1
|
Schneider HE, Schmitt LM, Job A, Lankat-Buttgereit B, Gress T, Buchholz M, Gallmeier E. Synthetic lethality between ATR and POLA1 reveals a potential new target for individualized cancer therapy. Neoplasia 2024; 57:101038. [PMID: 39128273 PMCID: PMC11369380 DOI: 10.1016/j.neo.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The ATR-CHK1 pathway plays a fundamental role in the DNA damage response and is therefore an attractive target in cancer therapy. The antitumorous effect of ATR inhibitors is at least partly caused by synthetic lethality between ATR and various DNA repair genes. In previous studies, we have identified members of the B-family DNA polymerases as potential lethal partner for ATR, i.e. POLD1 and PRIM1. In this study, we validated and characterized the synthetic lethality between ATR and POLA1. First, we applied a model of ATR-deficient DLD-1 human colorectal cancer cells to confirm synthetic lethality by using chemical POLA1 inhibition. Analyzing cell cycle and apoptotic markers via FACS and Western blotting, we were able to show that apoptosis and S phase arrest contributed to the increased sensitivity of ATR-deficient cancer cells towards POLA1 inhibitors. Importantly, siRNA-mediated POLA1 depletion in ATR-deficient cells caused similar effects in regard to impaired cell viability and cumulation of apoptotic markers, thus excluding toxic effects of chemical POLA1 inhibition. Conversely, we demonstrated that siRNA-mediated POLA1 depletion sensitized several cancer cell lines towards chemical inhibition of ATR and its main effector kinase CHK1. In conclusion, the synthetic lethality between ATR/CHK1 and POLA1 might represent a novel and promising approach for individualized cancer therapy: First, alterations of POLA1 could serve as a screening parameter for increased sensitivity towards ATR and CHK1 inhibitors. Second, alterations in the ATR-CHK1 pathway might predict in increased sensitivity towards POLA1 inhibitors.
Collapse
Affiliation(s)
- Hanna Elisabeth Schneider
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany; Department of Medicine A - Hematology, Oncology and Pneumology, University Hospital Münster, Muenster, Germany
| | - Lisa-Maria Schmitt
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Albert Job
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Brigitte Lankat-Buttgereit
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Thomas Gress
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Malte Buchholz
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Eike Gallmeier
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany; Department of Internal Medicine II - Gastroenterology, Oncology and Metabolism, Hospital Memmingen, Memmingen, Germany.
| |
Collapse
|
2
|
Washif M, Kawasumi R, Hirota K. REV3 promotes cellular tolerance to 5-fluorodeoxyuridine by activating translesion DNA synthesis and intra-S checkpoint. PLoS Genet 2024; 20:e1011341. [PMID: 38954736 PMCID: PMC11249241 DOI: 10.1371/journal.pgen.1011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
The drug floxuridine (5-fluorodeoxyuridine, FUdR) is an active metabolite of 5-Fluorouracil (5-FU). It converts to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP), which on incorporation into the genome inhibits DNA replication. Additionally, it inhibits thymidylate synthase, causing dTMP shortage while increasing dUMP availability, which induces uracil incorporation into the genome. However, the mechanisms underlying cellular tolerance to FUdR are yet to be fully elucidated. In this study, we explored the mechanisms underlying cellular resistance to FUdR by screening for FUdR hypersensitive mutants from a collection of DT40 mutants deficient in each genomic maintenance system. We identified REV3, which is involved in translesion DNA synthesis (TLS), to be a critical factor in FUdR tolerance. Replication using a FUdR-damaged template was attenuated in REV3-/- cells, indicating that the TLS function of REV3 is required to maintain replication on the FUdR-damaged template. Notably, FUdR-exposed REV3-/- cells exhibited defective cell cycle arrest in the early S phase, suggesting that REV3 is involved in intra-S checkpoint activation. Furthermore, REV3-/- cells showed defects in Chk1 phosphorylation, which is required for checkpoint activation, but the survival of FUdR-exposed REV3-/- cells was further reduced by the inhibition of Chk1 or ATR. These data indicate that REV3 mediates DNA checkpoint activation at least through Chk1 phosphorylation, but this signal acts in parallel with ATR-Chk1 DNA damage checkpoint pathway. Collectively, we reveal a previously unappreciated role of REV3 in FUdR tolerance.
Collapse
Affiliation(s)
- Mubasshir Washif
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ryotaro Kawasumi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
3
|
Menendez D, Anand JR, Murphy CC, Bell WJ, Fu J, Slepushkina N, Buehler E, Martin SE, Lal-Nag M, Nitiss JL, Resnick MA. Etoposide-induced DNA damage is increased in p53 mutants: identification of ATR and other genes that influence effects of p53 mutations on Top2-induced cytotoxicity. Oncotarget 2022; 13:332-346. [PMID: 35178190 PMCID: PMC8845119 DOI: 10.18632/oncotarget.28195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The functional status of the tumor suppressor p53 is a critical component in determining the sensitivity of cancer cells to many chemotherapeutic agents. DNA topoisomerase II (Top2) plays essential roles in DNA metabolism and is the target of FDA approved chemotherapeutic agents. Topoisomerase targeting drugs convert the enzyme into a DNA damaging agent and p53 influences cellular responses to these agents. We assessed the impact of the loss of p53 function on the formation of DNA damage induced by the Top2 poison etoposide. Using human HCT116 cells, we found resistance to etoposide in cell growth assays upon the functional loss of p53. Nonetheless, cells lacking fully functional p53 were etoposide hypersensitive in clonogenic survival assays. This complex role of p53 led us to directly examine the effects of p53 status on topoisomerase-induced DNA damage. A deficiency in functional p53 resulted in elevated levels of the Top2 covalent complexes (Top2cc) in multiple cell lines. Employing genome-wide siRNA screens, we identified a set of genes for which reduced expression resulted in enhanced synthetic lethality upon etoposide treatment of p53 defective cells. We focused on one hit from this screen, ATR, and showed that decreased expression sensitized the p53-defective cells to etoposide in all assays and generated elevated levels of Top2cc in both p53 proficient and deficient cells. Our findings suggest that a combination of etoposide treatment with functional inactivation of DNA repair in p53 defective cells could be used to enhance the therapeutic efficacy of Top2 targeting agents.
Collapse
Affiliation(s)
- Daniel Menendez
- Chromosomal Stability Group, Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Durham, NC 27709, USA
- Environmental Cardiopulmonary Disease Group, Immunity, Inflammation and Disease Laboratory, NIEHS, NIH, Durham, NC 27709, USA
- These authors contributed equally to this work
| | - Jay R. Anand
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL 61107, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- These authors contributed equally to this work
| | - Carri C. Murphy
- Chromosomal Stability Group, Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Durham, NC 27709, USA
| | - Whitney J. Bell
- Chromosomal Stability Group, Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Durham, NC 27709, USA
| | - Jiaqi Fu
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20850, USA
| | - Nadia Slepushkina
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20850, USA
| | - Eugen Buehler
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20850, USA
| | - Scott E. Martin
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20850, USA
| | - Madhu Lal-Nag
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20850, USA
| | - John L. Nitiss
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL 61107, USA
| | - Michael A. Resnick
- Chromosomal Stability Group, Genome Integrity and Structural Biology Laboratory, NIEHS, NIH, Durham, NC 27709, USA
| |
Collapse
|
4
|
Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. Inhibition of the ATR-CHK1 Pathway in Ewing Sarcoma Cells Causes DNA Damage and Apoptosis via the CDK2-Mediated Degradation of RRM2. Mol Cancer Res 2020; 18:91-104. [PMID: 31649026 PMCID: PMC6942212 DOI: 10.1158/1541-7786.mcr-19-0585] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Inhibition of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides, causes DNA replication stress and activates the ataxia telangiectasia and rad3-related protein (ATR)-checkpoint kinase 1 (CHK1) pathway. Notably, a number of different cancers, including Ewing sarcoma tumors, are sensitive to the combination of RNR and ATR-CHK1 inhibitors. However, multiple, overlapping mechanisms are reported to underlie the toxicity of ATR-CHK1 inhibitors, both as single agents and in combination with RNR inhibitors, toward cancer cells. Here, we identified a feedback loop in Ewing sarcoma cells in which inhibition of the ATR-CHK1 pathway depletes RRM2, the small subunit of RNR, and exacerbates the DNA replication stress and DNA damage caused by RNR inhibitors. Mechanistically, we identified that the inhibition of ATR-CHK1 activates CDK2, which targets RRM2 for degradation via the proteasome. Similarly, activation of CDK2 by inhibition or knockdown of the WEE1 kinase also depletes RRM2 and causes DNA damage and apoptosis. Moreover, we show that the concurrent inhibition of ATR and WEE1 has a synergistic effect in Ewing sarcoma cells. Overall, our results provide novel insight into the response to DNA replication stress, as well as a rationale for targeting the ATR, CHK1, and WEE1 pathways, in Ewing sarcoma tumors. IMPLICATIONS: Targeting the ATR, CHK1, and WEE1 kinases in Ewing sarcoma cells activates CDK2 and increases DNA replication stress by promoting the proteasome-mediated degradation of RRM2.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - William W Terry
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
5
|
Byrne BM, Oakley GG. Replication protein A, the laxative that keeps DNA regular: The importance of RPA phosphorylation in maintaining genome stability. Semin Cell Dev Biol 2018; 86:112-120. [PMID: 29665433 DOI: 10.1016/j.semcdb.2018.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
Abstract
The eukaryotic ssDNA-binding protein, Replication protein A (RPA), was first discovered almost three decades ago. Since then, much progress has been made to elucidate the critical roles for RPA in DNA metabolic pathways that help promote genomic stability. The canonical RPA heterotrimer (RPA1-3) is an essential coordinator of DNA metabolism that interacts with ssDNA and numerous protein partners to coordinate its roles in DNA replication, repair, recombination and telomere maintenance. An alternative form of RPA, termed aRPA, is formed by a complex of RPA4 with RPA1 and RPA3. aRPA is expressed differentially in cells compared to canonical RPA and has been shown to inhibit canonical RPA function while allowing for regular maintenance of cell viability. Interestingly, while aRPA is defective in DNA replication and cell cycle progression, it was shown to play a supporting role in nucleotide excision repair and recombination. The binding domains of canonical RPA interact with a growing number of partners involved in numerous genome maintenance processes. The protein interactions of the RPA-ssDNA complex are not only governed by competition between the binding proteins but also by post-translation modifications such as phosphorylation. Phosphorylation of RPA2 is an important post-translational modification of the RPA complex, and is essential for directing context-specific functions of the RPA complex in the DNA damage response. Due to the importance of RPA in cellular metabolism, it was identified as an appealing target for chemotherapeutic drug development that could be used in future cancer treatment regimens.
