1
|
Sawalha K, Gautam N, Sivakumar K, Paydak H, Mehta JL. Metformin: Its salutary effects beyond diabetes mellitus. J Investig Med 2025:10815589251327511. [PMID: 40033492 DOI: 10.1177/10815589251327511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metformin, an oral hypoglycemic agent, is commonly used in patients with type II diabetes mellitus. Studies have shown its use is associated with a reduction in major cardiovascular events (MACE) in patients with type 2 diabetes such as hospitalization for acute myocardial infarction, stroke, transient ischemic attack, or cardiovascular death. There is also a suggestion that metformin may have effects beyond those relating to lowering of blood sugar. The goal of this review is to assess the effects of metformin in coronary artery disease (CAD), but more importantly, its effects on disease states other than CAD.
Collapse
Affiliation(s)
- Khalid Sawalha
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nitesh Gautam
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kalaivani Sivakumar
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hakan Paydak
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawaher L Mehta
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
2
|
Xie SY, Liu SQ, Zhang T, Shi WK, Xing Y, Fang WX, Zhang M, Chen MY, Xu SC, Fan MQ, Li LL, Zhang H, Zhao N, Zeng ZX, Chen S, Zeng XF, Deng W, Tang QZ. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Circulation 2024; 149:684-706. [PMID: 37994595 DOI: 10.1161/circulationaha.123.065603] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Shi-Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Ke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Xi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Meng-Ya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Si-Chi Xu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China (S.-c.X.)
| | - Meng-Qi Fan
- College of Life Sciences, Wuhan University, P.R. China (M.-q.F.)
| | - Lan-Lan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiaotong University, P.R. China (Z.-x.Z)
- Department of Cardiac Surgery, Changhai Hospital, Navy Medical University, Shanghai, P.R. China (Z.-x.Z)
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Xiao-Feng Zeng
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| |
Collapse
|
3
|
Yang G, Zhang Q, Dong C, Hou G, Li J, Jiang X, Xin Y. Nrf2 prevents diabetic cardiomyopathy via antioxidant effect and normalization of glucose and lipid metabolism in the heart. J Cell Physiol 2024; 239:e31149. [PMID: 38308838 DOI: 10.1002/jcp.31149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3β/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guowen Hou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Akhtar MS, Alavudeen SS, Raza A, Imam MT, Almalki ZS, Tabassum F, Iqbal MJ. Current understanding of structural and molecular changes in diabetic cardiomyopathy. Life Sci 2023; 332:122087. [PMID: 37714373 DOI: 10.1016/j.lfs.2023.122087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Diabetic Mellitus has been characterized as the most prevalent disease throughout the globe associated with the serious morbidity and mortality of vital organs. Cardiomyopathy is the major leading complication of diabetes and within this, myocardial dysfunction or failure is the leading cause of the emergency hospital admission. The review is aimed to comprehend the perspectives associated with diabetes-induced cardiovascular complications. The data was collected from several electronic databases such as Google Scholar, Science Direct, ACS publication, PubMed, Springer, etc. using the keywords such as diabetes and its associated complication, the prevalence of diabetes, the anatomical and physiological mechanism of diabetes-induced cardiomyopathy, the molecular mechanism of diabetes-induced cardiomyopathy, oxidative stress, and inflammatory stress, etc. The collected scientific data was screened by different experts based on the inclusion and exclusion criteria of the study. This review findings revealed that diabetes is associated with inefficient substrate utilization, inability to increase glucose metabolism and advanced glycation end products within the diabetic heart resulting in mitochondrial uncoupling, glucotoxicity, lipotoxicity, and initially subclinical cardiac dysfunction and finally in overt heart failure. Furthermore, several factors such as hypertension, overexpression of renin angiotensin system, hypertrophic obesity, etc. have been seen as majorly associated with cardiomyopathy. The molecular examination showed biochemical disability and generation of the varieties of free radicals and inflammatory cytokines and becomes are the substantial causes of cardiomyopathy. This review provides a better understanding of the involved pathophysiology and offers an open platform for discussing and targeting therapy in alleviating diabetes-induced early heart failure or cardiomyopathy.
