1
|
Sun Q, Lei X, Yang X. The crosstalk between non-coding RNAs and oxidative stress in cancer progression. Genes Dis 2025; 12:101286. [PMID: 40028033 PMCID: PMC11870203 DOI: 10.1016/j.gendis.2024.101286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2025] Open
Abstract
As living standards elevate, cancers are appearing in growing numbers among younger individuals globally and these risks escalate with advancing years. One of the reasons is that instability in the cancer genome reduces the effectiveness of conventional drug treatments and chemotherapy, compared with more targeted therapies. Previous research has discovered non-coding RNAs' crucial role in shaping genetic networks involved in cancer cell growth and invasion through their influence on messenger RNA production or protein binding. Additionally, the interaction between non-coding RNAs and oxidative stress, a crucial process in cancer advancement, cannot be overlooked. Essentially, oxidative stress results from the negative effects of radicals within the body and ties directly to cancer gene expression and signaling. Therefore, this review focuses on the mechanism between non-coding RNAs and oxidative stress in cancer progression, which is conducive to finding new cancer treatment strategies.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
2
|
Giordano C, Accattatis FM, Gelsomino L, Del Console P, Győrffy B, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, Pietroluongo E, Zinno F, Bonofiglio D, Andò S, Barone I, Catalano S. miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer. Int J Mol Sci 2023; 24:15695. [PMID: 37958677 PMCID: PMC10649351 DOI: 10.3390/ijms242115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Circulating extracellular vesicle (EV)-derived microRNAs (miRNAs) are now considered the next generation of cancer "theranostic" tools, with strong clinical relevance. Although their potential in breast cancer diagnosis has been widely reported, further studies are still required to address this challenging issue. The present study examined the expression profiles of EV-packaged miRNAs to identify novel miRNA signatures in breast cancer and verified their diagnostic accuracy. Circulating EVs were isolated from healthy controls and breast cancer patients and characterized following the MISEV 2018 guidelines. RNA-sequencing and real-time PCR showed that miRNA-27a and miRNA-128 were significantly down-regulated in patient-derived EVs compared to controls in screening and validation cohorts. Bioinformatics analyses of miRNA-target genes indicated several enriched biological processes/pathways related to breast cancer. Receiver operating characteristic (ROC) curves highlighted the ability of these EV-miRNAs to distinguish breast cancer patients from non-cancer controls. According to other reports, the levels of EV-miRNA-27a and EV-miRNA-128 are not associated with their circulating ones. Finally, evidence from the studies included in our systematic review underscores how the expression of these miRNAs in biofluids is still underinvestigated. Our findings unraveled the role of serum EV-derived miRNA-27a and miRNA-128 in breast cancer, encouraging further investigation of these two miRNAs within EVs towards improved breast cancer detection.
Collapse
Affiliation(s)
- Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Clinical Laboratory Unit, A.O. “Annunziata”, 87100 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Piercarlo Del Console
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Balázs Győrffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, 1094 Budapest, Hungary;
- TTK Cancer Biomarker Research Group, 1117 Budapest, Hungary
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80133 Naples, Italy;
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Francesco Zinno
- Immunohaematology and Transfusion Medicine, A.O. “Annunziata”, 87100 Cosenza, Italy;
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Clinical Laboratory Unit, A.O. “Annunziata”, 87100 Cosenza, Italy
| |
Collapse
|
3
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
4
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
5
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Mahmoudi-Lamouki R, Kadkhoda S, Hussen BM, Ghafouri-Fard S. Emerging role of miRNAs in the regulation of ferroptosis. Front Mol Biosci 2023; 10:1115996. [PMID: 36876051 PMCID: PMC9975729 DOI: 10.3389/fmolb.2023.1115996] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Ferroptosis is a kind of cell death which has distinctive features differentiating it from autophagy, necrosis and apoptosis. This iron-dependent form of cell death is described by an increase in lipid reactive oxygen species, shrinkage of mitochondria and decrease in mitochondrial cristae. Ferroptosis is involved in the initiation and progression of many diseases and is regarded as a hotspot of investigations on treatment of disorders. Recent studies have shown that microRNAs partake in the regulation of ferroptosis. The impact of microRNAs on this process has been verified in different cancers as well as intervertebral disc degeneration, acute myocardial infarction, vascular disease, intracerebral hemorrhage, preeclampsia, hemorrhagic stroke, atrial fibrillation, pulmonary fibrosis and atherosclerosis. miR-675, miR-93, miR-27a, miR-34a and miR-141 have been shown to affect iron metabolism, antioxidant metabolism and lipid metabolism, thus influencing all pivotal mechanisms in the ferroptosis process. In the current review, we summarize the role of microRNAs in ferroptosis and their involvement in the pathetiology of malignant and non-malignant disorders.
Collapse
Affiliation(s)
| | - Sepideh Kadkhoda
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Pyruvate kinase L/R links metabolism dysfunction to neuroendocrine differentiation of prostate cancer by ZBTB10 deficiency. Cell Death Dis 2022; 13:252. [PMID: 35306527 PMCID: PMC8934352 DOI: 10.1038/s41419-022-04694-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/05/2022]
Abstract
Neuroendocrine differentiation (NED) frequently occurs in androgen-deprivation therapy (ADT)-resistant prostate cancer (PCa) and is typically associated with metabolic pathway alterations, acquisition of lineage plasticity, and malignancy. There is no conventional therapeutic approach for PCa patients with NED pathologic features because the molecular targets are unknown. Here, we evaluated the regulatory mechanism of NED-associated metabolic reprogramming induced by ADT. We detected that the loss of the androgen-responsive transcription factor, zinc finger, and BTB domain containing 10 (ZBTB10), can activate pyruvate kinase L/R (PKLR) to enhance a NED response that is associated with glucose uptake by PCa cells. PKLR exhibits a tumor-promoting effect in PCa after ADT, but ZBTB10 can compensate for the glucose metabolism and NED capacity of PKLR through the direct transcriptional downregulation of PKLR. Targeting PKLR by drug repurposing with FDA-approved compounds can reduce the aggressiveness and NED of ADT-resistant PCa. We demonstrated that PKLR acts as a modulator to activate NED in PCa enhancement by loss of ZBTB10, thereby enabling PCa cells to mount a glycolysis response essential for therapeutic resistance. Our findings highlight the broad relation between NED and metabolic dysfunction to provide gene expression-based biomarkers for NEPC treatment.
