1
|
Zhao S, Hao S, Zhou J, Chen X, Zhang T, Qi Z, Zhang T, Jalal S, Zhai C, Yin L, Bo Y, Teng H, Wang Y, Gao D, Zhang H, Huang L. mTOR/miR-142-3p/PRAS40 signaling cascade is critical for tuberous sclerosis complex-associated renal cystogenesis. Cell Mol Biol Lett 2024; 29:125. [PMID: 39333852 PMCID: PMC11429883 DOI: 10.1186/s11658-024-00638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with tuberous sclerosis complex (TSC) develop renal cysts and/or angiomyolipomas (AMLs) due to inactive mutations of either TSC1 or TSC2 and consequential mTOR hyperactivation. The molecular events between activated mTOR and renal cysts/AMLs are still largely unknown. METHODS The mouse model of TSC-associated renal cysts were constructed by knocking out Tsc2 specifically in renal tubules (Tsc2f/f; ksp-Cre). We further globally deleted PRAS40 in these mice to investigate the role of PRAS40. Tsc2-/- cells were used as mTOR activation model cells. Inhibition of DNA methylation was used to increase miR-142-3p expression to examine the effects of miR-142-3p on PRAS40 expression and TSC-associated renal cysts. RESULTS PRAS40, a component of mTOR complex 1, was overexpressed in Tsc2-deleted cell lines and mouse kidneys (Tsc2f/f; ksp-Cre), which was decreased by mTOR inhibition. mTOR stimulated PRAS40 expression through suppression of miR-142-3p expression. Unleashed PRAS40 was critical to the proliferation of Tsc2-/- cells and the renal cystogenesis of Tsc2f/f; ksp-Cre mice. In contrast, inhibition of DNA methylation increased miR-142-3p expression, decreased PRAS40 expression, and hindered cell proliferation and renal cystogenesis. CONCLUSIONS Our data suggest that mTOR activation caused by TSC2 deletion increases PRAS40 expression through miR-142-3p repression. PRAS40 depletion or the pharmacological induction of miR-142-3p expression impaired TSC2 deficiency-associated renal cystogenesis. Therefore, harnessing mTOR/miR-142-3p/PRAS40 signaling cascade may mitigate hyperactivated mTOR-related diseases.
Collapse
Affiliation(s)
- Shuyun Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Shuai Hao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jiasheng Zhou
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xinran Chen
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Zhaolai Qi
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chuanxin Zhai
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Lu Yin
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yufei Bo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yue Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Si Z, Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Tuberous sclerosis complex: a case report and literature review. Ital J Pediatr 2023; 49:116. [PMID: 37679848 PMCID: PMC10485941 DOI: 10.1186/s13052-023-01490-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/29/2023] [Indexed: 09/09/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with different initial symptoms and complex clinical manifestations. A 14-year-old female patient presented with persistent fever and severe headache. Medical imaging examinations revealed multiple abnormal intracranial lesions. The patient had previously been misdiagnosed with "encephalitis and acute disseminated encephalomyelitis" after visiting numerous hospitals. Eventually, by combing the characteristics of the case and genetic testing results, the patient was diagnosed with TSC accompanied by Mycoplasma pneumoniae infection. The purpose of this case report and literature review is to improve understanding of the clinical diagnosis and treatment of TSC so as to avoid misdiagnosis, missed diagnosis, and overtreatment.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Zhihua Si
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Wei Zhao
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Cong Xie
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Xu Zhang
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, China
| | - Jinzhi Liu
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China.
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, 67 Dongchang West Road, Liaocheng, Liaocheng, 252000, China.
- Department of Gerontology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
- Department of Geriatric Neurology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China.
- Department of Neurology, Cheeloo College of Medicine, Liaocheng People's Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, 67 Dongchang West Road, Liaocheng, Liaocheng, 252000, China.