Collapse
Affiliation(s)
- Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia.
| | - Sirajudeen S Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Ziad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private College, Al Qassim 51418, Saudi Arabia; Department of Pharmacology, Vision College, Ishbilia, Riyadh 13226-3830, Saudi Arabia
| | - Mir Javid Iqbal
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Lavecchia AM, Mantzouratou P, Cerullo D, Locatelli M, Conti S, Tironi M, Sangalli F, Corna D, Zoja C, Remuzzi G, Xinaris C. Thyroid hormone treatment counteracts cellular phenotypical remodeling in diabetic organs. iScience 2023; 26:107826. [PMID: 37752946 PMCID: PMC10518716 DOI: 10.1016/j.isci.2023.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus and alterations in thyroid hormone (TH) signaling are closely linked. Though the role of TH signaling in cell differentiation and growth is well known, it remains unclear whether its alterations contribute to the pathobiology of diabetic cells. Here, we aim to investigate whether the administration of exogenous T3 can counteract the cellular remodeling that occurs in diabetic cardiomyocytes, podocytes, and pancreatic beta cells. Treating diabetic rats with T3 prevents dedifferentiation, pathological growth, and ultrastructural alterations in podocytes and cardiomyocytes. In vitro, T3 reverses glucose-induced growth in human podocytes and cardiomyocytes, restores cardiomyocyte cytoarchitecture, and reverses pathological alterations in kidney and cardiac organoids. Finally, T3 treatment counteracts glucose-induced transdifferentiation, cell growth, and loss in pancreatic beta cells through TH receptor alpha1 activation. Our studies indicate that TH signaling activation substantially counteracts diabetes-induced pathological remodeling, and provide a potential therapeutic approach for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Angelo M. Lavecchia
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Polyxeni Mantzouratou
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Domenico Cerullo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Matteo Tironi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Fabio Sangalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| | - Christodoulos Xinaris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87 -, 24126 Bergamo, Italy
| |
Collapse
|
6
|
Jones RE, Gruszczyk AV, Schmidt C, Hammersley DJ, Mach L, Lee M, Wong J, Yang M, Hatipoglu S, Lota AS, Barnett SN, Toscano-Rivalta R, Owen R, Raja S, De Robertis F, Smail H, De-Souza A, Stock U, Kellman P, Griffin J, Dumas ME, Martin JL, Saeb-Parsy K, Vazir A, Cleland JGF, Pennell DJ, Bhudia SK, Halliday BP, Noseda M, Frezza C, Murphy MP, Prasad SK. Assessment of left ventricular tissue mitochondrial bioenergetics in patients with stable coronary artery disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:733-745. [PMID: 38666037 PMCID: PMC11041759 DOI: 10.1038/s44161-023-00312-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/29/2023] [Indexed: 04/28/2024]
Abstract
Recurrent myocardial ischemia can lead to left ventricular (LV) dysfunction in patients with coronary artery disease (CAD). In this observational cohort study, we assessed for chronic metabolomic and transcriptomic adaptations within LV myocardium of patients undergoing coronary artery bypass grafting. During surgery, paired transmural LV biopsies were acquired on the beating heart from regions with and without evidence of inducible ischemia on preoperative stress perfusion cardiovascular magnetic resonance. From 33 patients, 63 biopsies were acquired, compared to analysis of LV samples from 11 donor hearts. The global myocardial adenosine triphosphate (ATP):adenosine diphosphate (ADP) ratio was reduced in patients with CAD as compared to donor LV tissue, with increased expression of oxidative phosphorylation (OXPHOS) genes encoding the electron transport chain complexes across multiple cell types. Paired analyses of biopsies obtained from LV segments with or without inducible ischemia revealed no significant difference in the ATP:ADP ratio, broader metabolic profile or expression of ventricular cardiomyocyte genes implicated in OXPHOS. Differential metabolite analysis suggested dysregulation of several intermediates in patients with reduced LV ejection fraction, including succinate. Overall, our results suggest that viable myocardium in patients with stable CAD has global alterations in bioenergetic and transcriptional profile without large regional differences between areas with or without inducible ischemia.