Collapse
|
9
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
He ZH, Li M, Fang QJ, Liao FL, Zou SY, Wu X, Sun HY, Zhao XY, Hu YJ, Xu XX, Chen S, Sun Y, Chai RJ, Kong WJ. FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 2021; 17:4341-4362. [PMID: 34006186 PMCID: PMC8726647 DOI: 10.1080/15548627.2021.1916194] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Presbycusis is the cumulative effect of aging on hearing. Recent studies have shown that common mitochondrial gene deletions are closely related to deafness caused by degenerative changes in the auditory system, and some of these nuclear factors are proposed to participate in the regulation of mitochondrial function. However, the detailed mechanisms involved in age-related degeneration of the auditory systems have not yet been fully elucidated. In this study, we found that FOXG1 plays an important role in the auditory degeneration process through regulation of macroautophagy/autophagy. Inhibition of FOXG1 decreased the autophagy activity and led to the accumulation of reactive oxygen species and subsequent apoptosis of cochlear hair cells. Recent clinical studies have found that aspirin plays important roles in the prevention and treatment of various diseases by regulating autophagy and mitochondria function. In this study, we found that aspirin increased the expression of FOXG1, which further activated autophagy and reduced the production of reactive oxygen species and inhibited apoptosis, and thus promoted the survival of mimetic aging HCs and HC-like OC-1 cells. This study demonstrates the regulatory function of the FOXG1 transcription factor through the autophagy pathway during hair cell degeneration in presbycusis, and it provides a new molecular approach for the treatment of age-related hearing loss. Abbreviations: AHL: age-related hearing loss; baf: bafilomycin A1; CD: common deletion; D-gal: D-galactose; GO: glucose oxidase; HC: hair cells; mtDNA: mitochondrial DNA; RAP: rapamycin; ROS: reactive oxygen species; TMRE: tetramethylrhodamine, ethyl ester
Collapse
Affiliation(s)
- Zu-Hong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Otorhinolaryngology, Xiangyang Central Hospital, Affiliated Hospital Of Hubei University Of Arts and Science, Xiangyang 441021, China
| | - Ming Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao-Jun Fang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Fu-Ling Liao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science
| | - Sheng-Yu Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Ying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yan Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Juan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xiang Xu
- Department of Otorhinolaryngology, Xiangyang Central Hospital, Affiliated Hospital Of Hubei University Of Arts and Science, Xiangyang 441021, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren-Jie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wang G, Zhan T, Li F, Shen J, Gao X, Xu L, Li Y, Zhang J. The prediction of survival in Gastric Cancer based on a Robust 13-Gene Signature. J Cancer 2021; 12:3344-3353. [PMID: 33976744 PMCID: PMC8100809 DOI: 10.7150/jca.49658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer represents a major public health problem. Owing to the great heterogeneity of GC, conventional clinical characteristics are limited in the accurate prediction of individual outcomes and survival. This study aimed to establish a robust gene signature to predict the prognosis of GC based on multiple datasets. Initially, we downloaded raw data from four independent datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and performed univariate Cox proportional hazards regression analysis to identify prognostic genes associated with overall survival (OS) from each dataset. Thirteen common genes from four datasets were screened as candidate prognostic signatures. Then, a risk score model was developed based on this 13‑gene signature and validated by four independent datasets and the entire cohort. Patients with a high-risk score had poorer OS and recurrence-free survival (RFS). Multivariate regression and stratified analysis revealed that the 13-gene signature was not only an independent predictive factor but also associated with recurrence when adjusting for other clinical factors. Furthermore, in the high-risk group, gene set enrichment analysis (GSEA) showed that the mTOR signaling pathway and MAPK signaling pathway were significantly enriched. The present study provided a robust and reliable gene signature for prognostic prediction of both OS and RFS of patients with GC, which may be useful for delivering individualized management of patients.
Collapse
Affiliation(s)
- Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Li
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Li
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Gao X, Zhang C, Zheng P, Dan Q, Luo H, Ma X, Lu C. Arsenic suppresses GDF1 expression via ROS-dependent downregulation of specificity protein 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116302. [PMID: 33360347 DOI: 10.1016/j.envpol.2020.116302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Inorganic arsenic, an environmental contaminant, has adverse health outcomes. Our previous studies showed that arsenic causes abnormal cardiac development in zebrafish embryos by downregulating Dvr1/GDF1 expression and that folic acid protects against these effects. However, the mechanism by which arsenic represses Dvr1/GDF1 expression remains unknown. Herein, we demonstrate that specificity protein 1 (Sp1) acts as a transcriptional activator of GDF1. Arsenic treatment downregulated Sp1 at both the mRNA and protein level and its downstream targets GDF1 and SIRT1. Chromatin immunoprecipitation analysis showed that the occupancy of Sp1 on the GDF1 or SIRT1 promoter was significantly reduced in response to arsenite. Further investigation showed that Sp1 overexpression inhibited the arsenic-mediated decrease in GDF1 and SIRT1, while Sp1 knockdown had the opposite effect. We found that expression of the oxidative adaptor p66shc was inversely related to that of SIRT1 and that the binding of SIRT1 to the p66shc promoter was sharply attenuated by arsenite treatment. SIRT1 overexpression attenuated p66shc expression but enhanced GDF1 protein expression, while SIRT1 depletion exerted the opposite effect. Both the antioxidants N-acetylcysteine and folic acid reversed the arsenic-mediated repression of Sp1, GDF1 and SIRT1. Moreover, wild-type p66shc overexpression enhanced the arsenic-mediated repression of Sp1, GDF1 and SIRT1, which was accompanied by an increase in intracellular reactive oxygen species (ROS) levels, while both overexpression of a dominant negative p66shcSer36Ala mutant and deficiency in p66shc reversed these effects. Taken together, our results revealed that arsenic suppresses GDF1 expression via the ROS-dependent downregulation of the Sp1/SIRT1 axis, which forms a negative feedback loop with p66shc to regulate oxidative stress. Our findings reveal a novel molecular mechanism underlying arsenic toxicity and provide new insight into the protective effect of folic acid in arsenic-mediated toxicity.
Collapse
Affiliation(s)
- Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Panpan Zheng
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
D'Souza LC, Mishra S, Chakraborty A, Shekher A, Sharma A, Gupta SC. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links? Antioxid Redox Signal 2020; 33:1209-1229. [PMID: 31891666 DOI: 10.1089/ars.2019.7987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Significance: It is now clear that genetic changes underlie the basis of cancer, and alterations in functions of multiple genes are responsible for the process of tumorigenesis. Besides the classical genes that are usually implicated in cancer, the role of noncoding RNAs (ncRNAs) and reactive oxygen species (ROS) as independent entitites has also been investigated. Recent Advances: The microRNAs and long noncoding RNAs (lncRNAs), two main classes of ncRNAs, are known to regulate many aspects of tumor development. ROS, generated during oxidative stress and pathological conditions, are known to regulate every step of tumor development. Conversely, oxidative stress and ROS producing agents can suppress tumor development. The malignant cells normally produce high levels of ROS compared with normal cells. The interaction between ROS and ncRNAs regulates the expression of multiple genes and pathways implicated in cancer, suggesting a unique mechanistic relationship among ncRNA-ROS-cancer. The mechanistic relationship has been reported in hepatocellular carcinoma, glioma, and malignancies of blood, breast, colorectum, esophagus, kidney, lung, mouth, ovary, pancreas, prostate, and stomach. The ncRNA-ROS regulate several cancer-related cell signaling pathways, namely, protein kinase B (AKT), epidermal growth factor receptor (EGFR), forkhead box O3 (FOXO3), kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), p53, phosphatase and tensin homologue (PTEN), and wingless-related integration site (Wnt)/glycogen synthase kinase-3 beta (GSK3β). Critical Issues: To date, most of the reports about ncRNA-oxidative stress-carcinogenesis relationships are based on cell lines. The mechanistic basis for this relationship has not been completely elucidated. Future Directions: Attempts should be made to explore the association of lncRNAs with ROS. The significance of the ncRNA-oxidative stress-carcinogenesis interplay should also be explored through studies in animal models.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Azar MRMH, Akbari M, Mohammed HN, Asadi M, Shanehbandi D, Rezai M, Zafari V, Niknam S, Tamjidifar R, Tarzi S, Mahdavi F. Dysregulation of miR-27a and SMAD2 can be a reliable indicator in the prognosis and diagnosis of CRC as well as in response to chemotherapy drugs. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Basak D, Uddin MN, Hancock J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel) 2020; 12:E3336. [PMID: 33187272 PMCID: PMC7698080 DOI: 10.3390/cancers12113336] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
An altered redox status accompanied by an elevated generation of reactive oxygen/nitrogen species (ROS/RNS) has been implicated in a number of diseases including colorectal cancer (CRC). CRC, being one of the most common cancers worldwide, has been reported to be associated with multiple environmental and lifestyle factors (e.g., dietary habits, obesity, and physical inactivity) and harboring heightened oxidative stress that results in genomic instability. Although under normal condition ROS regulate many signal transduction pathways including cell proliferation and survival, overwhelming of the antioxidant capacity due to metabolic abnormalities and oncogenic signaling leads to a redox adaptation response that imparts drug resistance. Nevertheless, excessive reliance on elevated production of ROS makes the tumor cells increasingly vulnerable to further ROS insults, and the abolition of such drug resistance through redox perturbation could be instrumental to preferentially eliminate them. The goal of this review is to demonstrate the evidence that links redox stress to the development of CRC and assimilate the most up-to-date information that would facilitate future investigation on CRC-associated redox biology. Concomitantly, we argue that the exploitation of this distinct biochemical property of CRC cells might offer a fresh avenue to effectively eradicate these cells.
