observed even in immunosuppressive milieus, and correlates with the reduced ability of MC38 adenocarcinoma cells to form tumors in DGKζ-deficient mice. Conclusions Our results, which define a role for DGKζ in the control of PD-1 expression, confirm DGKζ potential as a therapeutic target as well as a biomarker of CD8+ T cell dysfunctional states.
Collapse
Affiliation(s)
| | | | | | - Rosa Liébana
- Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain
| | | | - Judith Leitner
- Institute of Immunology. Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology. Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Vienna, Austria
| | | | - Isabel Merida
- Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain
| |
Collapse
|
6
|
Gu J, Wang C, Cao C, Huang J, Holzhauer S, Desilva H, Wesley EM, Evans DB, Benci J, Wichroski M, Wee S, Riese MJ. DGKζ exerts greater control than DGKα over CD8 + T cell activity and tumor inhibition. Oncoimmunology 2021; 10:1941566. [PMID: 34350062 PMCID: PMC8296965 DOI: 10.1080/2162402x.2021.1941566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Two isoforms of diacylglycerol kinases (DGKs), DGKα and DGKζ, are primarily responsible for terminating DAG-mediated activation of Ras and PKCθ pathways in T cells. A direct comparison of tumor growth between mice lacking each isoform has not been undertaken. We evaluated the growth of three syngeneic tumor cell lines in mice lacking either DGKα or DGKζ in the presence or absence of treatment with anti-PD1 and determined that (i) mice deficient in DGKζ conferred enhanced control of tumor relative to mice deficient in DGKα and (ii) deficiency of DGKζ acted additively with anti-PD1 in tumor control. Consistent with this finding, functional and RNA-sequencing analyses revealed greater changes in stimulated DGKζ-deficient T cells compared with DGKα-deficient T cells, which were enhanced relative to wildtype T cells. DGKζ also imparted greater regulation than DGKα in human T cells. Together, these data support targeting the ζ isoform of DGKs to therapeutically enhance T cell anti-tumor activity.
Collapse
Affiliation(s)
- Junchen Gu
- Oncology Translational Research, Janssen Research & Development, PA
| | - Cindy Wang
- Oncology Research, Janssen Pharmaceutical, Raritan, NJ
| | - Carolyn Cao
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Jinwen Huang
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Sandra Holzhauer
- A Division of Versiti, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Heshani Desilva
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Erin M Wesley
- A Division of Versiti, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Douglas B Evans
- Blood Research Institute, Blood Center of Wisconsin, a Division of Versiti, Milwaukee
| | - Joseph Benci
- Oncology Discovery, Bristol Myers Squibb, Princeton, NJ
| | - Michael Wichroski
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Susan Wee
- Oncology Discovery, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Matthew J Riese
- A Division of Versiti, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Potential role of diacylglycerol kinases in immune-mediated diseases. Clin Sci (Lond) 2021; 134:1637-1658. [PMID: 32608491 DOI: 10.1042/cs20200389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The mechanism promoting exacerbated immune responses in allergy and autoimmunity as well as those blunting the immune control of cancer cells are of primary interest in medicine. Diacylglycerol kinases (DGKs) are key modulators of signal transduction, which blunt diacylglycerol (DAG) signals and produce phosphatidic acid (PA). By modulating lipid second messengers, DGK modulate the activity of downstream signaling proteins, vesicle trafficking and membrane shape. The biological role of the DGK α and ζ isoforms in immune cells differentiation and effector function was subjected to in deep investigations. DGK α and ζ resulted in negatively regulating synergistic way basal and receptor induced DAG signals in T cells as well as leukocytes. In this way, they contributed to keep under control the immune response but also downmodulate immune response against tumors. Alteration in DGKα activity is also implicated in the pathogenesis of genetic perturbations of the immune function such as the X-linked lymphoproliferative disease 1 and localized juvenile periodontitis. These findings suggested a participation of DGK to the pathogenetic mechanisms underlying several immune-mediated diseases and prompted several researches aiming to target DGK with pharmacologic and molecular strategies. Those findings are discussed inhere together with experimental applications in tumors as well as in other immune-mediated diseases such as asthma.