Collapse
Affiliation(s)
- Richard E. Jones
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
- Anglia Ruskin University, Chelmsford, UK
- Essex Cardiothoracic Centre, Basildon, UK
| | - Anja V. Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Daniel J. Hammersley
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joyce Wong
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- University of Cologne, CECAD, Cologne, Germany
| | - Suzan Hatipoglu
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Amrit S. Lota
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Sam N. Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ruth Owen
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Shahzad Raja
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Fabio De Robertis
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Hassiba Smail
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Anthony De-Souza
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Ulrich Stock
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Julian Griffin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marc-Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- European Genomic Institute of Diabetes, INSERM U1283, CNRS 8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
- McGill Genome Centre, McGill University, Montréal, QC Canada
| | - Jack L. Martin
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Ali Vazir
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | | | - Dudley J. Pennell
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Sunil K. Bhudia
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Brian P. Halliday
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Sanjay K. Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Thomas SS, Wu J, Davogustto G, Holliday MW, Eckel-Mahan K, Verzola D, Garibotto G, Hu Z, Mitch WE, Taegtmeyer H. SIRPα Mediates IGF1 Receptor in Cardiomyopathy Induced by Chronic Kidney Disease. Circ Res 2022; 131:207-221. [PMID: 35722884 PMCID: PMC10010047 DOI: 10.1161/circresaha.121.320546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is characterized by increased myocardial mass despite near-normal blood pressure, suggesting the presence of a separate trigger. A potential driver is SIRPα (signal regulatory protein alpha)-a mediator impairing insulin signaling. The objective of this study is to assess the role of circulating SIRPα in CKD-induced adverse cardiac remodeling. METHODS SIRPα expression was evaluated in mouse models and patients with CKD. Specifically, mutant, muscle-specific, or cardiac muscle-specific SIRPα KO (knockout) mice were examined after subtotal nephrectomy. Cardiac function was assessed by echocardiography. Metabolic responses were confirmed in cultured muscle cells or cardiomyocytes. RESULTS We demonstrate that SIRPα regulates myocardial insulin/IGF1R (insulin growth factor-1 receptor) signaling in CKD. First, in the serum of both mice and patients, SIRPα was robustly secreted in response to CKD. Second, cardiac muscle upregulation of SIRPα was associated with impaired insulin/IGF1R signaling, myocardial dysfunction, and fibrosis. However, both global and cardiac muscle-specific SIRPα KO mice displayed improved cardiac function when compared with control mice with CKD. Third, both muscle-specific or cardiac muscle-specific SIRPα KO mice did not significantly activate fetal genes and maintained insulin/IGF1R signaling with suppressed fibrosis despite the presence of CKD. Importantly, SIRPα directly interacted with IGF1R. Next, rSIRPα (recombinant SIRPα) protein was introduced into muscle-specific SIRPα KO mice reestablishing the insulin/IGF1R signaling activity. Additionally, overexpression of SIRPα in myoblasts and cardiomyocytes impaired pAKT (phosphorylation of AKT) and insulin/IGF1R signaling. Furthermore, myotubes and cardiomyocytes, but not adipocytes treated with high glucose or cardiomyocytes treated with uremic toxins, stimulated secretion of SIRPα in culture media, suggesting these cells are the origin of circulating SIRPα in CKD. Both intracellular and extracellular SIRPα exert biologically synergistic effects impairing intracellular myocardial insulin/IGF1R signaling. CONCLUSIONS Myokine SIRPα expression impairs insulin/IGF1R functions in cardiac muscle, affecting cardiometabolic signaling pathways. Circulating SIRPα constitutes an important readout of insulin resistance in CKD-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sandhya S Thomas
- Nephrology Division, Department of Medicine, Michael E. Debakey VA Medical Center, Houston, TX (S.S.T.).,Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX (S.S.T., J.W., M.W.H., Z.H., W.E.M.)
| | - Jiao Wu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX (S.S.T., J.W., M.W.H., Z.H., W.E.M.)
| | - Giovanni Davogustto
- Cardiology Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (G.D.)
| | - Michael W Holliday
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX (S.S.T., J.W., M.W.H., Z.H., W.E.M.)