Collapse
Affiliation(s)
- Debasish Basak
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| | | | - Jake Hancock
- College of Pharmacy, Larkin University, Miami, FL 33169, USA;
| |
Collapse
|
16
|
Akbari A, Majd HM, Rahnama R, Heshmati J, Morvaridzadeh M, Agah S, Amini SM, Masoodi M. Cross-talk between oxidative stress signaling and microRNA regulatory systems in carcinogenesis: Focused on gastrointestinal cancers. Biomed Pharmacother 2020; 131:110729. [PMID: 33152911 DOI: 10.1016/j.biopha.2020.110729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
Molecular mechanisms underlying development and progression of gastrointestinal (GI) cancers are mediated by both oxidative stress (OS) and microRNAs (miRNAs) involvement. Notably, OS signaling may regulate the expression of miRNAs, and miRNAs function as imperative players in OS-initiated tumors. Given the defined biological roles of both OS systems and miRNAs in GI carcinogenesis, a possible interplay between these two key cellular networks is considered. A growing body of evidence has indicated a reciprocal connection between OS signaling pathways and miRNA regulatory machines in GI cancer development and progression. Illumination of the molecular cross-talking between miRNAs and the OS would improve our pathophysiological insight into carcinogens. Also, understanding the molecular mechanisms in which these systems are reciprocally regulated may imply in future medical practice mainly GI cancer therapy. Nowadays, therapeutic strategies focusing on miRNA and OS in GI cancer treatment are increasingly delineated. Since the use of antioxidants is limited owing to the contrasting consequences of OS signaling in cancer, the discovery of OS-responsive miRNAs may provide a potential new strategy to overcome OS-mediated GI carcinogenesis. Given the possible interaction between OS and miRNAs in GI cancers, this review aimed to elucidate the existing evidence on the interaction between OS and miRNA regulatory machinery and its role in GI carcinogenesis. In this regard, we will illustrate the function of miRNAs which target OS systems during homeostasis and tumorigenesis. We also discuss the biological cross-talk between OS systems and miRNAs and corresponding cell signaling pathways.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Hassan Mehrad Majd
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Rahnama
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Reduction in MicroRNA-4488 Expression Induces NFκB Translocation in Venous Endothelial Cells Under Arterial Flow. Cardiovasc Drugs Ther 2020; 35:61-71. [PMID: 32902737 DOI: 10.1007/s10557-020-06944-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Little is known about the molecular interactions among inflammatory responses that damage venous endothelial cells (vECs) during venous-to-arterial flow transition in vein graft diseases. Because arterial flow triggers excessive autophagy and inflammation in vECs, this study aimed to investigate the mediator of inflammation and methods to prevent vEC damage. METHODS Arterial laminar shear stress (ALSS; 12 dynes/cm2) was applied to vECs via in vitro and ex vivo perfusion systems. Inflammation in vECs was measured using inflammatory protein markers, NFκB translocation, cyclooxygenase-2 (COX-2) and COX-2 and NFκB promoter assays. The involvement of microRNA-4488 (miR-4488) was measured and confirmed by altering the specific miR using a miR-4488 mimic or inhibitor. The potential anti-inflammatory drugs and/or nitric oxide (NO) donor L-arginine (L-Arg) to prevent damage to vECs under ALSS was investigated. RESULTS ALSS triggered reactive oxygen species production, excessive autophagy, COX-2 protein expression, and NFκB translocation during vEC inflammation. Reduction in miR-4488 expression was detected in inflamed vECs treated with LPS, lipopolysaccharide (LPS) TNFα, and ALSS. Transfection of miR-4488 mimic (50 nM) prior to ALSS application inhibited the accumulation of inflammatory proteins as well as the translocation of NFκB. Combined treatment of vECs with COX-2-specific inhibitor (SC-236) and L-Arg alleviated the ALSS-induced inflammatory responses. Protective effects of the combined treatment on vECs against ALSS-induced damage were abolished by the application of miR-4488 inhibitor. CONCLUSION We showed that ALSS triggered the COX-2/NFκB pathway to induce vEC inflammation with a reduction in miR-4488. Combination of SC-236 and L-Arg prevented ALSS-induced vEC damage, thus, shows high potential for preventing vein graft diseases.
Collapse
|
18
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
19
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
20
|
Wang H, Wang L, Xie Z, Zhou S, Li Y, Zhou Y, Sun M. Nitric Oxide (NO) and NO Synthases (NOS)-Based Targeted Therapy for Colon Cancer. Cancers (Basel) 2020; 12:E1881. [PMID: 32668616 PMCID: PMC7408898 DOI: 10.3390/cancers12071881] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignancies worldwide and CRC therapy remains unsatisfactory. In recent decades, nitric oxide (NO)-a free-radical gas-plus its endogenous producer NO synthases (NOS), have attracted considerable attention. NO exerts dual effects (pro- and anti-tumor) in cancers. Endogenous levels of NO promote colon neoplasms, whereas exogenously sustained doses lead to cytotoxic functions. Importantly, NO has been implicated as an essential mediator in many signaling pathways in CRC, such as the Wnt/β-catenin and extracellular-signal-regulated kinase (ERK) pathways, which are closely associated with cancer initiation, metastasis, inflammation, and chemo-/radio-resistance. Therefore, NO/NOS have been proposed as promising targets in the regulation of CRC carcinogenesis. Clinically relevant NO-donating agents have been developed for CRC therapy to deliver a high level of NO to tumor sites. Notably, inducible NOS (iNOS) is ubiquitously over-expressed in inflammatory-associated colon cancer. The development of iNOS inhibitors contributes to targeted therapies for CRC with clinical benefits. In this review, we summarize the multifaceted mechanisms of NO-mediated networks in several hallmarks of CRC. We review the clinical manifestation and limitations of NO donors and NOS inhibitors in clinical trials. We also discuss the possible directions of NO/NOS therapies in the immediate future.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Shuang Zhou
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yan Li
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; (L.W.); (Z.X.); (S.Z.); (Y.L.)