Collapse
Affiliation(s)
- Brendan M Byrne
- University of Nebraska Medical Center Department of Oral Biology, Lincoln NE, USA.
| | - Gregory G Oakley
- University of Nebraska Medical Center Department of Oral Biology, Lincoln NE, USA; Eppley Cancer Center, Omaha NE, USA.
| |
Collapse
|
6
|
Job A, Schmitt LM, von Wenserski L, Lankat-Buttgereit B, Gress TM, Buchholz M, Gallmeier E. Inactivation of PRIM1 Function Sensitizes Cancer Cells to ATR and CHK1 Inhibitors. Neoplasia 2018; 20:1135-1143. [PMID: 30257222 PMCID: PMC6154763 DOI: 10.1016/j.neo.2018.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
The phosphoinositide 3-kinase-related kinase ATR is a central regulator of the DNA damage response. Its chemical inhibition eliminates subsets of cancer cells in various tumor types. This effect is caused at least partly by the synthetically lethal relationship between ATR and certain DNA repair genes. In a previous screen using an siRNA library against DNA repair genes, we identified PRIM1, a part of the polymerase α-primase complex, as acting synthetically lethal with ATR. Applying a genetic ATR knock-in model of colorectal cancer cells, we confirmed that PRIM1 depletion inhibited proliferation of ATR-deficient cells and excluded artifacts due to clonal variation using an ATR reexpressing cell clone. We expanded these data by demonstrating in different cell lines that also chemical inhibition of ATR or its main effector kinase CHK1 reduces proliferation upon depletion of PRIM1. Mechanistically, PRIM1 depletion in ATR-deficient cells caused S-phase stasis in the absence of increased DNA damage followed by Wee1-mediated activation of caspase 8 and apoptosis. As PRIM1 inactivation sensitizes cancer cells to ATR and CHK1 inhibitors, mutations in PRIM1 or other components of the polymerase α-primase complex could represent novel targets for individualized tumor therapeutic approaches using ATR/CHK1 inhibitors, as has been previously demonstrated for POLD1, the catalytic subunit of polymerase δ.
Collapse
Affiliation(s)
- Albert Job
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Lisa-Maria Schmitt
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Lisa von Wenserski
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Brigitte Lankat-Buttgereit
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Thomas M Gress
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Malte Buchholz
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany
| | - Eike Gallmeier
- Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
7
|
Kim D, Liu Y, Oberly S, Freire R, Smolka MB. ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res 2018; 46:8311-8325. [PMID: 30010936 PMCID: PMC6144784 DOI: 10.1093/nar/gky625] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
The ATR kinase is crucial for genome maintenance, but the mechanisms by which ATR controls the DNA repair machinery are not fully understood. Here, we find that long-term chronic inhibition of ATR signaling severely impairs the ability of cells to utilize homologous recombination (HR)-mediated DNA repair. Proteomic analysis shows that chronic ATR inhibition depletes the abundance of key HR factors, suggesting that spontaneous ATR signaling enhances the capacity of cells to use HR-mediated repair by controlling the abundance of the HR machinery. Notably, ATR controls the abundance of HR factors largely via CHK1-dependent transcription, and can also promote stabilization of specific HR proteins. Cancer cells exhibit a strong dependency on ATR signaling for maintaining elevated levels of HR factors, and we propose that increased constitutive ATR signaling caused by augmented replication stress in cancer cells drives the enhanced HR capacity observed in certain tumor types. Overall, these findings define a major pro-HR function for ATR and have important implications for therapy by providing rationale for sensitizing HR-proficient cancer cells to PARP inhibitors.
Collapse
Affiliation(s)
- Dongsung Kim
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yi Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Susannah Oberly
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed. Tel: +1 607 255 0274; Fax: +1 607 255 5961;
| |
Collapse
|
8
|
Jin J, Lv H, Wu J, Li D, Chen K, Zhang F, Han J, Feng J, Zhang N, Yu H, Su D, Ying L. Regenerating Family Member 4 (Reg4) Enhances 5-Fluorouracil Resistance of Gastric Cancer Through Activating MAPK/Erk/Bim Signaling Pathway. Med Sci Monit 2017; 23:3715-3721. [PMID: 28759561 PMCID: PMC5549713 DOI: 10.12659/msm.903134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reg4, a member of the Reg multigene family, is highly upregulated in many gastrointestinal cancers including gastric cancer (GC). The enhanced expression of Reg4 is associated with the resistance of GC to 5-fluorouracil (5-FU), while the underlying mechanism is not clear. The aim of the present study was to explore the resistant mechanism underlying 5-FU resistance. MATERIAL AND METHODS Reg4 expression was assessed by Western blot analysis for SGC-7901, BGC-823, AGS, MKN28, and MKN45. Synthetic short single strand RNA oligonucleotides and Flag-Reg4 plasmid were used to investigate the biological function of Reg4 in vitro. The cell viability assay was performed by MTT. Flow cytometry was carried out to measure the apoptosis caused by 5-FU. Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) was used to examine the expression of 5-FU metabolism related enzymes. The effect of Reg4 on intracellular signaling was evaluated by Western blot. RESULTS Western blot analysis of 5 GC cells showed that Reg4 was low or null in SGC-7901 and BGC-823, while high in AGS, MKN28, and MKN45. Over-expression of flag-Reg4 in SGC-7901 led to an increase in cell viability and lower apoptosis with 5-FU treatment. In contrast, siRNA knockdown of Reg4 enhanced 5-FU induced apoptosis. However, over-expression or knockdown of Reg4 had no significant influence on the expression of 5-FU metabolic enzymes. Further investigation revealed that Reg4 could activate Erk1/2-Bim-caspase3 cascade. CONCLUSIONS Reg4 inhibited apoptosis through regulating MAPK/Erk/Bim signaling pathway and thereby enhanced the resistance of GC to 5-FU.
Collapse
Affiliation(s)
- Jiaoyue Jin
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Hang Lv
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Junzhou Wu
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Dan Li
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Kaiyan Chen
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Fanrong Zhang
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Jing Han
- Tissue Bank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P.R. China
| | - Jianguo Feng
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Nan Zhang
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, U.S.A
| | - Dan Su
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Lisha Ying
- Cancer Research Institute, Zhejiang Cancer Hospital and Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
9
|
Hocke S, Guo Y, Job A, Orth M, Ziesch A, Lauber K, De Toni EN, Gress TM, Herbst A, Göke B, Gallmeier E. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers. Oncotarget 2016; 7:7080-95. [PMID: 26755646 PMCID: PMC4872770 DOI: 10.18632/oncotarget.6857] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022] Open
Abstract
The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Sandra Hocke
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Yang Guo
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Albert Job
- Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Michael Orth
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Andreas Ziesch
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Enrico N De Toni
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Andreas Herbst
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Burkhard Göke
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Eike Gallmeier
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany.,Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
10
|
Data integration reveals key homeostatic mechanisms following low dose radiation exposure. Toxicol Appl Pharmacol 2015; 285:1-11. [PMID: 25655199 DOI: 10.1016/j.taap.2015.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 12/25/2022]
Abstract
The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time - with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24-72h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation.
Collapse
|
11
|
The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma. MICROARRAYS 2014; 3:212-25. [PMID: 27600345 PMCID: PMC4979055 DOI: 10.3390/microarrays3040212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/04/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022]
Abstract
The identification of genes responsible for causing cancers from gene expression data has had varied success. Often the genes identified depend on the methods used for detecting expression patterns, or on the ways that the data had been normalized and filtered. The use of gene set enrichment analysis is one way to introduce biological information in order to improve the detection of differentially expressed genes and pathways. In this paper we show that the use of network models while still subject to the problems of normalization is a more robust method for detecting pathways that are differentially overrepresented in lung cancer data. Such differences may provide opportunities for novel therapeutics. In addition, we present evidence that non-small cell lung carcinoma is not a series of homogeneous diseases; rather that there is a heterogeny within the genotype which defies phenotype classification. This diversity helps to explain the lack of progress in developing therapies against non-small cell carcinoma and suggests that drug development may consider multiple pathways as treatment targets.