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (K.E.-M.)
| | - Daniela Verzola
- Nephrology Division, Department of Medicine, Università degli Studi di Genova, Genoa, Italy (D.V., G.G.)
| | - Giacomo Garibotto
- Nephrology Division, Department of Medicine, Università degli Studi di Genova, Genoa, Italy (D.V., G.G.)
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX (S.S.T., J.W., M.W.H., Z.H., W.E.M.)
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX (S.S.T., J.W., M.W.H., Z.H., W.E.M.)
| | - Heinrich Taegtmeyer
- Cardiology Division, Department of Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston (H.T.)
| |
Collapse
|
8
|
Namba S, Iwata M, Yamanishi Y. From drug repositioning to target repositioning: prediction of therapeutic targets using genetically perturbed transcriptomic signatures. Bioinformatics 2022; 38:i68-i76. [PMID: 35758779 PMCID: PMC9235496 DOI: 10.1093/bioinformatics/btac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Motivation A critical element of drug development is the identification of therapeutic targets for diseases. However, the depletion of therapeutic targets is a serious problem. Results In this study, we propose the novel concept of target repositioning, an extension of the concept of drug repositioning, to predict new therapeutic targets for various diseases. Predictions were performed by a trans-disease analysis which integrated genetically perturbed transcriptomic signatures (knockdown of 4345 genes and overexpression of 3114 genes) and disease-specific gene transcriptomic signatures of 79 diseases. The trans-disease method, which takes into account similarities among diseases, enabled us to distinguish the inhibitory from activatory targets and to predict the therapeutic targetability of not only proteins with known target–disease associations but also orphan proteins without known associations. Our proposed method is expected to be useful for understanding the commonality of mechanisms among diseases and for therapeutic target identification in drug discovery. Availability and implementation Supplemental information and software are available at the following website [http://labo.bio.kyutech.ac.jp/~yamani/target_repositioning/]. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Satoko Namba
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
9
|
Jiang C, Li D, Chen L, Liu Y, Zhao Y, Mei G, Tang Y, Yang Y, Yao P, Gao C. Quercetin ameliorated cardiac injury via reducing inflammatory actions and the glycerophospholipid metabolism dysregulation in a diabetic cardiomyopathy mouse model. Food Funct 2022; 13:7847-7856. [DOI: 10.1039/d2fo00912a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quercetin has multiple protective effects against cardiometabolic diseases, but the biological mechanisms underlying the benefits in diabetic cardiomyopathy (DCM) are unclear. A mouse DCM model was established by high-fat diet...
Collapse
|
10
|
Saraste A, Knuuti J. PET imaging in diabetic cardiomyopathy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
12
|
Gallego M, Zayas-Arrabal J, Alquiza A, Apellaniz B, Casis O. Electrical Features of the Diabetic Myocardium. Arrhythmic and Cardiovascular Safety Considerations in Diabetes. Front Pharmacol 2021; 12:687256. [PMID: 34305599 PMCID: PMC8295895 DOI: 10.3389/fphar.2021.687256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a chronic metabolic disease characterized by hyperglycemia in the absence of treatment. Among the diabetes-associated complications, cardiovascular disease is the major cause of mortality and morbidity in diabetic patients. Diabetes causes a complex myocardial dysfunction, referred as diabetic cardiomyopathy, which even in the absence of other cardiac risk factors results in abnormal diastolic and systolic function. Besides mechanical abnormalities, altered electrical function is another major feature of the diabetic myocardium. Both type 1 and type 2 diabetic patients often show cardiac electrical remodeling, mainly a prolonged ventricular repolarization visible in the electrocardiogram as a lengthening of the QT interval duration. The underlying mechanisms at the cellular level involve alterations on the expression and activity of several cardiac ion channels and their associated regulatory proteins. Consequent changes in sodium, calcium and potassium currents collectively lead to a delay in repolarization that can increase the risk of developing life-threatening ventricular arrhythmias and sudden death. QT duration correlates strongly with the risk of developing torsade de pointes, a form of ventricular tachycardia that can degenerate into ventricular fibrillation. Therefore, QT prolongation is a qualitative marker of proarrhythmic risk, and analysis of ventricular repolarization is therefore required for the approval of new drugs. To that end, the Thorough QT/QTc analysis evaluates QT interval prolongation to assess potential proarrhythmic effects. In addition, since diabetic patients have a higher risk to die from cardiovascular causes than individuals without diabetes, cardiovascular safety of the new antidiabetic drugs must be carefully evaluated in type 2 diabetic patients. These cardiovascular outcome trials reveal that some glucose-lowering drugs actually reduce cardiovascular risk. The mechanism of cardioprotection might involve a reduction of the risk of developing arrhythmia.