Collapse
|
8
|
Xie D, Zhang S, Chen P, Deng W, Pan Y, Xie J, Wang J, Liao B, Sleasman JW, Zhong XP. Negative control of diacylglycerol kinase ζ-mediated inhibition of T cell receptor signaling by nuclear sequestration in mice. Eur J Immunol 2020; 50:1729-1745. [PMID: 32525220 DOI: 10.1002/eji.201948442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Diacylglycerol kinases (DGKs) play important roles in restraining diacylglycerol (DAG)-mediated signaling. Within the DGK family, the ζ isoform appears to be the most important isoform in T cells for controlling their development and function. DGKζ has been demonstrated to regulate T cell maturation, activation, anergy, effector/memory differentiation, defense against microbial infection, and antitumor immunity. Given its critical functions, DGKζ function should be tightly regulated to ensure proper signal transduction; however, mechanisms that control DGKζ function are still poorly understood. We report here that DGKζ dynamically translocates from the cytosol into the nuclei in T cells after TCR stimulation. In mice, DGKζ mutant defective in nuclear localization displayed enhanced ability to inhibit TCR-induced DAG-mediated signaling in primary T cells, maturation of conventional αβT and iNKT cells, and activation of peripheral T cells compared with WT DGKζ. Our study reveals for the first time nuclear sequestration of DGKζ as a negative control mechanism to spatially restrain it from terminating DAG mediated signaling in T cells. Our data suggest that manipulation of DGKζ nucleus-cytosol shuttling as a novel strategy to modulate DGKζ activity and immune responses for treatment of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Danli Xie
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Shimeng Zhang
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Pengcheng Chen
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Wenhai Deng
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Yun Pan
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jinhai Xie
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jinli Wang
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Bryce Liao
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - John W Sleasman
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Ware TB, Franks CE, Granade ME, Zhang M, Kim KB, Park KS, Gahlmann A, Harris TE, Hsu KL. Reprogramming fatty acyl specificity of lipid kinases via C1 domain engineering. Nat Chem Biol 2020; 16:170-178. [PMID: 31932721 PMCID: PMC7117826 DOI: 10.1038/s41589-019-0445-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
Abstract
C1 domains are lipid-binding modules that regulate membrane activation of kinases, nucleotide exchange factors and other C1-containing proteins to trigger signal transduction. Despite annotation of typical C1 domains as diacylglycerol (DAG) and phorbol ester sensors, the function of atypical counterparts remains ill-defined. Here, we assign a key role for atypical C1 domains in mediating DAG fatty acyl specificity of diacylglycerol kinases (DGKs) in live cells. Activity-based proteomics mapped C1 probe binding as a principal differentiator of type 1 DGK active sites that combined with global metabolomics revealed a role for C1s in lipid substrate recognition. Protein engineering by C1 domain swapping demonstrated that exchange of typical and atypical C1s is functionally tolerated and can directly program DAG fatty acyl specificity of type 1 DGKs. Collectively, we describe a protein engineering strategy for studying metabolic specificity of lipid kinases to assign a role for atypical C1 domains in cell metabolism.
Collapse
Affiliation(s)
- Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Caroline E Franks
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Mitchell E Granade
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mingxing Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Kee-Beom Kim
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Ramakrishnan AM, Kumar P, Chatterjee S, Sankaranarayanan K. Differential expression of CRAC channel in alloxan induced Diabetic BALB/c mice. Immunopharmacol Immunotoxicol 2020; 42:48-55. [PMID: 31983259 DOI: 10.1080/08923973.2020.1716788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives: CRAC (Calcium Release Activated Calcium) channel is one of the most important channels regulating calcium influx and has been involved in many autoimmune diseases. The contribution of CRAC channel in the pathogenesis of Type 1 Diabetes (T1D) has not been described much. Thus, we aimed to study the expression of CRAC channel and inflammatory cytokines like IL-1β (Interleukin -1β) and TNF-α (Tumor Necrosis Factor-α) in the spleen-derived cytotoxic T cells, Bone marrow monocytes (BMM) and macrophages differentiated from BMM in the alloxan induced T1D mice.Materials and methods: BALB/c mice treated with alloxan and vehicle control for 12 and 24 h. Spleen derived T cells; Bone marrow derived monocytes were isolated from the control and diabetic BALB/c mice as well as macrophages differentiated from the control and diabetic BMM.Results: We observed increased expression of CRAC channel components like STIM1 (Stromal Interaction Molecule), ORAI1 and ORAI2 and inflammatory cytokines like IL-1β and TNF-α in the spleen derived cytotoxic T cells and Macrophages differentiated from BMM as well as the downregulated expression of the same and CRAC channel in BMM of 12 and 24 h alloxan induced BALB/c mice.Conclusions: This study suggests that differential expression of CRAC channel correlated with the expression of inflammatory cytokines, thus CRAC channel might be responsible for the increased production of inflammatory cytokines in the alloxan induced T1D mice.