| | - Yue Zhou
- Department of Statistics, North Dakota University, Fargo, ND 58105, USA;
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin 132013, China;
| |
Collapse
|
21
|
Lazarević M, Battaglia G, Jevtić B, Đedović N, Bruno V, Cavalli E, Miljković Đ, Nicoletti F, Momčilović M, Fagone P. Upregulation of Tolerogenic Pathways by the Hydrogen Sulfide Donor GYY4137 and Impaired Expression of H 2S-Producing Enzymes in Multiple Sclerosis. Antioxidants (Basel) 2020; 9:E608. [PMID: 32664399 PMCID: PMC7402185 DOI: 10.3390/antiox9070608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to examine the in vitro effects of the slow-releasing H2S donor GYY4137 on the immune cells involved in the pathogenesis of the central nervous system (CNS) autoimmune disease, multiple sclerosis (MS). GYY4137 specifically potentiated TGF-β expression and production in dendritic cells and significantly reduced IFN-γ and IL-17 production in the lymph node and spinal cord T cells obtained from mice immunized with CNS antigens. Both the proportion of FoxP3+ regulatory CD4+ T cells in the lymph node cells, and the percentage of IL-17+ CD4+ T cells in the spinal cord cells were reduced upon culturing with GYY4137. Interestingly, the peripheral blood mononuclear cells obtained from the MS patients had a lower expression of the H2S-producing enzyme, 3-mercaptopyruvate-sulfurtransferase (MPST), in comparison to those obtained from healthy donors. A significant inverse correlation between the expression of MPST and several pro-inflammatory factors was also observed. Further studies on the relevance of the observed results for the pathogenesis and therapy of MS are warranted.
Collapse
Affiliation(s)
- Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Giuseppe Battaglia
- Department of Physiology and Pharmacology, Sapienza University, Piazzale A. Moro, 5, 00185 Rome, Italy
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Neda Đedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Valeria Bruno
- Department of Physiology and Pharmacology, Sapienza University, Piazzale A. Moro, 5, 00185 Rome, Italy
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| |
Collapse
|
22
|
Singh RR, Mohammad J, Orr M, Reindl KM. Glutathione S-Transferase pi-1 Knockdown Reduces Pancreatic Ductal Adenocarcinoma Growth by Activating Oxidative Stress Response Pathways. Cancers (Basel) 2020; 12:E1501. [PMID: 32526885 PMCID: PMC7352757 DOI: 10.3390/cancers12061501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Glutathione S-transferase pi-1 (GSTP1) plays an important role in regulating oxidative stress by conjugating glutathione to electrophiles. GSTP1 is overexpressed in breast, colon, lung, and prostate tumors, where it contributes to tumor progression and drug resistance; however, the role of GSTP1 in pancreatic ductal adenocarcinoma (PDAC) is not well understood. Using shRNA, we knocked down GSTP1 expression in three different PDAC cell lines and determined the effect on cell proliferation, cell cycle progression, and reactive oxygen species (ROS) levels. Our results show GSTP1 knockdown reduces PDAC cell growth, prolongs the G0/G1 phase, and elevates ROS in PDAC cells. Furthermore, GSTP1 knockdown results in the increased phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun and the decreased phosphorylation of extracellular signal-regulated kinase (ERK), p65, the reduced expression of specificity protein 1 (Sp1), and the increased expression of apoptosis-promoting genes. The addition of the antioxidant glutathione restored cell viability and returned protein expression levels to those found in control cells. Collectively, these data support the working hypothesis that the loss of GSTP1 elevates oxidative stress, which alters mitogen-activated protein (MAP) kinases and NF-κB signaling, and induces apoptosis. In support of these in vitro data, nude mice bearing orthotopically implanted GSTP1-knockdown PDAC cells showed an impressive reduction in the size and weight of tumors compared to the controls. Additionally, we observed reduced levels of Ki-67 and increased expression of cleaved caspase-3 in GSTP1-knockdown tumors, suggesting GSTP1 knockdown impedes proliferation and upregulates apoptosis in PDAC cells. Together, these results indicate that GSTP1 plays a significant role in PDAC cell growth and provides support for the pursuit of GSTP1 inhibitors as therapeutic agents for PDAC.
Collapse
Affiliation(s)
- Rahul R. Singh
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| | - Jiyan Mohammad
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, ND 58108, USA;
| | - Katie M. Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| |
Collapse
|
23
|
Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front Oncol 2019; 9:893. [PMID: 31572683 PMCID: PMC6751266 DOI: 10.3389/fonc.2019.00893] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of highly conserved, non-coding single-stranded RNAs transcribed as ~70 nucleotide precursors to an 18–22 nucleotide product (1). miRNAs can silence their homologous target genes at the post-transcriptional level, and these genes have been revealed to play an important role in tumorigenesis, invasion and metastasis (2). MicroRNA-27a (miR-27a), transcripted by miR-27a gene, has proved to implicate with many kinds of solid tumors, showing potential as a useful biomarker or drug target for clinical application. However, even though miR-27a has been reported in many cancers, the mechanism and signal pathways of miR-27 in oncogenesis, invasion, and metastasis are still obscure. Moreover, recent studies show that miR-27a pays an important role in epithelial-mesenchymal-transition, regulating tumor immune response, and chemoresistance. In this review, we summarize the current literature, demonstrate the established link between miR-27a and tumorigenesis, and focus on recently identified mechanisms. The review also aims to demonstrate the potential of miR-27a as a diagnostic and/or prognostic biomarker in solid tumors and to discuss the possibilities of targeted therapy and drug design.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Relationship between microRNA-27a and efficacy of neoadjuvant chemotherapy in gastric cancer and its mechanism in gastric cancer cell growth and metastasis. Biosci Rep 2019; 39:BSR20181175. [PMID: 30902884 PMCID: PMC6527950 DOI: 10.1042/bsr20181175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of the present study is to investigate the relationship between microRNA-27a (miR-27a) and the efficacy of neoadjuvant chemotherapy in gastric cancer (GC) and its mechanism in the growth and metastasis of GC cells. Methods: The expression of miR-27a in serum of 74 GC patients received neoadjuvant chemotherapy was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Clinical value and prognosis of miR-27a expression in predicting the efficacy of neoadjuvant chemotherapy in GC were evaluated. Besides, GC cells with low miR-27a expression were transfected with miR-27a mimics, and cells with high miR-27a expression were transfected with miR-27a inhibitors and secreted frizzled-related protein 1 (SFRP1) siRNA. A series of experiments were applied for the determination of cell viability, invasion and migration of GC cells. Results: After neoadjuvant chemotherapy, the expression of miR-27a in serum of GC patients decreased significantly. Additionally, the expression of miR-27a in GC cell line was significantly higher than that in normal gastric mucosa cell line. Meanwhile, after down-regulating the expression of miR-27a in GC cells, the mRNA and protein expression of SFRP1 increased, the proliferation rate of cells slowed down, and the ability of invasion and migration decreased. Furthermore, combined with low expression of miR-27a and SFRP1, the proliferation rate of GC cells increased and the ability of invasion and migration increased. Conclusion: Collectively, our study highlights that the high expression of miR-27a indicates the poor efficacy and prognosis of neoadjuvant chemotherapy in GC patients. Down-regulation of miR-27a can inhibit the growth and metastasis of GC cells via up-regulation of SFRP1.