- Department of Neurology, Cheeloo College of Medicine, Liaocheng People's Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
| |
Collapse
|
3
|
Bernardelli C, Caretti A, Lesma E. Dysregulated lipid metabolism in lymphangioleiomyomatosis pathogenesis as a paradigm of chronic lung diseases. Front Med (Lausanne) 2023; 10:1124008. [PMID: 36744130 PMCID: PMC9894443 DOI: 10.3389/fmed.2023.1124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
A chronic inflammatory condition characterizes various lung diseases. Interestingly, a great contribution to inflammation is made by altered lipids metabolism, that can be caused by the deregulation of the mammalian target of rapamycin complex-1 (mTORC1) activity. There is evidence that one of mTOR downstream effectors, the sterol regulatory element-binding protein (SREBP), regulates the transcription of enzymes involved in the de novo fatty acid synthesis. Given its central role in cell metabolism, mTOR is involved in several biological processes. Among those, mTOR is a driver of senescence, a process that might contribute to the establishment of chronic lung disease because the characteristic irreversible inhibition of cell proliferation, associated to the acquisition of a pro-inflammatory senescence-associated secretory phenotype (SASP) supports the loss of lung parenchyma. The deregulation of mTORC1 is a hallmark of lymphangioleiomyomatosis (LAM), a rare pulmonary disease predominantly affecting women which causes cystic remodeling of the lung and progressive loss of lung function. LAM cells have senescent features and secrete SASP components, such as growth factors and pro-inflammatory molecules, like cancer cells. Using LAM as a paradigm of chronic and metastatic lung disease, here we review the published data that point out the role of dysregulated lipid metabolism in LAM pathogenesis. We will discuss lipids' role in the development and progression of the disease, to hypothesize novel LAM biomarkers and to propose the pharmacological regulation of lipids metabolism as an innovative approach for the treatment of the disease.
Collapse
Affiliation(s)
- Clara Bernardelli
- Laboratory of Pharmacology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Caretti
- Laboratory of Biochemistry and Molecular Biology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Lesma
- Laboratory of Pharmacology, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy,*Correspondence: Elena Lesma,
| |
Collapse
|
4
|
Koessinger D, Novo D, Koessinger A, Campos A, Peters J, Dutton L, Paschke P, Zerbst D, Moore M, Mitchell L, Neilson M, Stevenson K, Chalmers A, Tait S, Birch J, Norman J. Glioblastoma extracellular vesicles influence glial cell hyaluronic acid deposition to promote invasiveness. Neurooncol Adv 2023; 5:vdad067. [PMID: 37334166 PMCID: PMC10276538 DOI: 10.1093/noajnl/vdad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Background Infiltration of glioblastoma (GBM) throughout the brain leads to its inevitable recurrence following standard-of-care treatments, such as surgical resection, chemo-, and radiotherapy. A deeper understanding of the mechanisms invoked by GBM to infiltrate the brain is needed to develop approaches to contain the disease and reduce recurrence. The aim of this study was to discover mechanisms through which extracellular vesicles (EVs) released by GBM influence the brain microenvironment to facilitate infiltration, and to determine how altered extracellular matrix (ECM) deposition by glial cells might contribute to this. Methods CRISPR was used to delete genes, previously established to drive carcinoma invasiveness and EV production, from patient-derived primary and GBM cell lines. We purified and characterized EVs released by these cells, assessed their capacity to foster pro-migratory microenvironments in mouse brain slices, and evaluated the contribution made by astrocyte-derived ECM to this. Finally, we determined how CRISPR-mediated deletion of genes, which we had found to control EV-mediated communication between GBM cells and astrocytes, influenced GBM infiltration when orthotopically injected into CD1-nude mice. Results GBM cells expressing a p53 mutant (p53R273H) with established pro-invasive gain-of-function release EVs containing a sialomucin, podocalyxin (PODXL), which encourages astrocytes to deposit ECM with increased levels of hyaluronic acid (HA). This HA-rich ECM, in turn, promotes migration of GBM cells. Consistently, CRISPR-mediated deletion of PODXL opposes infiltration of GBM in vivo. Conclusions This work describes several key components of an EV-mediated mechanism though which GBM cells educate astrocytes to support infiltration of the surrounding healthy brain tissue.