Collapse
|
12
|
Kawasumi M, Bradner JE, Tolliday N, Thibodeau R, Sloan H, Brummond KM, Nghiem P. Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity. Cancer Res 2014; 74:7534-45. [PMID: 25336189 DOI: 10.1158/0008-5472.can-14-2650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resistance to DNA-damaging chemotherapy is a barrier to effective treatment that appears to be augmented by p53 functional deficiency in many cancers. In p53-deficient cells in which the G1-S checkpoint is compromised, cell viability after DNA damage relies upon intact intra-S and G2-M checkpoints mediated by the ATR (ataxia telangiectasia and Rad3 related) and Chk1 kinases. Thus, a logical rationale to sensitize p53-deficient cancers to DNA-damaging chemotherapy is through the use of ATP-competitive inhibitors of ATR or Chk1. To discover small molecules that may act on uncharacterized components of the ATR pathway, we performed a phenotype-based screen of 9,195 compounds for their ability to inhibit hydroxyurea-induced phosphorylation of Ser345 on Chk1, known to be a critical ATR substrate. This effort led to the identification of four small-molecule compounds, three of which were derived from known bioactive library (anthothecol, dihydrocelastryl, and erysolin) and one of which was a novel synthetic compound termed MARPIN. These compounds all inhibited ATR-selective phosphorylation and sensitized p53-deficient cancer cells to DNA-damaging agents in vitro and in vivo. Notably, these compounds did not inhibit ATR catalytic activity in vitro, unlike typical ATP-competitive inhibitors, but acted in a mechanistically distinct manner to disable ATR-Chk1 function. Our results highlight a set of novel molecular probes to further elucidate druggable mechanisms to improve cancer therapeutic responses produced by DNA-damaging drugs.
Collapse
Affiliation(s)
- Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington.
| | - James E Bradner
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nicola Tolliday
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Renee Thibodeau
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Heather Sloan
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Kay M Brummond
- University of Pittsburgh Center for Chemical Methodologies and Library Development, Pittsburgh, Pennsylvania
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
13
|
Dillon MT, Good JS, Harrington KJ. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:257-65. [PMID: 24581946 DOI: 10.1016/j.clon.2014.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/22/2014] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
Abstract
Despite tremendous advances in radiotherapy techniques, allowing dose escalation to tumour tissues and sparing of organs at risk, cure rates from radiotherapy or chemoradiotherapy remain suboptimal for most cancers. In tandem with our growing understanding of tumour biology, we are beginning to appreciate that targeting the molecular response to radiation-induced DNA damage holds great promise for selective tumour radiosensitisation. In particular, approaches that inhibit cell cycle checkpoint controls offer a means of exploiting molecular differences between tumour and normal cells, thereby inducing so-called cancer-specific synthetic lethality. In this overview, we discuss cellular responses to radiation-induced damage and discuss the potential of using G2/M cell cycle checkpoint inhibitors as a means of enhancing tumour control rates.
Collapse
Affiliation(s)
- M T Dillon
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK
| | - J S Good
- The Royal Marsden Hospital, London, UK
| | - K J Harrington
- The Institute of Cancer Research, Targeted Therapy Team, Chester Beatty Laboratories, London, UK; The Royal Marsden Hospital, London, UK.
| |
Collapse
|
14
|
Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 2014; 15:3403-31. [PMID: 24573252 PMCID: PMC3975345 DOI: 10.3390/ijms15033403] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
When a human cell detects damaged DNA, it initiates the DNA damage response (DDR) that permits it to repair the damage and avoid transmitting it to daughter cells. Despite this response, changes to the genome occur and some cells, such as proliferating cancer cells, are prone to genome instability. The cellular processes that lead to genomic changes after a genotoxic event are not well understood. Our research focuses on the relationship between genotoxic cancer drugs and checkpoint adaptation, which is the process of mitosis with damaged DNA. We examine the types of DNA damage induced by widely used cancer drugs and describe their effects upon proliferating cancer cells. There is evidence that cell death caused by genotoxic cancer drugs in some cases includes exiting a DNA damage cell cycle arrest and entry into mitosis. Furthermore, some cells are able to survive this process at a time when the genome is most susceptible to change or rearrangement. Checkpoint adaptation is poorly characterised in human cells; we predict that increasing our understanding of this pathway may help to understand genomic instability in cancer cells and provide insight into methods to improve the efficacy of current cancer therapies.
Collapse
|
15
|
Fokas E, Prevo R, Hammond EM, Brunner TB, McKenna WG, Muschel RJ. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat Rev 2014; 40:109-17. [PMID: 23583268 DOI: 10.1016/j.ctrv.2013.03.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
Abstract
The ataxia telangiectasia and Rad3-related (ATR) plays an important role in maintaining genome integrity during DNA replication through the phosphorylation and activation of Chk1 and regulation of the DNA damage response. Preclinical studies have shown that disruption of ATR pathway can exacerbate the levels of replication stress in oncogene-driven murine tumors to promote cell killing. Additionally, inhibition of ATR can sensitise tumor cells to radiation or chemotherapy. Accumulating evidence suggests that targeting ATR can selectively sensitize cancer cells but not normal cells to DNA damage. Furthermore, in hypoxic conditions, ATR blockade results in overloading replication stress and DNA damage response causing cell death. Despite the attractiveness of ATR inhibition in the treatment of cancer, specific ATR inhibitors have remained elusive. In the last two years however, selective ATR inhibitors suitable for in vitro and - most recently - in vivo studies have been identified. In this article, we will review the literature on ATR function, its role in DDR and the potential of ATR inhibition to enhance the efficacy of radiation and chemotherapy.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, Oxford University, Oxford, United Kingdom; Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Das D, Preet R, Mohapatra P, Satapathy SR, Kundu CN. 1,3-Bis(2-chloroethyl)-1-nitrosourea enhances the inhibitory effect of Resveratrol on 5-fluorouracil sensitive/resistant colon cancer cells. World J Gastroenterol 2013; 19:7374-7388. [PMID: 24259968 PMCID: PMC3831219 DOI: 10.3748/wjg.v19.i42.7374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/22/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the mechanism of 5-fluorouracil (5-FU) resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.
METHODS: We established and characterized a 5-FU resistance (5-FU-R) cell line derived from continuous exposure (25 μmol/L) to 5-FU for 20 wk in 5-FU sensitive HCT-116 cells. The proliferation and expression of different representative apoptosis and anti-apoptosis markers in 5-FU sensitive and 5-FU resistance cells were measured by the MTT assay and by Western blotting, respectively, after treatment with Resveratrol (Res) and/or 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU). Apoptosis and cell cycle arrest was measured by 4',6'-diamidino-2-phenylindole hydrochloride staining and fluorescence-activated cell sorting analysis, respectively. The extent of DNA damage was measured by the Comet assay. We measured the visible changes in the DNA damage/repair cascade by Western blotting.
RESULTS: The widely used chemotherapeutic agents BCNU and Res decreased the growth of 5-FU sensitive HCT-116 cells in a dose dependent manner. Combined application of BCNU and Res caused more apoptosis in 5-FU sensitive cells in comparison to individual treatment. In addition, the combined application of BCNU and Res caused a significant decrease of major DNA base excision repair components in 5-FU sensitive cells. We established a 5-FU resistance cell line (5-FU-R) from 5-FU-sensitive HCT-116 (mismatch repair deficient) cells that was not resistant to other chemotherapeutic agents (e.g., BCNU, Res) except 5-FU. The 5-FU resistance of 5-FU-R cells was assessed by exposure to increasing concentrations of 5-FU followed by the MTT assay. There was no significant cell death noted in 5-FU-R cells in comparison to 5-FU sensitive cells after 5-FU treatment. This resistant cell line overexpressed anti-apoptotic [e.g., AKT, nuclear factor κB, FLICE-like inhibitory protein), DNA repair (e.g., DNA polymerase beta (POL-β), DNA polymerase eta (POLH), protein Flap endonuclease 1 (FEN1), DNA damage-binding protein 2 (DDB2)] and 5-FU-resistance proteins (thymidylate synthase) but under expressed pro-apoptotic proteins (e.g., DAB2, CK1) in comparison to the parental cells. Increased genotoxicity and apoptosis were observed in resistant cells after combined application of BCNU and Res in comparison to untreated or parental cells. BCNU increased the sensitivity to Res of 5-FU resistant cells compared with parental cells. Fifty percent cell death were noted in parental cells when 18 μmol/L of Res was associated with fixed concentration (20 μmol/L) of BCNU, but a much lower concentration of Res (8 μmol/L) was needed to achieve the same effect in 5-FU resistant cells. Interestingly, increased levels of adenomatous polyposis coli and decreased levels POL-β, POLH, FEN1 and DDB2 were noted after the same combined treatment in resistant cells.
CONCLUSION: BCNU combined with Res exerts a synergistic effect that may prove useful for the treatment of colon cancer and to overcome drug resistance.