Collapse
|
25
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
26
|
Polyphenols from mango (Mangifera indica L.) modulate PI3K/AKT/mTOR-associated micro-RNAs and reduce inflammation in non-cancer and induce cell death in breast cancer cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Kasiappan R, Jutooru I, Mohankumar K, Karki K, Lacey A, Safe S. Reactive Oxygen Species (ROS)-Inducing Triterpenoid Inhibits Rhabdomyosarcoma Cell and Tumor Growth through Targeting Sp Transcription Factors. Mol Cancer Res 2019; 17:794-805. [PMID: 30610105 PMCID: PMC6397684 DOI: 10.1158/1541-7786.mcr-18-1071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Methyl 2-trifluoromethyl-3,11-dioxo-18β-olean-1,12-dien-3-oate (CF3DODA-Me) is derived synthetically from glycyrrhetinic acid, a major component of licorice, and this compound induced reactive oxygen species (ROS) in RD and Rh30 rhabdomyosarcoma (RMS) cells. CF3DODA-Me also inhibited growth and invasion and induced apoptosis in RMS cells, and these responses were attenuated after cotreatment with the antioxidant glutathione, demonstrating the effective anticancer activity of ROS in RMS. CF3DODA-Me also downregulated expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 and prooncogenic Sp-regulated genes including PAX3-FOXO1 (in Rh30 cells). The mechanism of CF3DODA-Me-induced Sp-downregulation involved ROS-dependent repression of c-Myc and cMyc-regulated miR-27a and miR-17/20a, and this resulted in induction of the miRNA-regulated Sp repressors ZBTB4, ZBTB10, and ZBTB34. The cell and tumor growth effects of CF3DODA-Me further emphasize the sensitivity of RMS cells to ROS inducers and their potential clinical applications for treating this deadly disease. IMPLICATIONS: CF3DODA-Me and HDAC inhibitors that induce ROS-dependent Sp downregulation could be developed for clinical applications in treating rhabdomyosarcoma.
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Alexandra Lacey
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
28
|
Lopinavir-NO, a nitric oxide-releasing HIV protease inhibitor, suppresses the growth of melanoma cells in vitro and in vivo. Invest New Drugs 2019; 37:1014-1028. [PMID: 30706336 DOI: 10.1007/s10637-019-00733-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
We generated a nitric oxide (NO)-releasing derivative of the anti-HIV protease inhibitor lopinavir by linking the NO moiety to the parental drug. We investigated the effects of lopinavir and its derivative lopinavir-NO on melanoma cell lines in vitro and in vivo. Lopinavir-NO exhibited a twofold stronger anticancer action than lopinavir in vitro. These results were successfully translated into syngeneic models of melanoma in vivo, where a significant reduction in tumour volume was observed only in animals treated with lopinavir-NO. Both lopinavir and lopinavir-NO inhibited cell proliferation and induced the trans-differentiation of melanoma cells to Schwann-like cells. In melanoma cancer cell lines, both lopinavir and lopinavir-NO induced morphological changes, minor apoptosis and reactive oxygen species (ROS) production. However, caspase activation and autophagy were detected only in B16 cells, indicating a cell line-specific treatment response. Lopinavir-NO released NO intracellularly, and NO neutralization restored cell viability. Treatment with lopinavir-NO induced only a transient activation of Akt and inhibition of P70S6 kinase. The results of this study identify lopinavir-NO as a promising candidate for further clinical trials in melanoma and possibly other solid tumours.
Collapse
|
29
|
Salinas-Vera YM, Marchat LA, Gallardo-Rincón D, Ruiz-García E, Astudillo-De La Vega H, Echavarría-Zepeda R, López-Camarillo C. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int J Mol Med 2019; 43:657-670. [PMID: 30483765 DOI: 10.3892/ijmm.2018.4003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/22/2018] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis is an important hallmark of cancer serving a key role in tumor growth and metastasis. Therefore, tumor angiogenesis has become an attractive target for development of novel drug therapies. An increased amount of anti‑angiogenic compounds is currently in preclinical and clinical development for personalized therapies. However, resistance to current angiogenesis inhibitors is emerging, indicating that there is a need to identify novel anti‑angiogenic agents. In the last decade, the field of microRNA biology has exploded revealing unsuspected functions in tumor angiogenesis. These small non‑coding RNAs, which have been dubbed as angiomiRs, may target regulatory molecules driving angiogenesis, such as cytokines, metalloproteinases and growth factors, including vascular endothelial growth factor, platelet‑derived growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor‑1, as well as mitogen‑activated protein kinase, phosphoinositide 3‑kinase and transforming growth factor signaling pathways. The present review discusses the current progress towards understanding the functions of miRNAs in tumor angiogenesis regulation in diverse types of human cancer. Furthermore, the potential clinical application of angiomiRs towards anti‑angiogenic tumor therapy was explored.
Collapse
Affiliation(s)
- Yarely M Salinas-Vera
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnologia, Instituto Politecnico Nacional, Ciudad de Mexico 07320, Mexico
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Erika Ruiz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico
| | - Horacio Astudillo-De La Vega
- Laboratorio de Investigacion Translacional en Cáncer y Terapia Celular, Hospital de Oncologia, Centro Médico Nacional Siglo XXI, Ciudad de Mexico 06720, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico 03100, Mexico
| |
Collapse
|
30
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
31
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
32
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
33
|
Lin S, Li Y, Zamyatnin AA, Werner J, Bazhin AV. Reactive oxygen species and colorectal cancer. J Cell Physiol 2018; 233:5119-5132. [PMID: 29215746 DOI: 10.1002/jcp.26356] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) has become the fourth leading cause of cancer-related death in the worldwide. It is urgent to find more effective therapeutic strategies for it. Reactive oxygen species (ROS) play multiple roles in normal cellular physiology processes. Thus, a certain level of ROS is essential to keep normal cellular function. However, the accumulation of ROS shows dual roles for cells, which is mainly dependent on the concentration of ROS, the origin of the cancer cell and the activated signaling pathways during tumor progression. In general, moderate level of ROS leads to cell damage, DNA mutation and inflammation, which promotes the initiation and development of cancer. Excessive high level of ROS induces cancer cell death, showing an anti-cancer role. ROS are commonly higher in CRC cells than their normal counterpart cells. Therefore, it is possible that ROS induce cell death in cancer cells while not affecting the normal cells, demonstrating lower side effects. Besides, ROS also play a role in tumor microenvironment and drug resistance. These multiple roles of ROS make them a promising therapeutic target for cancer. To explore potential ROS-target therapies against CRC, it is worth to comprehensively understanding the role of ROS in CRC and therapy. In this review, we mainly discuss the strategies of ROS in CRC therapy, including direct CRC cell target and indirect tumor environment target. In addition, the influences of ROS in drug resistance will also been discussed.
Collapse
Affiliation(s)
- Sisi Lin
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China.,Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yongyu Li
- Department of Pathophysiology, Institute of Digestive Disease, Tongji University School of Medicine, Shanghai, China
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
34
|
Karki K, Hedrick E, Kasiappan R, Jin UH, Safe S. Piperlongumine Induces Reactive Oxygen Species (ROS)-Dependent Downregulation of Specificity Protein Transcription Factors. Cancer Prev Res (Phila) 2017; 10:467-477. [PMID: 28673967 PMCID: PMC6357769 DOI: 10.1158/1940-6207.capr-17-0053] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
Piperlongumine is a natural product found in the plant species Piper longum, and this compound exhibits potent anticancer activity in multiple tumor types and has been characterized as an inducer of reactive oxygen species (ROS). Treatment of Panc1 and L3.6pL pancreatic, A549 lung, 786-O kidney, and SKBR3 breast cancer cell lines with 5 to 15 μmol/L piperlongumine inhibited cell proliferation and induced apoptosis and ROS, and these responses were attenuated after cotreatment with the antioxidant glutathione. Piperlongumine also downregulated expression of Sp1, Sp3, Sp4, and several pro-oncogenic Sp-regulated genes, including cyclin D1, survivin, cMyc, EGFR and hepatocyte growth factor receptor (cMet), and these responses were also attenuated after cotreatment with glutathione. Mechanistic studies in Panc1 cells showed that piperlongumine-induced ROS decreased expression of cMyc via an epigenetic pathway, and this resulted in downregulation of cMyc-regulated miRNAs miR-27a, miR-20a, and miR-17 and induction of the transcriptional repressors ZBTB10 and ZBTB4. These repressors target GC-rich Sp-binding sites to decrease transactivation. This pathway observed for piperlongumine in Panc1 cells has previously been reported for other ROS-inducing anticancer agents and shows that an important underlying mechanism of action of piperlongumine is due to downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes. Cancer Prev Res; 10(8); 467-77. ©2017 AACR.