Collapse
Affiliation(s)
| | - Pavitra Kumar
- Vascular Biology laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Suvro Chatterjee
- Vascular Biology laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| |
Collapse
|
11
|
Yang J, Wang HX, Xie J, Li L, Wang J, Wan ECK, Zhong XP. DGK α and ζ Activities Control T H1 and T H17 Cell Differentiation. Front Immunol 2020; 10:3048. [PMID: 32010133 PMCID: PMC6974463 DOI: 10.3389/fimmu.2019.03048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
CD4+ T helper (TH) cells are critical for protective adaptive immunity against pathogens, and they also contribute to the pathogenesis of autoimmune diseases. How TH differentiation is regulated by the TCR's downstream signaling is still poorly understood. We describe here that diacylglycerol kinases (DGKs), which are enzymes that convert diacylglycerol (DAG) to phosphatidic acid, exert differential effects on TH cell differentiation in a DGK dosage-dependent manner. A deficiency of either DGKα or ζ selectively impaired TH1 differentiation without obviously affecting TH2 and TH17 differentiation. However, simultaneous ablation of both DGKα and ζ promoted TH1 and TH17 differentiation in vitro and in vivo, leading to exacerbated airway inflammation. Furthermore, we demonstrate that dysregulation of TH17 differentiation of DGKα and ζ double-deficient CD4+ T cells was, at least in part, caused by increased mTOR complex 1/S6K1 signaling.
Collapse
Affiliation(s)
- Jialong Yang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Hong-Xia Wang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Jinhai Xie
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Jinli Wang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Edwin C K Wan
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
Sano M, Kaneko MK, Kato Y. Epitope Mapping of Anti-Diacylglycerol Kinase Zeta Monoclonal Antibody DzMab-1 for Immunohistochemical Analyses. Monoclon Antib Immunodiagn Immunother 2019; 38:175-178. [DOI: 10.1089/mab.2019.0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Kato Y, Itai S, Yamada S, Suzuki H, Kaneko MK. Epitope Mapping of Anti-Diacylglycerol Kinase ζ Monoclonal Antibody for the Detection of T Cells by Immunohistochemical Analyses. Monoclon Antib Immunodiagn Immunother 2019; 38:124-128. [PMID: 31112065 DOI: 10.1089/mab.2019.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The diacylglycerol kinases (DGKs) are a family of proteins that catalyze the phosphorylation of the cell membrane lipid diacylglycerol (DG), a cellular component that is important in lipid biochemistry and signal transduction, into phosphatidic acid. DG-mediated signal transduction downstream of the T cell receptor has previously been reported to be terminated in most cases by one of 10 DGK isoforms, DGKζ. In this study, we performed immunohistochemical analysis using a rabbit anti-DGKζ monoclonal antibody (mAb) (clone EPR22040-80) against tissues from the tonsils of a patient with oropharyngeal squamous cell carcinoma. We demonstrated that many DGKζ-expressing T cells are localized in the tonsils. We further characterized the binding epitope using an enzyme-linked immunosorbent assay and found that Pro790, Gln791, Gly792, and Leu795 residues of DGKζ are important for facilitating anti-DGKζ mAb binding to DGKζ. This anti-DGKζ mAb could be valuable in immunohistochemical analyses in determining the distribution of DGKζ-expressing T cells in pathophysiological tissues.
Collapse
Affiliation(s)
- Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,2 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyoshi Suzuki
- 3 Department of Pathology and Laboratory Medicine, Sendai Medical Center, Sendai, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Jing W, McAllister D, Vonderhaar EP, Palen K, Riese MJ, Gershan J, Johnson BD, Dwinell MB. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J Immunother Cancer 2019; 7:115. [PMID: 31036082 PMCID: PMC6489306 DOI: 10.1186/s40425-019-0573-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is characterized by an immune suppressive stromal reaction that creates a barrier to therapy. A murine transgenic pancreatic cancer cell line that recapitulates human disease was used to test whether a STimulator of Interferon Genes (STING) agonist could reignite immunologically inert pancreatic tumors. STING agonist treatment potently changed the tumor architecture, altered the immune profile, and increased the survival of tumor-bearing mice. Notably, STING agonist increased numbers and activity of cytotoxic T cells within tumors and decreased levels of suppressive regulatory T cells. Further, STING agonist treatment upregulated costimulatory molecule expression on cross-presenting dendritic cells and reprogrammed immune-suppressive macrophages into immune-activating subtypes. STING agonist promoted the coordinated and differential cytokine production by dendritic cells, macrophages, and pancreatic cancer cells. Cumulatively, these data demonstrate that pancreatic cancer progression is potently inhibited by STING agonist, which reignited immunologically cold pancreatic tumors to promote trafficking and activation of tumor-killing T cells.