Collapse
|
17
|
Huntoon CJ, Flatten KS, Wahner Hendrickson AE, Huehls AM, Sutor SL, Kaufmann SH, Karnitz LM. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status. Cancer Res 2013; 73:3683-91. [PMID: 23548269 DOI: 10.1158/0008-5472.can-13-0110] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Replication stress and DNA damage activate the ATR-Chk1 checkpoint signaling pathway that licenses repair and cell survival processes. In this study, we examined the respective roles of the ATR and Chk1 kinases in ovarian cancer cells using genetic and pharmacologic inhibitors in combination with cisplatin, topotecan, gemcitabine, and the PARP inhibitor veliparib (ABT-888), four agents with clinical activity in ovarian cancer. RNA interference (RNAi)-mediated depletion or inhibition of ATR sensitized ovarian cancer cells to all four agents. In contrast, while cisplatin, topotecan, and gemcitabine each activated Chk1, RNAi-mediated depletion or inhibition of this kinase in cells sensitized them only to gemcitabine. Unexpectedly, we found that neither the ATR kinase inhibitor VE-821 nor the Chk1 inhibitor MK-8776 blocked ATR-mediated Chk1 phosphorylation or autophosphorylation, two commonly used readouts for inhibition of the ATR-Chk1 pathway. Instead, their ability to sensitize cells correlated with enhanced CDC25A levels. In addition, we also found that VE-821 could further sensitize BRCA1-depleted cells to cisplatin, topotecan, and veliparib beyond the potent sensitization already caused by their deficiency in homologous recombination. Taken together, our results established that ATR and Chk1 inhibitors differentially sensitize ovarian cancer cells to commonly used chemotherapy agents and that Chk1 phosphorylation status may not offer a reliable marker for inhibition of the ATR-Chk1 pathway. A key implication of our work is the clinical rationale it provides to evaluate ATR inhibitors in combination with PARP inhibitors in BRCA1/2-deficient cells.
Collapse
Affiliation(s)
- Catherine J Huntoon
- Divisions of Oncology Research and Medical Oncology, and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Foote KM, Blades K, Cronin A, Fillery S, Guichard SS, Hassall L, Hickson I, Jacq X, Jewsbury PJ, McGuire TM, Nissink JWM, Odedra R, Page K, Perkins P, Suleman A, Tam K, Thommes P, Broadhurst R, Wood C. Discovery of 4-{4-[(3R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J Med Chem 2013; 56:2125-38. [PMID: 23394205 DOI: 10.1021/jm301859s] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ATR is an attractive new anticancer drug target whose inhibitors have potential as chemo- or radiation sensitizers or as monotherapy in tumors addicted to particular DNA-repair pathways. We describe the discovery and synthesis of a series of sulfonylmorpholinopyrimidines that show potent and selective ATR inhibition. Optimization from a high quality screening hit within tight SAR space led to compound 6 (AZ20) which inhibits ATR immunoprecipitated from HeLa nuclear extracts with an IC50 of 5 nM and ATR mediated phosphorylation of Chk1 in HT29 colorectal adenocarcinoma tumor cells with an IC50 of 50 nM. Compound 6 potently inhibits the growth of LoVo colorectal adenocarcinoma tumor cells in vitro and has high free exposure in mouse following moderate oral doses. At well tolerated doses 6 leads to significant growth inhibition of LoVo xenografts grown in nude mice. Compound 6 is a useful compound to explore ATR pharmacology in vivo.
Collapse
Affiliation(s)
- Kevin M Foote
- AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, Vallis KA, Hammond EM, Olcina MM, Gillies McKenna W, Muschel RJ, Brunner TB. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 2012; 3:e441. [PMID: 23222511 PMCID: PMC3542617 DOI: 10.1038/cddis.2012.181] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/29/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
Combined radiochemotherapy is the currently used therapy for locally advanced pancreatic ductal adenocarcinoma (PDAC), but normal tissue toxicity limits its application. Here we test the hypothesis that inhibition of ATR (ATM-Rad3-related) could increase the sensitivity of the cancer cells to radiation or chemotherapy without affecting normal cells. We tested VE-822, an ATR inhibitor, for in vitro and in vivo radiosensitization. Chk1 phosphorylation was used to indicate ATR activity, γH2AX and 53BP1 foci as evidence of DNA damage and Rad51 foci for homologous recombination activity. Sensitivity to radiation (XRT) and gemcitabine was measured with clonogenic assays in vitro and tumor growth delay in vivo. Murine intestinal damage was evaluated after abdominal XRT. VE-822 inhibited ATR in vitro and in vivo. VE-822 decreased maintenance of cell-cycle checkpoints, increased persistent DNA damage and decreased homologous recombination in irradiated cancer cells. VE-822 decreased survival of pancreatic cancer cells but not normal cells in response to XRT or gemcitabine. VE-822 markedly prolonged growth delay of pancreatic cancer xenografts after XRT and gemcitabine-based chemoradiation without augmenting normal cell or tissue toxicity. These findings support ATR inhibition as a promising new approach to improve the therapeutic ration of radiochemotherapy for patients with PDAC.
Collapse
Affiliation(s)
- E Fokas
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - R Prevo
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - J R Pollard
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, UK
| | - P M Reaper
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, UK
| | - P A Charlton
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, Oxfordshire, UK
| | - B Cornelissen
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - K A Vallis
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - E M Hammond
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - M M Olcina
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - W Gillies McKenna
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - R J Muschel
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| | - T B Brunner
- Gray Institute for Radiation Oncology and Biology, Oxford University, Oxford, UK
| |
Collapse
|
20
|
Huehls AM, Wagner JM, Huntoon CJ, Karnitz LM. Identification of DNA repair pathways that affect the survival of ovarian cancer cells treated with a poly(ADP-ribose) polymerase inhibitor in a novel drug combination. Mol Pharmacol 2012; 82:767-76. [PMID: 22833573 PMCID: PMC3463227 DOI: 10.1124/mol.112.080614] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/24/2012] [Indexed: 12/17/2022] Open
Abstract
Floxuridine (5-fluorodeoxyuridine, FdUrd), a U.S. Food and Drug Administration-approved drug and metabolite of 5-fluorouracil, causes DNA damage that is repaired by base excision repair (BER). Thus, poly(ADP-ribose) polymerase (PARP) inhibitors, which disrupt BER, markedly sensitize ovarian cancer cells to FdUrd, suggesting that this combination may have activity in this disease. It remains unclear, however, which DNA repair and checkpoint signaling pathways affect killing by these agents individually and in combination. Here we show that depleting ATR, BRCA1, BRCA2, or RAD51 sensitized to ABT-888 (veliparib) alone, FdUrd alone, and FdUrd + ABT-888 (F+A), suggesting that homologous recombination (HR) repair protects cells exposed to these agents. In contrast, disabling the mismatch, nucleotide excision, Fanconi anemia, nonhomologous end joining, or translesion synthesis repair pathways did not sensitize to these agents alone (including ABT-888) or in combination. Further studies demonstrated that in BRCA1-depleted cells, F+A was more effective than other chemotherapy+ABT-888 combinations. Taken together, these studies 1) identify DNA repair and checkpoint pathways that are important in ovarian cancer cells treated with FdUrd, ABT-888, and F+A, 2) show that disabling HR at the level of ATR, BRCA1, BRCA2, or RAD51, but not Chk1, ATM, PTEN, or FANCD2, sensitizes cells to ABT-888, and 3) demonstrate that even though ABT-888 sensitizes ovarian tumor cells with functional HR to FdUrd, the effects of this drug combination are more profound in tumors with HR defects, even compared with other chemotherapy + ABT-888 combinations, including cisplatin + ABT-888.
Collapse
Affiliation(s)
- Amelia M Huehls
- Division of Oncology Research, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
21
|
Tomicic MT, Kaina B. Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta Rev Cancer 2012; 1835:11-27. [PMID: 23006513 DOI: 10.1016/j.bbcan.2012.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 12/11/2022]
Abstract
Topoisomerase I (TOP1) inhibitors applied in cancer therapy such as topotecan and irinotecan are derivatives of the natural alkaloid camptothecin (CPT). The mechanism of CPT poisoning of TOP1 rests on inhibition of the re-ligation function of the enzyme resulting in the stabilization of the TOP1-cleavable complex. In the presence of CPTs this enzyme-DNA complex impairs transcription and DNA replication, resulting in fork stalling and the formation of DNA double-strand breaks (DSB) in proliferating cells. As with most chemotherapeutics, intrinsic and acquired drug resistance represents a hurdle that limits the success of CPT therapy. Preclinical data indicate that resistance to CPT-based drugs might be caused by factors such as (a) poor drug accumulation in the tumor, (b) high rate of drug efflux, (c) mutations in TOP1 leading to failure in CPT docking, or (d) altered signaling triggered by the drug-TOP1-DNA complex, (e) expression of DNA repair proteins, and (f) failure to activate cell death pathways. This review will focus on the issues (d-f). We discuss degradation of TOP1 as part of the repair pathway in the processing of TOP1 associated DNA damage, give a summary of proteins involved in repair of CPT-induced replication mediated DSB, and highlight the role of p53 and inhibitors of apoptosis proteins (IAPs), particularly XIAP and survivin, in cancer cell resistance to CPT-like chemotherapeutics.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Germany.
| | | |
Collapse
|
22
|
Harris DR, Mims A, Bunz F. Genetic disruption of USP9X sensitizes colorectal cancer cells to 5-fluorouracil. Cancer Biol Ther 2012; 13:1319-24. [PMID: 22895071 DOI: 10.4161/cbt.21792] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The X-linked deubiquitinase USP9X affects the stability and activity of numerous regulatory proteins that influence cell survival. Recent studies suggest that decreased USP9X expression can confer a selective advantage onto developing cancer cells and thereby promotes disease progression. To examine the effect of USP9X on the cellular responses to anticancer therapies, we derived cancer cell lines in which the USP9X locus was disrupted by homologous recombination. The resulting USP9X-deficient cancer cells exhibited increased activation of apoptotic pathways and markedly decreased clonogenic survival in response to 5-fluorouracil, a chemotherapeutic drug that is widely used for treatment of gastrointestinal malignancies. These unexpected results suggest that cancers with low USP9X expression might be specifically sensitized to some conventional therapeutic agents.