Collapse
Affiliation(s)
- Dominik Koessinger
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Neurosurgery, Freiburg University Hospital, Freiburg, Germany
| | - David Novo
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Anna Koessinger
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Louise Dutton
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Désirée Zerbst
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Stephen Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Joanna Birch
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Li F, Zhang Y, Lin Z, Yan L, Liu Q, Li Y, Pei X, Feng Y, Han X, Yang J, Zheng F, Li T, Zhang Y, Fu Z, Shao D, Yu J, Li C. Targeting SPHK1/S1PR3-regulated S-1-P metabolic disorder triggers autophagic cell death in pulmonary lymphangiomyomatosis (LAM). Cell Death Dis 2022; 13:1065. [PMID: 36543771 PMCID: PMC9772321 DOI: 10.1038/s41419-022-05511-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Lymphangioleiomyomatosis (LAM), a progressive pulmonary disease exclusively affecting females, is caused by defects or mutations in the coding gene tuberous sclerosis complex 1 (TSC1) or TSC2, causing the mammalian target of rapamycin complex 1 (mTORC1) activation and autophagy inhibition. Clinically, rapamycin shows limited cytocidal effects, and LAM recurs after drug withdrawal. In this study, we demonstrated that TSC2 negatively regulated the sphingolipid metabolism pathway and the expressions of sphingosine kinase 1 (SPHK1) and sphingosine-1-phosphate receptor 3 (S1PR3) were significantly elevated in LAM patient-derived TSC2-deficient cells compared to TSC2-addback cells, insensitive to rapamycin treatment and estrogen stimulation. Knockdown of SPHK1 showed reduced viability, migration and invasion in TSC2-deficient cells. Selective SPHK1 antagonist PF543 potently suppressed the viability of TSC2-deficient cells and induced autophagy-mediated cell death. Meanwhile, the cognate receptor S1PR3 was identified to mediating the tumorigenic effects of sphingosine-1-phosphate (S1P). Treatment with TY52156, a selective antagonist for S1PR3, or genetic silencing using S1PR3-siRNA suppressed the viability of TSC2-deficient cells. Both SPHK1 and S1PR3 inhibitors markedly exhibited antitumor effect in a xenograft model of TSC2-null cells, restored autophagy level, and triggered cell death. Together, we identified novel rapamycin-insensitive sphingosine metabolic signatures in TSC2-null LAM cells. Therapeutic targeting of aberrant SPHK1/S1P/S1PR3 signaling may have potent therapeutic benefit for patients with TSC/LAM or other hyperactive mTOR neoplasms with autophagy inhibition.
Collapse
Affiliation(s)
- Fei Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Yifan Zhang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Zhoujun Lin
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Lizhong Yan
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Qiao Liu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Yin Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Xiaolin Pei
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Ya Feng
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Xiao Han
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Juan Yang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Fangxu Zheng
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Tianjiao Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Yupeng Zhang
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| | - Zhenkun Fu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China ,grid.410736.70000 0001 2204 9268Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, China
| | - Di Shao
- grid.414287.c0000 0004 1757 967XChongqing University Central Hospital, Chongqing Emergency Medical Center, 400000 Chongqing, China ,Chonggang General Hospital, 400000 Chongqing, China
| | - Jane Yu
- grid.24827.3b0000 0001 2179 9593Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Chenggang Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 300350 Tianjin, P.R. China
| |
Collapse
|
6
|
Wang X, Liang C, Li A, Cheng G, Long F, Khan R, Wang J, Zhang Y, Wu S, Wang Y, Qiu J, Mei C, Yang W, Zan L. RNA-Seq and lipidomics reveal different adipogenic processes between bovine perirenal and intramuscular adipocytes. Adipocyte 2022; 11:448-462. [PMID: 35941812 PMCID: PMC9367662 DOI: 10.1080/21623945.2022.2106051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipogenesis involves complex interactions between transcription and metabolic signalling. Exploration of the developmental characteristics of intramuscular adipocyte will provide targets for enhancing beef cattle marbling without increasing obesity. Few reports have compared bovine perirenal and intramuscular adipocyte transcriptomes using the combined analysis of transcriptomes and lipid metabolism to explore differences in adipogenic characteristics. We identified perirenal preadipocytes (PRA) and intramuscular preadipocytes (IMA) in Qinchuan cattle. We found that IMA were highly prolific in the early stages of adipogenesis, while PRA shows a stronger adipogenic ability in the terminal differentiation. Bovine perirenal and intramuscular adipocytes were detected through the combined analysis of the transcriptome and metabolome. More triglyceride was found to be upregulated in perirenal adipocytes; however, more types and amounts of unsaturated fatty acids were detected in intramuscular adipocytes, including eicosapentaenoic acid (20:5 n-3; EPA) and docosahexaenoic acid (22:6 n-3; DHA). Furthermore, differentially expressed genes in perirenal and intramuscular adipocytes were positively correlated with the eicosanoid, phosphatidylcholine (PC), phosphatidyl ethanolamine (PE), and sphingomyelin contents. Associated differential metabolic pathways included the glycerolipid and glycerophospholipid metabolisms. Our research findings provide a basis for the screening of key metabolic pathways or genes and metabolites involved in intramuscular fat production in cattle.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Long
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rajwali Khan
- Department of Livestock Management, the University of Agriculture, Peshawar, Pakistan
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- Longri Breeding Farm of Sichuan Province, Sichuan, Chengdu, China
| | - Sen Wu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Qinghai, Xining, China
| | - Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ju Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|