Collapse
Affiliation(s)
- Mónica Gallego
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julián Zayas-Arrabal
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Amaia Alquiza
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Beatriz Apellaniz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Oscar Casis
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|
13
|
Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021; 8:695792. [PMID: 34277669 PMCID: PMC8279779 DOI: 10.3389/fmed.2021.695792] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
14
|
Abstract
Epigenetic modifications have been implicated to mediate several complications of diabetes mellitus (DM), especially nephropathy and retinopathy. Our aim was to ascertain whether epigenetic alterations in whole blood discriminate among patients with DM with normal, delayed, and rapid gastric emptying (GE).
Collapse
|
15
|
Khajehlandi M, Bolboli L, Siahkuhian M, Rami M, Tabandeh M, Khoramipour K, Suzuki K. Endurance Training Regulates Expression of Some Angiogenesis-Related Genes in Cardiac Tissue of Experimentally Induced Diabetic Rats. Biomolecules 2021; 11:biom11040498. [PMID: 33806202 PMCID: PMC8066303 DOI: 10.3390/biom11040498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Exercise can ameliorate cardiovascular dysfunctions in the diabetes condition, but its precise molecular mechanisms have not been entirely understood. The aim of the present study was to determine the impact of endurance training on expression of angiogenesis-related genes in cardiac tissue of diabetic rats. Thirty adults male Wistar rats were randomly divided into three groups (N = 10) including diabetic training (DT), sedentary diabetes (SD), and sedentary healthy (SH), in which diabetes was induced by a single dose of streptozotocin (50 mg/kg). Endurance training (ET) with moderate-intensity was performed on a motorized treadmill for six weeks. Training duration and treadmill speed were increased during five weeks, but they were kept constant at the final week, and slope was zero at all stages. Real-time polymerase chain reaction (RT-PCR) analysis was used to measure the expression of myocyte enhancer factor-2C (MEF2C), histone deacetylase-4 (HDAC4) and Calmodulin-dependent protein kinase II (CaMKII) in cardiac tissues of the rats. Our results demonstrated that six weeks of ET increased gene expression of MEF2C significantly (p < 0.05), and caused a significant reduction in HDAC4 and CaMKII gene expression in the DT rats compared to the SD rats (p < 0.05). We concluded that moderate-intensity ET could play a critical role in ameliorating cardiovascular dysfunction in a diabetes condition by regulating the expression of some angiogenesis-related genes in cardiac tissues.
Collapse
Affiliation(s)
- Mojdeh Khajehlandi
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 5619913131, Iran; (M.K.); (M.S.)
| | - Lotfali Bolboli
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 5619913131, Iran; (M.K.); (M.S.)
- Correspondence: (L.B.); (K.S.); Tel.: +98-91-4351-2590 (L.B.); +81-4-2947-6898 (K.S.)
| | - Marefat Siahkuhian
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 5619913131, Iran; (M.K.); (M.S.)
| | - Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Mohammadreza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Physiology Research Center and Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Saitama, Japan
- Correspondence: (L.B.); (K.S.); Tel.: +98-91-4351-2590 (L.B.); +81-4-2947-6898 (K.S.)
| |
Collapse
|
16
|
Kyriazis ID, Hoffman M, Gaignebet L, Lucchese AM, Markopoulou E, Palioura D, Wang C, Bannister TD, Christofidou-Solomidou M, Oka SI, Sadoshima J, Koch WJ, Goldberg IJ, Yang VW, Bialkowska AB, Kararigas G, Drosatos K. KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circ Res 2021; 128:335-357. [PMID: 33539225 PMCID: PMC7870005 DOI: 10.1161/circresaha.120.316738] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM.