Collapse
Affiliation(s)
- Dennis R Harris
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
23
|
Abstract
Background: Most solid tumours contain regions of sub-optimal oxygen concentration (hypoxia). Hypoxic cancer cells are more resistant to radiotherapy and represent the most aggressive fraction of a tumour. It is therefore essential that strategies continue to be developed to target hypoxic cancer cells. Inhibition of the DNA damage response (DDR) might be an effective way of sensitising hypoxic tumour cells to radiotherapy. Methods: Here, we describe the cellular effects of pharmacological inhibition of the apical DDR kinase ATR (Ataxia Telangiectasia and Rad 3 related) with a highly selective inhibitor, VE-821, in hypoxic conditions and its potential as a radiosensitiser. Results: VE-821 was shown to inhibit ATR-mediated signalling in response to replication arrest induced by severe hypoxia. In these same conditions, VE-821 induced DNA damage and consequently increased Ataxia Telangiectasia Mutated-mediated phosphorylation of H2AX and KAP1. Consistently, ATR inhibition sensitised tumour cell lines to a range of oxygen tensions. Most importantly, VE-821 increased radiation-induced loss of viability in hypoxic conditions. Using this inhibitor we have also demonstrated for the first time a link between ATR and the key regulator of the hypoxic response, HIF-1. HIF-1 stabilisation and transcriptional activity were both decreased in response to ATR inhibition. Conclusion: These findings suggest that ATR inhibition represents a novel strategy to target tumour cells in conditions relevant to pathophysiology and enhance the efficacy of radiotherapy.
Collapse
|
24
|
Shin MH, Yuan M, Zhang H, Margolick JB, Kai M. ATM-dependent phosphorylation of the checkpoint clamp regulates repair pathways and maintains genomic stability. Cell Cycle 2012; 11:1796-803. [PMID: 22453082 PMCID: PMC3372382 DOI: 10.4161/cc.20161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Upon genotoxic stress and during normal S phase, ATM phosphorylates the checkpoint clamp protein Rad9 in a manner that depends on Ser272. Ser272 is the only known ATM-dependent phosphorylation site in human Rad9. However, Ser272 phosphorylation is not required for survival or checkpoint activation after DNA damage. The physiological function of Ser272 remains elusive. Here, we show that ATM-dependent Rad9(Ser272) phosphorylation requires the MRN complex and controls repair pathways. Furthermore, the mutant cells accumulate large numbers of chromosome breaks and induce gross chromosomal rearrangements. Our findings establish a new and unexpected role for ATM: it phosphorylates the checkpoint clamp in order to control repair pathways, thereby maintaining genomic integrity during unperturbed cell cycle and upon DNA damage.
Collapse
Affiliation(s)
- Min Hwa Shin
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Ming Yuan
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology; Bloomberg School of Public Health; Johns Hopkins University; Baltimore, MD USA
| | - Mihoko Kai
- Department of Radiation Oncology and Molecular Radiation Sciences; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
25
|
Shin S, Wolgamott L, Yoon SO. Glycogen synthase kinase (GSK)-3 and mammalian target of rapamycin complex 1 (mTORC1) cooperate to regulate protein S6 kinase 1 (S6K1). Cell Cycle 2012; 11:1053-4. [DOI: 10.4161/cc.11.6.19784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
de la Cruz-Morcillo MA, Valero MLL, Callejas-Valera JL, Arias-González L, Melgar-Rojas P, Galán-Moya EM, García-Gil E, García-Cano J, Sánchez-Prieto R. P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. Oncogene 2012; 31:1073-85. [PMID: 21841826 DOI: 10.1038/onc.2011.321] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 12/30/2022]
Abstract
5-Fluorouracil (5-FU), together with other drugs such as oxaliplatin, is one of the most important pharmacological agents in the treatment of colorectal cancer. Although mitogen-activated protein kinases (MAPKs) have been extensively connected with resistance to platinum compounds, no role has been established in 5-FU resistance. Here we demonstrate that p38MAPK activation is a key determinant in the cellular response to 5-FU. Thus, inhibition of p38MAPKα by SB203580 compound or by short-hairpin RNA interference-specific knockdown correlates with a decrease in the 5-FU-associated apoptosis and chemical resistance in both HaCaT and HCT116 cells. Activation of p38MAPK by 5-FU was dependent on canonical MAP2K, MAPK kinase (MKK)-3 and MKK6. In addition, ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) showed a redundancy of function for the final activation of p38MAPK. Resistance associated with p38MAPK inhibition correlates with an autophagic response that was mediated by a decrease in p53-driven apoptosis, without effect onto p53-dependent autophagy. Moreover, the results with colorectal cancer-derived cell lines with different p53 status and patterns of resistance to 5-FU suggest that de novo and acquired resistance was controlled by similar mechanisms. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the cellular response to 5-FU by controlling the balance between apoptosis and autophagy.
Collapse
Affiliation(s)
- M A de la Cruz-Morcillo
- Laboratorio de Oncología Molecular, Centro Regional de Investigaciones Biomédicas, CRIB/PCYTA, Universidad de Castilla-La Mancha, UCLM, Albacete, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Morandell S, Yaffe MB. Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:289-314. [PMID: 22749150 DOI: 10.1016/b978-0-12-387665-2.00011-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA damage signaling and checkpoint control pathways are among the most commonly mutated networks in human tumors. Emerging data suggest that synthetic lethal interactions between mutated oncogenes or tumor suppressor genes with molecules involved in the DNA damage response and DNA repair pathways can be therapeutically exploited to preferentially kill cancer cells. In this review, we discuss the concept of synthetic lethality with a focus on p53, a commonly lost tumor suppressor gene, in the context of DNA damage signaling. We describe several recent examples in which this concept was successfully applied to target tumor cells in culture or in mouse models, as well as in human cancer patients.
Collapse
Affiliation(s)
- Sandra Morandell
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
28
|
Yang Z, Waldman AS, Wyatt MD. Expression and regulation of RAD51 mediate cellular responses to chemotherapeutics. Biochem Pharmacol 2011; 83:741-6. [PMID: 22222428 DOI: 10.1016/j.bcp.2011.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 02/07/2023]
Abstract
There is evidence that RAD51 expression associates with resistance to commonly used chemotherapeutics. Our previous work demonstrated that inhibitors of thymidylate synthase (TS) induced RAD51-dependent homologous recombination (HR), and depleting the RAD51 recombinase sensitized cells to TS inhibitors. In this study, the consequences of RAD51 over-expression were studied. Over-expression of wild-type RAD51 (∼6-fold above endogenous RAD51) conferred resistance to TS inhibitors. In contrast, over-expression of a mutant RAD51 (T309A) that is incapable of being phosphorylated rendered cells more chemosensitive. Moreover, over-expression of the T309A mutant acted in a dominant negative manner over endogenous RAD51 by causing the reduced localization of RAD51 foci following treatment with TS inhibitors. To measure the effect of mutant RAD51 on the cellular response to other DNA damaging chemotherapeutics, the topoisomerase poison etoposide was utilized. Cells over-expressing wild-type RAD51 showed reduced DNA strand breaks, while cells over-expressing the mutant RAD51 showed more than twice as many strand breaks, suggesting that the mutant RAD51 was actively inhibiting strand break resolution. To directly demonstrate an effect on HR, wild-type RAD51 and T309A mutant RAD51 were transiently expressed in HeLa cells that contained an HR reporter construct. HR events provoked by DNA breaks induced by the I-SceI endonuclease increased in cells expressing wild-type RAD51 and decreased in cells expressing the T309A mutant. Collectively, the data suggest that interference with the activation of RAD51-mediated HR represents a potentially useful anticancer target for combination therapies.
Collapse
Affiliation(s)
- Zhengguan Yang
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | | | | |
Collapse
|
29
|
Checkpoint signaling, base excision repair, and PARP promote survival of colon cancer cells treated with 5-fluorodeoxyuridine but not 5-fluorouracil. PLoS One 2011; 6:e28862. [PMID: 22194930 PMCID: PMC3240632 DOI: 10.1371/journal.pone.0028862] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/16/2011] [Indexed: 12/19/2022] Open
Abstract
The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor.