Collapse
Affiliation(s)
- Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ravi Kasiappan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
35
|
Zhao Y, Zhang S, Zhang Y. MicroRNA-320 inhibits cell proliferation, migration and invasion in retinoblastoma by targeting specificity protein 1. Mol Med Rep 2017. [PMID: 28627594 DOI: 10.3892/mmr.2017.6767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Research into the expression and function of microRNAs (miRNAs/miR) in human cancer has provided novel insights into the molecular mechanisms underlying carcinogenesis and cancer progression. Aberrant miRNA expression has been reported in retinoblastoma (RB) and several other types of human cancer. The present study demonstrated that miR‑320 is significantly downregulated in RB tissues and cell lines. Furthermore, overexpression of miR‑320 was demonstrated to inhibit proliferation, migration and invasion of RB cells. Bioinformatic analysis identified specificity protein 1 (SP1) as a potential target gene of miR‑320. Luciferase reporter assay confirmed that the SP1 3'‑untranslated region contains a direct binding site for miR‑320, and restoration of miR‑320 expression decreased the mRNA and protein expression levels of SP1. Notably, SP1 silencing induced a similar effect on the proliferation, migration and invasion of RB cells as that observed with miR‑320 overexpression, further supporting the hypothesis that SP1 is a direct functional target of miR‑320 in RB. In conclusion, these findings indicate that miR‑320 may be an effective therapeutic target for the treatment of RB.
Collapse
Affiliation(s)
- Yuehua Zhao
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Shilian Zhang
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Yongfeng Zhang
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
36
|
Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF Transcription Factors in Digestive Physiology and Diseases. Gastroenterology 2017; 152:1845-1875. [PMID: 28366734 PMCID: PMC5815166 DOI: 10.1053/j.gastro.2017.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| |
Collapse
|
37
|
Ding QG, Zang J, Gao S, Gao Q, Duan W, Li X, Xu W, Zhang Y. Nitric oxide donor hybrid compounds as promising anticancer agents. Drug Discov Ther 2017; 10:276-284. [PMID: 27990006 DOI: 10.5582/ddt.2016.01067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) plays important roles in cardiovascular regulation, nerve transmission delivery and immune responses. In the last semicenturry, it has been proved that though low concentration of NO is tumor-promoting, high concentration of NO could exhibit multiple antitumor effects, which led to the research and development of kinds of NO donors and NO donor hybrid compounds as antitumor agents. Herein, the recent development of NO donor hybrid compounds is briefly reviewed.
Collapse
Affiliation(s)
- Qin-Ge Ding
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hedrick E, Li X, Safe S. Penfluridol Represses Integrin Expression in Breast Cancer through Induction of Reactive Oxygen Species and Downregulation of Sp Transcription Factors. Mol Cancer Ther 2017; 16:205-216. [PMID: 27811009 PMCID: PMC5222719 DOI: 10.1158/1535-7163.mct-16-0451] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
It was recently demonstrated the penfluridol inhibited breast tumor growth and metastasis and this was associated with downregulation of α6- and β4-integrins. In this study, we observed the penfluridol induced reactive oxygen species (ROS) and this was the primary mechanism of action. Penfluridol-mediated growth inhibition, induction of apoptosis, and inhibition of breast cancer cell migration was attenuated after cotreatment with glutathione. Penfluridol also downregulated Sp transcription factors Sp1, Sp3, and Sp4 through epigenetic downregulation of cMyc and cMyc-regulated miRNAs (miR27a and miR20a/miR17) and induction of the miR-regulated Sp transcriptional repressors ZBTB10 and ZBTB4. α6- and β4-integrins as well as α5- and β1-integrins are Sp-regulated genes that are also coregulated by the orphan nuclear receptor NR4A1 and these integrins can be targeted by agents such as penfluridol that suppress Sp1, Sp3, and Sp4 and also by NR4A1 antagonists. Mol Cancer Ther; 16(1); 205-16. ©2016 AACR.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Xi Li
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
39
|
Kasiappan R, Jutooru I, Karki K, Hedrick E, Safe S. Benzyl Isothiocyanate (BITC) Induces Reactive Oxygen Species-dependent Repression of STAT3 Protein by Down-regulation of Specificity Proteins in Pancreatic Cancer. J Biol Chem 2016; 291:27122-27133. [PMID: 27875298 PMCID: PMC5207142 DOI: 10.1074/jbc.m116.746339] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/08/2016] [Indexed: 01/05/2023] Open
Abstract
The antineoplastic agent benzyl isothiocyanate (BITC) acts by targeting multiple pro-oncogenic pathways/genes, including signal transducer and activator of transcription 3 (STAT3); however, the mechanism of action is not well known. As reported previously, BITC induced reactive oxygen species (ROS) in Panc1, MiaPaCa2, and L3.6pL pancreatic cancer cells. This was accompanied by induction of apoptosis and inhibition of cell growth and migration, and these responses were attenuated in cells cotreated with BITC plus glutathione (GSH). BITC also decreased expression of specificity proteins (Sp) Sp1, Sp3, and Sp4 transcription factors (TFs) and several pro-oncogenic Sp-regulated genes, including STAT3 and phospho-STAT3 (pSTAT3), and GSH attenuated these responses. Knockdown of Sp TFs by RNA interference also decreased STAT3/pSTAT3 expression. BITC-induced ROS activated a cascade of events that included down-regulation of c-Myc, and it was also demonstrated that c-Myc knockdown decreased expression of Sp TFs and STAT3 These results demonstrate that in pancreatic cancer cells, STAT3 is an Sp-regulated gene that can be targeted by BITC and other ROS inducers, thereby identifying a novel therapeutic approach for targeting STAT3.
Collapse
Affiliation(s)
- Ravi Kasiappan
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Indira Jutooru
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Keshav Karki
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Erik Hedrick
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Stephen Safe
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| |
Collapse
|
40
|
Chen J, Chen J, Li W. MicroRNA-149 targets specificity protein 1 to suppress human tongue squamous cell carcinoma cell proliferation and motility. Oncol Lett 2016; 13:851-856. [PMID: 28356969 DOI: 10.3892/ol.2016.5527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/22/2016] [Indexed: 01/21/2023] Open
Abstract
The expression and function of microRNA-149 have been studied in numerous types of cancer. However, thus far, there are no studies of microRNA-149 in tongue squamous cell carcinoma (TSCC). The present study investigated the expression, biological function and molecular mechanism of microRNA-149 in TSCC in vitro, discussing whether it may be a therapeutic biomarker of TSCC in the future. In the present study, microRNA-149 expression in TSCC tissues, matched normal adjacent tissues, TSCC cell lines and normal gingival epithelial cells were analyzed using quantitative polymerase chain reaction. Following transfection with microRNA-149 mimics, cell proliferation, migration and invasion assays, a luciferase assay and western blotting were performed. The present study found that the expression of microRNA-149 was significantly decreased in TSCC tissues and cell lines compared with matched normal tissue and normal gingival epithelial cells, respectively. In addition, it was also demonstrated that microRNA-149 inhibited cell proliferation, migration and invasion by directly targeting specificity protein 1. Therefore, the results suggested that microRNA-149 may be a novel target for TSCC therapy in the future.