Collapse
Affiliation(s)
- Ioannis D. Kyriazis
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Matthew Hoffman
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Lea Gaignebet
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
| | - Anna Maria Lucchese
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Eftychia Markopoulou
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Dimitra Palioura
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Chao Wang
- The Scripps Research Institute, Jupiter, FL, 33458m USA
| | | | - Melpo Christofidou-Solomidou
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Shin-ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Walter J. Koch
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, 10016, USA
| | - Vincent W. Yang
- School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Georgios Kararigas
- Charité – Universitätsmedizin Berlin, Berlin 10115, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10785, Germany
- Department of Physiology, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Konstantinos Drosatos
- Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, 19131, USA
| |
Collapse
|
17
|
Wang L, Cai Y, Jian L, Cheung CW, Zhang L, Xia Z. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy. Cardiovasc Diabetol 2021; 20:2. [PMID: 33397369 PMCID: PMC7783984 DOI: 10.1186/s12933-020-01188-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The prevalence of cardiomyopathy is higher in diabetic patients than those without diabetes. Diabetic cardiomyopathy (DCM) is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as coronary artery disease, hypertension, and significant valvular disease. Multiple molecular events contribute to the development of DCM, which include the alterations in energy metabolism (fatty acid, glucose, ketone and branched chain amino acids) and the abnormalities of subcellular components in the heart, such as impaired insulin signaling, increased oxidative stress, calcium mishandling and inflammation. There are no specific drugs in treating DCM despite of decades of basic and clinical investigations. This is, in part, due to the lack of our understanding as to how heart failure initiates and develops, especially in diabetic patients without an underlying ischemic cause. Some of the traditional anti-diabetic or lipid-lowering agents aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose have been shown inadequately targeting multiple aspects of the conditions. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, plays an important role in mediating DCM-related molecular events. Pharmacological targeting of PPARα activation has been demonstrated to be one of the important strategies for patients with diabetes, metabolic syndrome, and atherosclerotic cardiovascular diseases. The aim of this review is to provide a contemporary view of PPARα in association with the underlying pathophysiological changes in DCM. We discuss the PPARα-related drugs in clinical applications and facts related to the drugs that may be considered as risky (such as fenofibrate, bezafibrate, clofibrate) or safe (pemafibrate, metformin and glucagon-like peptide 1-receptor agonists) or having the potential (sodium-glucose co-transporter 2 inhibitor) in treating DCM.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Liguo Jian
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
18
|
The Degree of Cardiac Remodelling before Overload Relief Triggers Different Transcriptome and miRome Signatures during Reverse Remodelling (RR)-Molecular Signature Differ with the Extent of RR. Int J Mol Sci 2020; 21:ijms21249687. [PMID: 33353134 PMCID: PMC7766898 DOI: 10.3390/ijms21249687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
This study aims to provide new insights into transcriptome and miRome modifications occurring in cardiac reverse remodelling (RR) upon left ventricle pressure-overload relief in mice. Pressure-overload was established in seven-week-old C57BL/6J-mice by ascending aortic constriction. A debanding (DEB) surgery was performed seven weeks later in half of the banding group (BA). Two weeks later, cardiac function was evaluated through hemodynamics and echocardiography, and the hearts were collected for histology and small/bulk-RNA-sequencing. Pressure-overload relief was confirmed by the normalization of left-ventricle-end-systolic-pressure. DEB animals were separated into two subgroups according to the extent of cardiac remodelling at seven weeks and RR: DEB1 showed an incomplete RR phenotype confirmed by diastolic dysfunction persistence (E/e' ≥ 16 ms) and increased myocardial fibrosis. At the same time, DEB2 exhibited normal diastolic function and fibrosis, presenting a phenotype closer to myocardial recovery. Nevertheless, both subgroups showed the persistence of cardiomyocytes hypertrophy. Notably, the DEB1 subgroup presented a more severe diastolic dysfunction at the moment of debanding than the DEB2, suggesting a different degree of cardiac remodelling. Transcriptomic and miRomic data, as well as their integrated analysis, revealed significant downregulation in metabolic and hypertrophic related pathways in DEB1 when compared to DEB2 group, including fatty acid β-oxidation, mitochondria L-carnitine shuttle, and nuclear factor of activated T-cells pathways. Moreover, extracellular matrix remodelling, glycan metabolism and inflammation-related pathways were up-regulated in DEB1. The presence of a more severe diastolic dysfunction at the moment of pressure overload-relief on top of cardiac hypertrophy was associated with an incomplete RR. Our transcriptomic approach suggests that a cardiac inflammation, fibrosis, and metabolic-related gene expression dysregulation underlies diastolic dysfunction persistence after pressure-overload relief, despite left ventricular mass regression, as echocardiographically confirmed.