Collapse
|
30
|
Wilsker D, Chung JH, Pradilla I, Petermann E, Helleday T, Bunz F. Targeted mutations in the ATR pathway define agent-specific requirements for cancer cell growth and survival. Mol Cancer Ther 2011; 11:98-107. [PMID: 22084169 DOI: 10.1158/1535-7163.mct-11-0675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Many anticancer agents induce DNA strand breaks or cause the accumulation of DNA replication intermediates. The protein encoded by ataxia-telangiectasia mutated and Rad 3-related (ATR) generates signals in response to these altered DNA structures and activates cellular survival responses. Accordingly, ATR has drawn increased attention as a potential target for novel therapeutic strategies designed to potentiate the effects of existing drugs. In this study, we use a unique panel of genetically modified human cancer cells to unambiguously test the roles of upstream and downstream components of the ATR pathway in the responses to common therapeutic agents. Upstream, the S-phase-specific cyclin-dependent kinase (Cdk) 2 was required for robust activation of ATR in response to diverse chemotherapeutic agents. While Cdk2-mediated ATR activation promoted cell survival after treatment with many drugs, signaling from ATR directly to the checkpoint kinase Chk1 was required for survival responses to only a subset of the drugs tested. These results show that specifically inhibiting the Cdk2/ATR/Chk1 pathway via distinct regulators can differentially sensitize cancer cells to a wide range of therapeutic agents.
Collapse
Affiliation(s)
- Deborah Wilsker
- Department of Radiation Oncology and Molecular Radiation Sciences and The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
31
|
Protection from UV-induced skin carcinogenesis by genetic inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase. Proc Natl Acad Sci U S A 2011; 108:13716-21. [PMID: 21844338 DOI: 10.1073/pnas.1111378108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multiple human epidemiologic studies link caffeinated (but not decaffeinated) beverage intake with significant decreases in several types of cancer, including highly prevalent UV-associated skin carcinomas. The mechanism by which caffeine protects against skin cancer is unknown. Ataxia telangiectasia and Rad3-related (ATR) is a replication checkpoint kinase activated by DNA stresses and is one of several targets of caffeine. Suppression of ATR, or its downstream target checkpoint kinase 1 (Chk1), selectively sensitizes DNA-damaged and malignant cells to apoptosis. Agents that target this pathway are currently in clinical trials. Conversely, inhibition of other DNA damage response pathways, such as ataxia telangiectasia mutated (ATM) and BRCA1, promotes cancer. To determine the effect of replication checkpoint inhibition on carcinogenesis, we generated transgenic mice with diminished ATR function in skin and crossed them into a UV-sensitive background, Xpc(-/-). Unlike caffeine, this genetic approach was selective and had no effect on ATM activation. These transgenic mice were viable and showed no histological abnormalities in skin. Primary keratinocytes from these mice had diminished UV-induced Chk1 phosphorylation and twofold augmentation of apoptosis after UV exposure (P = 0.006). With chronic UV treatment, transgenic mice remained tumor-free for significantly longer (P = 0.003) and had 69% fewer tumors at the end of observation of the full cohort (P = 0.019), compared with littermate controls with the same genetic background. This study suggests that inhibition of replication checkpoint function can suppress skin carcinogenesis and supports ATR inhibition as the relevant mechanism for the protective effect of caffeinated beverage intake in human epidemiologic studies.
Collapse
|
32
|
Gallmeier E, Hermann PC, Mueller MT, Machado JG, Ziesch A, De Toni EN, Palagyi A, Eisen C, Ellwart JW, Rivera J, Rubio-Viqueira B, Hidalgo M, Bunz F, Göke B, Heeschen C. Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133(+) tumor-initiating cell fraction. Stem Cells 2011; 29:418-29. [PMID: 21308861 DOI: 10.1002/stem.595] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The identification of novel approaches to specifically target the DNA-damage checkpoint response in chemotherapy-resistant cancer stem cells (CSC) of solid tumors has recently attracted great interest. We show here in colon cancer cell lines and primary colon cancer cells that inhibition of checkpoint-modulating phosphoinositide 3-kinase-related (PIK) kinases preferentially depletes the chemoresistant and exclusively tumorigenic CD133(+) cell fraction. We observed a time- and dose-dependent disproportionally pronounced loss of CD133(+) cells and the consecutive lack of in vitro and in vivo tumorigenicity of the remaining cells. Depletion of CD133(+) cells was initiated through apoptosis of cycling CD133(+) cells and further substantiated through subsequent recruitment of quiescent CD133(+) cells into the cell cycle followed by their elimination. Models using specific PIK kinase inhibitors, somatic cell gene targeting, and RNA interference demonstrated that the observed detrimental effects of caffeine on CSC were attributable specifically to the inhibition of the PIK kinase ataxia telangiectasia- and Rad3-related (ATR). Mechanistically, phosphorylation of CHK1 checkpoint homolog (S. pombe; CHK1) was significantly enhanced in CD133(+) as compared with CD133(-) cells on treatment with DNA interstrand-crosslinking (ICL) agents, indicating a preferential activation of the ATR/CHK1-dependent DNA-damage response in tumorigenic CD133(+) cells. Consistently, the chemoresistance of CD133(+) cells toward DNA ICL agents was overcome through inhibition of ATR/CHK1-signaling. In conclusion, our study illustrates a novel target to eliminate the tumorigenic CD133(+) cell population in colon cancer and provides another rationale for the development of specific ATR-inhibitors.
Collapse
Affiliation(s)
- Eike Gallmeier
- Department of Medicine II, Campus Grosshadern, Ludwigs-Maximilian-University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huehls AM, Wagner JM, Huntoon CJ, Geng L, Erlichman C, Patel AG, Kaufmann SH, Karnitz LM. Poly(ADP-Ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells. Cancer Res 2011; 71:4944-54. [PMID: 21613406 PMCID: PMC3138894 DOI: 10.1158/0008-5472.can-11-0814] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
5-Fluorouracil (5-FU) and 5-fluorodeoxyuridine (FdUrd, floxuridine) have activity in multiple tumors, and both agents undergo intracellular processing to active metabolites that disrupt RNA and DNA metabolism. These agents cause imbalances in deoxynucleotide triphosphate levels and the accumulation of uracil and 5-FU in the genome, events that activate the ATR- and ATM-dependent checkpoint signaling pathways and the base excision repair (BER) pathway. Here, we assessed which DNA damage response and repair processes influence 5-FU and FdUrd toxicity in ovarian cancer cells. These studies revealed that disabling the ATM, ATR, or BER pathways using small inhibitory RNAs did not affect 5-FU cytotoxicity. In stark contrast, ATR and a functional BER pathway protected FdUrd-treated cells. Consistent with a role for the BER pathway, the poly(ADP-ribose) polymerase (PARP) inhibitors ABT-888 (veliparib) and AZD2281 (olaparib) markedly synergized with FdUrd but not with 5-FU in ovarian cancer cell lines. Furthermore, ABT-888 synergized with FdUrd far more effectively than other agents commonly used to treat ovarian cancer. These findings underscore differences in the cytotoxic mechanisms of 5-FU and FdUrd and suggest that combining FdUrd and PARP inhibitors may be an innovative therapeutic strategy for ovarian tumors.
Collapse
Affiliation(s)
- Amelia M. Huehls
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Jill M. Wagner
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Catherine J. Huntoon
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Liyi Geng
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Charles Erlichman
- Division of Medical Oncology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Anand G. Patel
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Scott H. Kaufmann
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Larry M. Karnitz
- Division of Oncology Research, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, Minnesota
- Department of Radiation Oncology, Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
34
|
Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JMC, Pollard JR. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 2011; 7:428-30. [PMID: 21490603 DOI: 10.1038/nchembio.573] [Citation(s) in RCA: 493] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 04/01/2011] [Indexed: 12/31/2022]
Abstract
Here we report a comprehensive biological characterization of a potent and selective small-molecule inhibitor of the DNA damage response (DDR) kinase ATR. We show a profound synthetic lethal interaction between ATR and the ATM-p53 tumor suppressor pathway in cells treated with DNA-damaging agents and establish ATR inhibition as a way to transform the outcome for patients with cancer treated with ionizing radiation or genotoxic drugs.
Collapse
|
35
|
Charrier JD, Durrant SJ, Golec JMC, Kay DP, Knegtel RMA, MacCormick S, Mortimore M, O'Donnell ME, Pinder JL, Reaper PM, Rutherford AP, Wang PSH, Young SC, Pollard JR. Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 2011; 54:2320-30. [PMID: 21413798 DOI: 10.1021/jm101488z] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA-damaging agents are among the most frequently used anticancer drugs. However, they provide only modest benefit in most cancers. This may be attributed to a genome maintenance network, the DNA damage response (DDR), that recognizes and repairs damaged DNA. ATR is a major regulator of the DDR and an attractive anticancer target. Herein, we describe the discovery of a series of aminopyrazines with potent and selective ATR inhibition. Compound 45 inhibits ATR with a K(i) of 6 nM, shows >600-fold selectivity over related kinases ATM or DNA-PK, and blocks ATR signaling in cells with an IC(50) of 0.42 μM. Using this compound, we show that ATR inhibition markedly enhances death induced by DNA-damaging agents in certain cancers but not normal cells. This differential response between cancer and normal cells highlights the great potential for ATR inhibition as a novel mechanism to dramatically increase the efficacy of many established drugs and ionizing radiation.