Collapse
Affiliation(s)
- Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China; Department of Oral and Maxillofacial Surgery, Hainan Province People's Hospital, Haikou, Hainan 570011, P.R. China
| | - Jimin Chen
- Department of Pathology, Hainan Province People's Hospital, Haikou, Hainan 570011, P.R. China
| | - Weizhong Li
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
41
|
Slattery ML, Herrick JS, Mullany LE, Stevens JR, Wolff RK. Diet and lifestyle factors associated with miRNA expression in colorectal tissue. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2016; 10:1-16. [PMID: 28053552 PMCID: PMC5189704 DOI: 10.2147/pgpm.s117796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-protein-coding RNA molecules that regulate gene expression. Diet and lifestyle factors have been hypothesized to be involved in the regulation of miRNA expression. In this study it was hypothesized that diet and lifestyle factors are associated with miRNA expression. Data from 1,447 cases of colorectal cancer to evaluate 34 diet and lifestyle variables using miRNA expression in normal colorectal mucosa as well as for differential expression between paired carcinoma and normal tissue were used. miRNA data were obtained using an Agilent platform. Multiple comparisons were adjusted for using the false discovery rate q-value. There were 250 miRNAs differentially expressed between carcinoma and normal colonic tissue by level of carbohydrate intake and 198 miRNAs differentially expressed by the level of sucrose intake. Of these miRNAs, 166 miRNAs were differentially expressed for both carbohydrate intake and sucrose intake. Ninety-nine miRNAs were differentially expressed by the level of whole grain intake in normal colonic mucosa. Level of oxidative balance score was associated with 137 differentially expressed miRNAs between carcinoma and paired normal rectal mucosa. Additionally, 135 miRNAs were differentially expressed in colon tissue based on recent NSAID use. Other dietary factors, body mass index, waist and hip circumference, and long-term physical activity levels did not alter miRNA expression after adjustment for multiple comparisons. These results suggest that diet and lifestyle factors regulate miRNA level. They provide additional support for the influence of carbohydrate, sucrose, whole grains, NSAIDs, and oxidative balance score on colorectal cancer risk.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, The University of Utah, Salt Lake City
| | | | - Lila E Mullany
- Department of Internal Medicine, The University of Utah, Salt Lake City
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | - Roger K Wolff
- Department of Internal Medicine, The University of Utah, Salt Lake City
| |
Collapse
|
42
|
He G, Feng C, Vinothkumar R, Chen W, Dai X, Chen X, Ye Q, Qiu C, Zhou H, Wang Y, Liang G, Xie Y, Wu W. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Cancer Chemother Pharmacol 2016; 78:1151-1161. [PMID: 27787644 DOI: 10.1007/s00280-016-3172-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Colorectal cancer is the most commonly diagnosed malignancy with high mortality rates worldwide. Improved therapeutic strategies with minimal adverse side effects are urgently needed. In this study, the anti-tumor effects of EF24, a novel analog of the natural compound curcumin, were evaluated in colorectal cancer cells. METHODS The anti-tumor activity of EF24 on human colon cancer lines (HCT-116, SW-620, and HT-29) was determined by measures of cell cycle arrest, apoptosis, and mitochondrial function. The contribution of ROS in the EF24-induced anti-tumor activity was evaluated by measures of H2O2 and pretreatment with an ROS scavenger, NAC. RESULTS The findings indicated that EF24 treatment dose-dependently inhibited cell viability and caused cell cycle arrest at G2/M phase in all the tested colon cancer cell lines. Furthermore, we demonstrated that EF24 treatment induced apoptosis effectively via enhancing intracellular accumulation of ROS in both HCT-116 and SW-620 cells, but with moderate effects in HT-29 cells. We found that EF24 treatment decreased the mitochondrial membrane potential in the colon cancer cells, leading to the release of mitochondrial cytochrome c. Also, EF24 induced activation of caspases 9 and 3, causing decreased Bcl-2 protein expression and Bcl-2/Bax ratio. Pretreatment with NAC, a ROS scavenger, abrogated the EF24-induced cell death, apoptosis, cell cycle arrest, and mitochondrial dysfunction, suggesting an upstream ROS generation which was responsible for the anticancer effects of EF24. CONCLUSIONS Our findings support an anticancer mechanism by which EF24 enhanced ROS accumulation in colon cancer cells, thereby resulting in mitochondrial membrane collapse and activated intrinsic apoptotic signaling. Thus, EF24 could be a potential candidate for therapeutic application of colon cancer.
Collapse
Affiliation(s)
- Guodong He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rajamanickam Vinothkumar
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Weiqian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuanxuan Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qingqing Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chenyu Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huiping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Wei Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
43
|
Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep 2016; 14:4489-4495. [PMID: 27748864 DOI: 10.3892/mmr.2016.5792] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
Betulinic acid (BA), a lupane-type pentacyclic triterpenoid saponin from tree bark, has the potential to induce the apoptosis of cancer cells without toxicity towards normal cells in vitro and in vivo. The antitumor pharmacological effects of BA consist of triggering apoptosis via the mitochondrial pathway, regulating the cell cycle and the angiogenic pathway via factors, including specificity protein transcription factors, cyclin D1 and epidermal growth factor receptor, inhibiting the signal transducer and activator of transcription 3 and nuclear factor‑κB signaling pathways, preventing the invasion and metastasis of tumor cells, and affecting the expression of topoisomerase I, p53 and lamin B1. In previous years, several studies have shown its antitumor effect, initially applied to malignant melanoma, however, it also has broad efficacies against most solid types of tumor from different regions of the body. There have been few investigations in hematological malignancies, however, this direction may offer potential in such a novel field of research. In this review, the primary pharmacological effects of BA in tumors, particularly in hematological malignancies are discussed.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
44
|
Khan MSS, Majid AMSA, Iqbal MA, Majid ASA, Al-Mansoub M, Haque RSMA. Designing the angiogenic inhibitor for brain tumor via disruption of VEGF and IL17A expression. Eur J Pharm Sci 2016; 93:304-18. [PMID: 27552907 DOI: 10.1016/j.ejps.2016.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/30/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme is a highly malignant, heterogenic, and drug resistant tumor. The blood-brain barrier (BBB), systemic cytotoxicity, and limited specificity are the main obstacles in designing brain tumor drugs. In this study a computational approach was used to design brain tumor drugs that could downregulate VEGF and IL17A in glioblastoma multiforme type four. Computational screening tools were used to evaluate potential candidates for antiangiogenic activity, target binding, BBB permeability, and ADME physicochemical properties. Additionally, in vitro cytotoxicity, migration, invasion, tube formation, apoptosis, ROS and ELISA assays were conducted for molecule 6 that was deemed most likely to succeed. The efflux ratio of membrane permeability and calculated docking scores of permeability to glycoproteins (P-gps) were used to determine the BBB permeability of the molecules. The results showed BBB permeation for molecule 6, with the predicted efficiency of 0.55kcal/mol and binding affinity of -37kj/mol corresponding to an experimental efflux ratio of 0.625 and predicted -15kj/mol of binding affinity for P-gps. Molecule 6 significantly affected the angiogenesis pathways by 2-fold downregulation of IL17A and VEGF through inactivation of active sites of HSP90 (predicted binding: -37kj/mol, predicted efficiency: 0.55kcal/mol) and p23 (predicted binding: 12kj/mol, predicted efficiency: 0.17kcal/mol) chaperon proteins. Additionally, molecule 6 activated the 17.38% relative fold of ROS level at 18.3μg/mL and upregulated the caspase which lead the potential synergistic apoptosis through the antiangiogenic activity of molecule 6 and thereby the highly efficacious anticancer upshot. The results indicate that the binding of the molecules to the therapeutic target is not essential to produce a lethal effect on cancer cells of the brain and that antiangiogenic efficiency is much more important.