Collapse
Affiliation(s)
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily P Vonderhaar
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Katie Palen
- , Department of Medicine, Milwaukee, USA.,Cell Therapy Laboratories, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Matthew J Riese
- , Department of Medicine, Milwaukee, USA.,Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,MCW Center for Immunology, Milwaukee, USA
| | - Jill Gershan
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, USA
| | - Bryon D Johnson
- , Department of Medicine, Milwaukee, USA.,Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,MCW Center for Immunology, Milwaukee, USA.,Cell Therapy Laboratories, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA
| | - Michael B Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,MCW Center for Immunology, Milwaukee, USA.
| |
Collapse
|
15
|
Merida I, Arranz-Nicolás J, Torres-Ayuso P, Ávila-Flores A. Diacylglycerol Kinase Malfunction in Human Disease and the Search for Specific Inhibitors. Handb Exp Pharmacol 2019; 259:133-162. [PMID: 31227890 DOI: 10.1007/164_2019_221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The diacylglycerol kinases (DGKs) are master regulator kinases that control the switch from diacylglycerol (DAG) to phosphatidic acid (PA), two lipids with important structural and signaling properties. Mammalian DGKs distribute into five subfamilies that regulate local availability of DAG and PA pools in a tissue- and subcellular-restricted manner. Pharmacological manipulation of DGK activity holds great promise, given the critical contribution of specific DGK subtypes to the control of membrane structure, signaling complexes, and cell-cell communication. The latest advances in the DGK field have unveiled the differential contribution of selected isoforms to human disease. Defects in the expression/activity of individual DGK isoforms contribute substantially to cognitive impairment, mental disorders, insulin resistance, and vascular pathologies. Abnormal DGK overexpression, on the other hand, confers the acquisition of malignant traits including invasion, chemotherapy resistance, and inhibition of immune attack on tumors. Translation of these findings into therapeutic approaches will require development of methods to pharmacologically modulate DGK functions. In particular, inhibitors that target the DGKα isoform hold particular promise in the fight against cancer, on their own or in combination with immune-targeting therapies.
Collapse
Affiliation(s)
- Isabel Merida
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain.
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Pedro Torres-Ayuso
- Laboratory of Cell and Developmental Signaling, National Cancer Institute (NCI-NIH), Frederick, MD, USA
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
16
|
Wesley EM, Xin G, McAllister D, Malarkannan S, Newman DK, Dwinell MB, Cui W, Johnson BD, Riese MJ. Diacylglycerol kinase ζ (DGKζ) and Casitas b-lineage proto-oncogene b-deficient mice have similar functional outcomes in T cells but DGKζ-deficient mice have increased T cell activation and tumor clearance. Immunohorizons 2018; 2:107-118. [PMID: 30027154 DOI: 10.4049/immunohorizons.1700055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeting negative regulators downstream of the T cell receptor (TCR) represents a novel strategy to improve cancer immunotherapy. Two proteins that serve as critical inhibitory regulators downstream of the TCR are diacylglycerol kinase ζ (DGKζ), a regulator of Ras and PKC-θ signaling, and Casitas b-lineage proto-oncogene b (Cbl-b), an E3 ubiquitin ligase that predominantly regulates PI(3)K signaling. We sought to compare the signaling and functional effects that result from deletion of DGKζ, Cbl-b, or both (double knockout, DKO) in T cells, and to evaluate tumor responses generated in a clinically relevant orthotopic pancreatic tumor model. We found that whereas deletion of Cbl-b primarily served to enhance NF-κB signaling, deletion of DGKζ enhanced TCR-mediated signal transduction downstream of Ras/Erk and NF-κB. Deletion of DGKζ or Cbl-b comparably enhanced CD8+ T cell functional responses, such as proliferation, production of IFNγ, and generation of granzyme B when compared with WT T cells. DKO T cells demonstrated enhanced function above that observed with single knockout T cells after weak, but not strong, stimulation. Deletion of DGKζ, but not Cbl-b, however, resulted in significant increases in numbers of activated (CD44hi) CD8+ T cells in both non-treated and tumor-bearing mice. DGKζ-deficient mice also had enhanced control of pancreatic tumor cell growth compared to Cbl-b-deficient mice. This represents the first direct comparison between mice of these genotypes and suggests that T cell immunotherapies may be better improved by targeting TCR signaling molecules that are regulated by DGKζ as opposed to molecules regulated by Cbl-b.
Collapse
Affiliation(s)
- Erin M Wesley
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI
| | - Donna McAllister
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Debra K Newman
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI
| | - Bryon D Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Matthew J Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI.,Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|