Collapse
Affiliation(s)
- Jean-Damien Charrier
- Chemistry Department, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Glanzer JG, Liu S, Oakley GG. Small molecule inhibitor of the RPA70 N-terminal protein interaction domain discovered using in silico and in vitro methods. Bioorg Med Chem 2011; 19:2589-95. [PMID: 21459001 DOI: 10.1016/j.bmc.2011.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/25/2011] [Accepted: 03/06/2011] [Indexed: 01/26/2023]
Abstract
The pharmacological suppression of the DNA damage response and DNA repair can increase the therapeutic indices of conventional chemotherapeutics. Replication Protein A (RPA), the major single-stranded DNA binding protein in eukaryotes, is required for DNA replication, DNA repair, DNA recombination, and DNA damage response signaling. Through the use of high-throughput screening of 1500 compounds, we have identified a small molecule inhibitor, 15-carboxy-13-isopropylatis-13-ene-17,18-dioic acid (NSC15520), that inhibited both the binding of Rad9-GST and p53-GST fusion proteins to the RPA N-terminal DNA binding domain (DBD), interactions that are essential for robust DNA damage signaling. NSC15520 competitively inhibited the binding of p53-GST peptide with an IC(50) of 10 μM. NSC15520 also inhibited helix destabilization of a duplex DNA (dsDNA) oligonucleotide, an activity dependent on the N-terminal domain of RPA70. NSC15520 did not inhibit RPA from binding single-stranded oligonucleotides, suggesting that the action of this inhibitor is specific for the N-terminal DBD of RPA, and does not bind to DBDs essential for single-strand DNA binding. Computer modeling implicates direct competition between NSC15520 and Rad9 for the same binding surface on RPA. Inhibitors of protein-protein interactions within the N-terminus of RPA are predicted to act synergistically with DNA damaging agents and inhibitors of DNA repair. Novel compounds such as NSC15520 have the potential to serve as chemosensitizing agents.
Collapse
Affiliation(s)
- Jason G Glanzer
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, United States.
| | | | | |
Collapse
|
37
|
Sangster-Guity N, Conrad BH, Papadopoulos N, Bunz F. ATR mediates cisplatin resistance in a p53 genotype-specific manner. Oncogene 2011; 30:2526-33. [PMID: 21258400 PMCID: PMC3107343 DOI: 10.1038/onc.2010.624] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein kinase encoded by the ataxia-telangiectasia and Rad3-related (ATR) gene is activated by DNA damaging agents that are frequently employed as anticancer therapeutics. Inhibition of ATR expression in cultured cancer cells has been demonstrated to increase sensitivity to chemotherapeutic drugs, including the DNA crosslinking agent cisplatin. Cisplatin is a widely employed and effective drug, but its use is associated with significant toxicity. Here, we demonstrate that genetic inhibition of ATR expression selectively enhanced cisplatin sensitivity in human colorectal cancer cells with inactivated p53. A knockin strategy was employed to restore wild type p53 in cells harboring wild type or mutant ATR alleles. Knockin of functional p53 in ATR-deficient cells restored checkpoint function, suppressed apoptotic pathways, and dramatically increased clonogenic survival after cisplatin treatment. These results suggest that a strategy that combines specific inhibitors of ATR and conventional therapies might promote synthetic lethality in p53-deficient tumors while minimizing toxicity to normal tissues.
Collapse
Affiliation(s)
- N Sangster-Guity
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
38
|
Manthey KC, Glanzer JG, Dimitrova DD, Oakley GG. Hyperphosphorylation of replication protein A in cisplatin-resistant and -sensitive head and neck squamous cell carcinoma cell lines. Head Neck 2010; 32:636-45. [PMID: 19787780 DOI: 10.1002/hed.21234] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Resistance to chemotherapy is a major limitation in the treatment of head and neck squamous cell carcinomas (HNSCCs), accounting for high mortality rates in patients. Here, we investigated the role of replication protein A (RPA) in cisplatin and etoposide resistance. METHODS We used 6 parental HNSCC cell lines. We also generated 1 cisplatin-resistant progeny subline from a parental cisplatin-sensitive cell line, to examine cisplatin resistance and sensitivity with respect to RPA2 hyperphosphorylation and cell-cycle response. RESULTS Cisplatin-resistant HNSCC cell levels of hyperphosphorylated RPA2 in response to cisplatin were 80% to 90% greater compared with cisplatin-sensitive cell lines. RPA2 hyperphosphorylation could be induced in the cisplatin-resistant HNSCC subline. The absence of RPA2 hyperphosphorylation correlated with a defect in cell-cycle progression and cell survival. CONCLUSION Loss of RPA2 hyperphosphorylation occurs in HNSCC cells and may be a marker of cellular sensitivities to cisplatin and etoposide in HNSCC.
Collapse
Affiliation(s)
- Karoline C Manthey
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | | | | | | |
Collapse
|
39
|
Oakley GG, Patrick SM. Replication protein A: directing traffic at the intersection of replication and repair. FRONT BIOSCI-LANDMRK 2010; 15:883-900. [PMID: 20515732 DOI: 10.2741/3652] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.
Collapse
Affiliation(s)
- Greg G Oakley
- College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583, USA
| | | |
Collapse
|
40
|
Wagner JM, Kaufmann SH. Prospects for the Use of ATR Inhibitors to Treat Cancer. Pharmaceuticals (Basel) 2010; 3:1311-1334. [PMID: 27713304 PMCID: PMC4033983 DOI: 10.3390/ph3051311] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 01/08/2023] Open
Abstract
ATR is an apical kinase in one of the DNA-damage induced checkpoint pathways. Despite the development of inhibitors of kinases structurally related to ATR, as well as inhibitors of the ATR substrate Chk1, no ATR inhibitors have yet been developed. Here we review the effects of ATR downregulation in cancer cells and discuss the potential for development of ATR inhibitors for clinical use.
Collapse
Affiliation(s)
- Jill M Wagner
- Division of Oncology Research, College of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, College of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Kauff ND. ATR Mutations in Endometrial Cancer: A Window Into the Role of Mismatch Repair Defects. J Clin Oncol 2009; 27:3077-8. [DOI: 10.1200/jco.2009.22.2125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Noah D. Kauff
- Clinical Genetics Service, Department of Medicine, and Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
42
|
Lewis KA, Lilly KK, Reynolds EA, Sullivan WP, Kaufmann SH, Cliby WA. Ataxia telangiectasia and rad3-related kinase contributes to cell cycle arrest and survival after cisplatin but not oxaliplatin. Mol Cancer Ther 2009; 8:855-63. [PMID: 19372558 DOI: 10.1158/1535-7163.mct-08-1135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DNA cross-linking agents cisplatin and oxaliplatin are widely used in the treatment of human cancer. Lesions produced by these agents are widely known to activate the G1 and G2 cell cycle checkpoints. Less is known about the role of the intra-S-phase checkpoint in the response to these agents. In the present study, two different cell lines expressing a dominant-negative kinase dead (kd) version of the ataxia telangiectasia and rad3-related (ATR) kinase in an inducible fashion were examined for their responses to these two platinating agents and a variety of other DNA cross-linking drugs. The expression of the kdATR allele markedly sensitized the cells to cisplatin, but not to oxaliplatin, as assessed by inhibition of colony formation, induction of apoptosis, and cell cycle analysis. Similar differences in survival were noted for melphalan (ATR dependent) and 4-hydroperoxycyclophosphamide (ATR independent). Further experiments showed that ATR function is not necessary for removal of Pt-DNA adducts. The predominant difference between the responses to the two platinum drugs was the presence of a drug-specific ATR-dependent S-phase arrest after cisplatin but not oxaliplatin. These results indicate that involvement of ATR in the response to DNA cross-linking agents is lesion specific. This observation might need to be taken into account in the development and use of ATR or Chk1 inhibitors.
Collapse
Affiliation(s)
- Kriste A Lewis
- Division of Obstetrics and Gynecology, Mayo Clinic, 200 First Street, Southwest, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
43
|
Zighelboim I, Schmidt AP, Gao F, Thaker PH, Powell MA, Rader JS, Gibb RK, Mutch DG, Goodfellow PJ. ATR mutation in endometrioid endometrial cancer is associated with poor clinical outcomes. J Clin Oncol 2009; 27:3091-6. [PMID: 19470935 DOI: 10.1200/jco.2008.19.9802] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Mutations in the DNA damage response gene ATR (exon 10 A10 mononucleotide repeat) have been previously described in endometrial and other cancers with defective DNA mismatch repair. In vitro studies showed that endometrial cancer cell lines with A10 repeat tract truncating mutations have a failure in the ATR-dependent DNA damage response. Cell lines carrying A10 mutations fail to trigger Chk1 activation in response to ionizing radiation and topoisomerase inhibitors. We sought to determine the frequency and clinicopathologic significance of ATR mutations in patients with endometrioid endometrial cancer. PATIENTS AND METHODS The ATR exon 10 A10 repeat was analyzed by direct sequencing in 141 tumors with microsatellite instability (MSI-positive) and 107 microsatellite stable (MSI-negative) tumors. The relationships between mutations and clinicopathologic variables, including overall and disease-free survival, were assessed using contingency table tests and Cox proportional hazard models. Results ATR mutations were identified in 12 cases (4.8%; three cases with insertions and nine cases with deletions). Mutations occurred exclusively in MSI-positive tumors (P = .02), with an overall mutation rate of 8.5%. Mutation was not associated with age, race, surgical stage, International Federation of Gynecology and Obstetrics grade, or adjuvant treatment. Multivariate analyses revealed a significant association with reduced overall survival (hazard ratio [HR] = 3.88; 95% CI, 1.64 to 9.18; P = .002) and disease-free survival (HR = 4.29; 95% CI, 1.48 to 12.45; P = .007). CONCLUSION Truncating ATR mutations in endometrial cancers are associated with biologic aggressiveness as evidenced by reduced disease-free and overall survival. Knowledge of ATR mutation status may hold promise for individualized treatment and targeted therapies in patients with endometrial cancer.