Collapse
Affiliation(s)
- Md Shamsuddin Sultan Khan
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia.
| | - Amin Malik Shah Abdul Majid
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia.
| | - Muhammad Adnan Iqbal
- The School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | - Aman Shah Abdul Majid
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia; QUEST International University, Ipoh, Perak, Malaysia
| | - Majed Al-Mansoub
- EMAN Cancer Research Laboratory, Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | | |
Collapse
|
45
|
Anti-lipidaemic and anti-inflammatory effect of açai ( Euterpe oleracea Martius) polyphenols on 3T3-L1 adipocytes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
47
|
Li X, Pathi SS, Safe S. Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors. BMC Cancer 2015; 15:974. [PMID: 26673922 PMCID: PMC4682223 DOI: 10.1186/s12885-015-1956-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Specificity protein (Sp) transcription factors play pivotal roles in maintaining the phenotypes of many cancers. We hypothesized that the antineoplastic effects of sulindac and its metabolites were due, in part, to targeting downregulation of Sp transcription factors. METHODS The functional effects of sulindac, sulindac sulfone and sulindac sulfide on colon cancer cell proliferation were determined by cell counting. Effects of these compounds on expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes were determined by western blot analysis of whole cell lysates and in transient transfection assays using GC-rich constructs. RESULTS Sulindac and its metabolites inhibited RKO and SW480 colon cancer cell growth and the order of growth inhibitory potency was sulindac sulfide>>sulindac sulfone>sulindac. Treatment of SW480 and RKO cells with sulindac sulfide downregulated expression of Sp1, Sp3 and Sp4 proteins. Sulindac sulfide also decreased expression of several Sp-regulated genes that are critical for cancer cell survival, proliferation and angiogenesis and these include survivin, bcl-2, epidermal growth factor receptor (EGFR), cyclin D1, p65 subunit of NFκB and vascular endothelial growth factor (VEGF). Sulindac sulfide also induced reactive oxygen species (ROS) and decreased the level of microRNA-27a in colon cancer cells, which resulted in the upregulation of the Sp-repressor ZBTB10 and this resulted in downregulation of Sp proteins. CONCLUSIONS The results suggest that the cancer chemotherapeutic effects of sulindac in colon cancer cells are due, in part, to its metabolite sulindac sulfide which downregulates Sp transcription factors and Sp-regulated pro-oncogenic gene products.
Collapse
Affiliation(s)
- Xi Li
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Satya S Pathi
- Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK, 73104, USA
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|
48
|
Sanhueza C, Wehinger S, Castillo Bennett J, Valenzuela M, Owen GI, Quest AFG. The twisted survivin connection to angiogenesis. Mol Cancer 2015; 14:198. [PMID: 26584646 PMCID: PMC4653922 DOI: 10.1186/s12943-015-0467-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Survivin, a member of the inhibitor of apoptosis family of proteins (IAPs) that controls cell division, apoptosis, metastasis and angiogenesis, is overexpressed in essentially all human cancers. As a consequence, the gene/protein is considered an attractive target for cancer treatment. Here, we discuss recent findings related to the regulation of survivin expression and its role in angiogenesis, particularly in the context of hypoxia. We propose a novel role for survivin in cancer, whereby expression of the protein in tumor cells promotes VEGF synthesis, secretion and angiogenesis. Mechanistically, we propose the existence of a positive feed-back loop involving PI3-kinase/Akt activation and enhanced β-Catenin-TCF/LEF-dependent VEGF expression followed by secretion. Finally, we elaborate on the possibility that this mechanism operating in cancer cells may contribute to enhanced tumor vascularization by vasculogenic mimicry together with conventional angiogenesis.
Collapse
Affiliation(s)
- C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - S Wehinger
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - J Castillo Bennett
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - M Valenzuela
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - G I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Facultad de Ciencias Biológicas & Center UC Investigation in Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|
49
|
Hedrick E, Crose L, Linardic CM, Safe S. Histone Deacetylase Inhibitors Inhibit Rhabdomyosarcoma by Reactive Oxygen Species-Dependent Targeting of Specificity Protein Transcription Factors. Mol Cancer Ther 2015; 14:2143-2153. [PMID: 26162688 PMCID: PMC4618474 DOI: 10.1158/1535-7163.mct-15-0148] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/25/2015] [Indexed: 11/16/2022]
Abstract
The two major types of rhabdomyosarcoma (RMS) are predominantly diagnosed in children, namely embryonal (ERMS) and alveolar (ARMS) RMS, and patients are treated with cytotoxic drugs, which results in multiple toxic side effects later in life. Therefore, development of innovative chemotherapeutic strategies is imperative, and a recent genomic analysis suggested the potential efficacy of reactive oxygen species (ROS)-inducing agents. Here, we demonstrate the efficacy of the potent histone deacetylase (HDAC) inhibitors, panobinostat and vorinostat, as agents that inhibit RMS tumor growth in vivo, induce apoptosis, and inhibit invasion of RD and Rh30 RMS cell lines. These effects are due to epigenetic repression of cMyc, which leads to decreased expression of cMyc-regulated miRs-17, -20a, and -27a; upregulation of ZBTB4, ZBTB10, and ZBTB34; and subsequent downregulation of Sp transcription factors. We also show that inhibition of RMS cell growth, survival and invasion, and repression of Sp transcription factors by the HDAC inhibitors are independent of histone acetylation but reversible after cotreatment with the antioxidant glutathione. These results show a novel ROS-dependent mechanism of antineoplastic activity for panobinostat and vorinostat that lies outside of their canonical HDAC-inhibitory activity and demonstrates the potential clinical utility for treating RMS patients with ROS-inducing agents.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Lisa Crose
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Corinne M Linardic
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas. Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, Texas.
| |
Collapse
|
50
|
MicroRNAs in tumor angiogenesis. Life Sci 2015; 136:28-35. [PMID: 26144623 DOI: 10.1016/j.lfs.2015.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 01/07/2023]
Abstract
As it is necessary for tumor growth, angiogenesis has been an attractive target for drug therapy. Accumulating evidences indicate that microRNAs (miRNAs), which are short non-coding RNAs, delicately regulate the angiogenic signals through targeting angiogenic factors and protein kinases. They can modulate pro-angiogenic signals induced by vascular endothelial growth factor (VEGF) and anti-angiogenic signals induced by thrombospondin-1 (TSP-1), and therefore promote or inhibit tumor angiogenesis. Receptor tyrosine kinases (RTKs) and hypoxia inducible factor (HIF) are also targeted by miRNAs. Moreover, miRNAs crosstalk with reactive oxygen species (ROS) influencing tumor angiogenesis. It is critical to understand the role of miRNAs in tumor angiogenesis due to their therapeutic potential to improve outcome for cancer patients. The following review discusses the current state of knowledge related to tumor angiogenesis-regulatory miRNAs and their targets.
Collapse
|