Collapse
|
19
|
Abstract
The syndrome of critical illness is a complex physiological stressor that can be triggered by diverse pathologies. It is widely believed that organ dysfunction and death result from bioenergetic failure caused by inadequate cellular oxygen supply. Teleologically, life has evolved to survive in the face of stressors by undergoing a suite of adaptive changes. Adaptation not only comprises alterations in systemic physiology but also involves molecular reprogramming within cells. The concept of cellular adaptation in critically ill patients is a matter of contention in part because medical interventions mask underlying physiology, creating the artificial construct of "chronic critical illness," without which death would be imminent. Thus far, the intensive care armamentarium has not targeted cellular metabolism to preserve a temporary equilibrium but instead attempts to normalize global oxygen and substrate delivery. Here, we review adaptations to hypoxia that have been demonstrated in cellular models and in human conditions associated with hypoxia, including the hypobaric hypoxia of high altitude, the intrauterine low-oxygen environment, and adult myocardial hibernation. Common features include upregulation of glycolytic ATP production, enhancement of respiratory efficiency, downregulation of mitochondrial density, and suppression of energy-consuming processes. We argue that these innate cellular adaptations to hypoxia represent potential avenues for intervention that have thus far remained untapped by intensive care medicine.
Collapse
Affiliation(s)
- Helen T McKenna
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Royal Free Intensive Care Unit, Royal Free Hospital, London, United Kingdom
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Daniel S Martin
- Royal Free Intensive Care Unit, Royal Free Hospital, London, United Kingdom.,Peninsula Medical School, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
20
|
Koseler A, Arslan I, Sabirli R, Zeytunluoglu A, Kılıç O, Kilic ID. Molecular and Biochemical Parameters Related to Plasma Mannose Levels in Coronary Artery Disease Among Nondiabetic Patients. Genet Test Mol Biomarkers 2020; 24:562-568. [PMID: 32762555 DOI: 10.1089/gtmb.2020.0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aims: Nondiabetic patients were studied to determine whether modest elevations in plasma mannose may be associated with a greater incidence of coronary artery disease (CAD). Materials and Methods: Plasma insulin, mannose, glucose, hexokinase 1-2, GLUT1-GLUT4 levels, and serum mannose phosphate isomerase enzyme levels were evaluated with respect to subsequent CAD using records from 120 nondiabetic CAD patients and 120 healthy volunteers. CAD was identified from myocardial infarction and new diagnoses of angina. Results: Of 120 nondiabetic CAD patients studied, their plasma GLUT4 and HK1 levels were significantly lower than those of the control group. In addition, a significant increase in plasma mannose levels was found in the patient group compared to the control group. Conclusion: Our findings showed that elevated baseline mannose levels in plasma are associated with an increased risk of CAD over time.