Collapse
Affiliation(s)
- Israel Zighelboim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 4911 Barnes Jewish Plaza, Box 8064, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The anti-metabolite 5-fluorouracil (5-FU) is employed clinically to manage solid tumors including colorectal and breast cancer. Intracellular metabolites of 5-FU can exert cytotoxic effects via inhibition of thymidylate synthetase, or through incorporation into RNA and DNA, events that ultimately activate apoptosis. In this review, we cover the current data implicating DNA repair processes in cellular responsiveness to 5-FU treatment. Evidence points to roles for base excision repair (BER) and mismatch repair (MMR). However, mechanistic details remain unexplained, and other pathways have not been exhaustively interrogated. Homologous recombination is of particular interest, because it resolves unrepaired DNA intermediates not properly dealt with by BER or MMR. Furthermore, crosstalk among DNA repair pathways and S-phase checkpoint signaling has not been examined. Ongoing efforts aim to design approaches and reagents that (i) approximate repair capacity and (ii) mediate strategic regulation of DNA repair in order to improve the efficacy of current anticancer treatments.
Collapse
Affiliation(s)
- M D Wyatt
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA.
| | | |
Collapse
|
45
|
Essential function of Chk1 can be uncoupled from DNA damage checkpoint and replication control. Proc Natl Acad Sci U S A 2008; 105:20752-7. [PMID: 19091954 DOI: 10.1073/pnas.0806917106] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chk1 is widely known as a DNA damage checkpoint signaling protein. Unlike many other checkpoint proteins, Chk1 also plays an essential but poorly defined role in the proliferation of unperturbed cells. Activation of Chk1 after DNA damage is known to require the phosphorylation of several C-terminal residues, including the highly conserved S317 and S345 sites. To evaluate the respective roles of these individual sites and assess their contribution to the functions of Chk1, we used a gene targeting approach to introduce point mutations into the endogenous human CHK1 locus. We report that the essential and nonessential functions of Chk1 are regulated through distinct phosphorylation events and can be genetically uncoupled. The DNA damage response function of Chk1 was nonessential. Targeted mutation of S317 abrogated G(2)/M checkpoint activation, prevented subsequent phosphorylation of Chk1, impaired efficient progression of DNA replication forks, and increased fork stalling, but did not impact viability. Thus, the nonessential DNA damage response function of Chk1 could be unambiguously linked to its role in DNA replication control. In contrast, a CHK1 allele with mutated S345 did not support viability, indicating an essential role for this residue during the unperturbed cell cycle. A distinct, physiologic mode of S345 phosphorylation, initiated at the centrosome during unperturbed mitosis was independent of codon 317 status and mechanistically distinct from the ordered and sequential phosphorylation of serine residues on Chk1 induced by DNA damage. Our findings suggest an essential regulatory role for Chk1 phosphorylation during mitotic progression.
Collapse
|
46
|
Mordes DA, Glick GG, Zhao R, Cortez D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 2008; 22:1478-89. [PMID: 18519640 DOI: 10.1101/gad.1666208] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ATR (ATM and Rad3-related) kinase and its regulatory partner ATRIP (ATR-interacting protein) coordinate checkpoint responses to DNA damage and replication stress. TopBP1 functions as a general activator of ATR. However, the mechanism by which TopBP1 activates ATR is unknown. Here, we show that ATRIP contains a TopBP1-interacting region that is necessary for the association of TopBP1 and ATR, for TopBP1-mediated activation of ATR, and for cells to survive and recover DNA synthesis following replication stress. We demonstrate that this region is functionally conserved in the Saccharomyces cerevisiae ATRIP ortholog Ddc2, suggesting a conserved mechanism of regulation. In addition, we identify a domain of ATR that is critical for its activation by TopBP1. Mutations of the ATR PRD (PIKK [phosphoinositide 3-kinase related kinase] Regulatory Domain) do not affect the basal kinase activity of ATR but prevent its activation. Cellular complementation experiments demonstrate that TopBP1-mediated ATR activation is required for checkpoint signaling and cellular viability. The PRDs of ATM and mTOR (mammalian target of rapamycin) were shown previously to regulate the activities of these kinases, and our data indicate that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) PRD is important for DNA-PKcs regulation. Therefore, divergent amino acid sequences within the PRD and a unique protein partner allow each of these PIK kinases to respond to distinct cellular events.
Collapse
Affiliation(s)
- Daniel A Mordes
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
47
|
Berger SH, Pittman DL, Wyatt MD. Uracil in DNA: consequences for carcinogenesis and chemotherapy. Biochem Pharmacol 2008; 76:697-706. [PMID: 18599024 DOI: 10.1016/j.bcp.2008.05.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/12/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
The synthesis of thymidylate (TMP) occupies a convergence of two critical metabolic pathways: folate metabolism and pyrimidine biosynthesis. Thymidylate is formed from deoxyuridylate (dUMP) using N(5),N(10)-methylene tetrahydrofolate. The metabolic relationship between dUMP, TMP, and folate has been the subject of cancer research from prevention to chemotherapy. Thymidylate stress is induced by nutritional deficiency of folic acid, defects in folate metabolism, and by antifolate and fluoropyrimidine chemotherapeutics. Both classes of chemotherapeutics remain mainstay treatments against solid tumors. Because of the close relationship between dUMP and TMP, thymidylate stress is associated with increased incorporation of uracil into DNA. Genomic uracil is removed by uracil DNA glycosylases of base excision repair (BER). Unfortunately, BER is apparently problematic during thymidylate stress. Because BER requires a DNA resynthesis step, elevated dUTP causes reintroduction of genomic uracil. BER strand break intermediates are clastogenic if not repaired. Thus, BER during thymidylate stress appears to cause genome instability, yet might also contribute to the mechanism of action for antifolates and fluoropyrimidines. However, the precise roles of BER and its components during thymidylate stress remain unclear. In particular, links between BER and downstream events remain poorly defined, including damage signaling pathways and homologous recombination (HR). Evidence is growing that HR responds to persistent BER strand break intermediates and DNA damage signaling pathways mediate cross talk between BER and HR. Examination of crosstalk among BER, HR, and damage signaling may shed light on decades of investigation and provide insight for development of novel chemopreventive and chemotherapeutic approaches.
Collapse
Affiliation(s)
- Sondra H Berger
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
48
|
Pabla N, Huang S, Mi QS, Daniel R, Dong Z. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem 2007; 283:6572-83. [PMID: 18162465 DOI: 10.1074/jbc.m707568200] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cisplatin is one of the most effective anti-cancer drugs; however, the use of cisplatin is limited by its toxicity in normal tissues, particularly injury of the kidneys. The mechanisms underlying the therapeutic effects of cisplatin in cancers and side effects in normal tissues are largely unclear. Recent work has suggested a role for p53 in cisplatin-induced renal cell apoptosis and kidney injury; however, the signaling pathway leading to p53 activation and renal apoptosis is unknown. Here we demonstrate an early DNA damage response during cisplatin treatment of renal cells and tissues. Importantly, in the DNA damage response, we demonstrate a critical role for ATR, but not ATM (ataxia telangiectasia mutated) or DNA-PK (DNA-dependent protein kinase), in cisplatin-induced p53 activation and apoptosis. We show that ATR is specifically activated during cisplatin treatment and co-localizes with H2AX, forming nuclear foci at the site of DNA damage. Blockade of ATR with a dominant-negative mutant inhibits cisplatin-induced p53 activation and renal cell apoptosis. Consistently, cisplatin-induced p53 activation and apoptosis are suppressed in ATR-deficient fibroblasts. Downstream of ATR, both Chk1 and Chk2 are phosphorylated during cisplatin treatment in an ATR-dependent manner. Interestingly, following phosphorylation, Chk1 is degraded via the proteosomal pathway, whereas Chk2 is activated. Inhibition of Chk2 by a dominant-negative mutant or gene deficiency attenuates cisplatin-induced p53 activation and apoptosis. In vivo in C57BL/6 mice, ATR and Chk2 are activated in renal tissues following cisplatin treatment. Together, the results suggest an important role for the DNA damage response mediated by ATR-Chk2 in p53 activation and renal cell apoptosis during cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Navjotsingh Pabla
- Department of Cellular Biology and Anatomy, Center for Biotechnology and Genomic Medicine, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
49
|
|
50
|
|