Collapse
Affiliation(s)
- Aylin Koseler
- Department of Biophysics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Idris Arslan
- Department of Biomedical Engineering, Bülent Ecevit University, Zonguldak, Turkey
| | - Ramazan Sabirli
- Department of Emergency Medicine, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Ali Zeytunluoglu
- Department of Electronics and Automation, Vocational School of Technical Sciences, Pamukkale University, Denizli, Turkey
| | - Oğuz Kılıç
- Department of Cardiology, Doc. Dr. Ismail Karakuyu State Hospital, Kütahya, Turkey
| | - Ismail Dogu Kilic
- Department of Cardiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
21
|
Koutroumpakis E, Jozwik B, Aguilar D, Taegtmeyer H. Strategies of Unloading the Failing Heart from Metabolic Stress. Am J Med 2020; 133:290-296. [PMID: 31520618 PMCID: PMC7054139 DOI: 10.1016/j.amjmed.2019.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
We propose a unifying perspective of heart failure in patients with type 2 diabetes mellitus. The reasoning is as follows: cellular responses to fuel overload include dysregulated insulin signaling, impaired mitochondrial respiration, reactive oxygen species formation, and the accumulation of certain metabolites, collectively termed glucolipotoxicity. As a consequence, cardiac function is impaired, with intracellular calcium cycling and diastolic dysfunction as an early manifestation. In this setting, increasing glucose uptake by insulin or insulin sensitizing agents only worsens the disrupted fuel homeostasis of the heart. Conversely, restricting fuel supply by means of caloric restriction, surgical intervention, or certain pharmacologic agents will improve cardiac function by restoring metabolic homeostasis. The concept is borne out by clinical interventions, all of which unload the heart from metabolic stress.
Collapse
Affiliation(s)
- Efstratios Koutroumpakis
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Bartosz Jozwik
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - David Aguilar
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston.
| |
Collapse
|
22
|
Kimball TH, Vondriska TM. Metabolism, Epigenetics, and Causal Inference in Heart Failure. Trends Endocrinol Metab 2020; 31:181-191. [PMID: 31866216 PMCID: PMC7035178 DOI: 10.1016/j.tem.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022]
Abstract
Eukaryotes must balance the metabolic and cell death actions of mitochondria via control of gene expression and cell fate by chromatin, thereby functionally binding the metabolome and epigenome. This interaction has far-reaching implications for chronic diseases in humans, the most common of which are those of the cardiovascular system. The most devastating consequence of cardiovascular disease, heart failure, is not a single disease, diagnosis, or endpoint. Human and animal studies have revealed that, regardless of etiology and symptoms, heart failure is universally associated with abnormal metabolism and gene expression - to frame this as cause or consequence, however, may be to wrongfoot the question. This essay aims to challenge current thinking on metabolic-epigenetic crosstalk in heart failure, presenting hypotheses for how chronic diseases arise, take hold, and persist. We unpack assumptions about the order of operations for gene expression and metabolism, exploring recent findings in noncardiac systems that link metabolic intermediates directly to chromatin remodeling. Lastly, we discuss potential mechanisms by which chromatin may serve as a substrate for metabolic memory, and how changes in cellular transcriptomes (and hence in cellular behavior) in response to stress correspond to global changes in chromatin accessibility and structure.
Collapse
Affiliation(s)
- Todd H Kimball
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas M Vondriska
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
23
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
24
|
van der Velden J, Tocchetti CG, Varricchi G, Bianco A, Sequeira V, Hilfiker-Kleiner D, Hamdani N, Leite-Moreira AF, Mayr M, Falcão-Pires I, Thum T, Dawson DK, Balligand JL, Heymans S. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2019; 114:1273-1280. [PMID: 29912308 PMCID: PMC6054261 DOI: 10.1093/cvr/cvy147] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Disturbed metabolism as a consequence of obesity and diabetes may cause cardiac diseases (recently highlighted in the cardiovascular research spotlight issue on metabolic cardiomyopathies).1 In turn, the metabolism of the heart may also be disturbed in genetic and acquired forms of hypertrophic cardiac disease. Herein, we provide an overview of recent insights on metabolic changes in genetic hypertrophic cardiomyopathy and discuss several therapies, which may be explored to target disturbed metabolism and prevent onset of cardiac hypertrophy. This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Anna Bianco
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
| | - Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Medical School Hannover, Germany
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Manuel Mayr
- The James Black Centre & King's British Heart Foundation Centre, King's College, University of London, London, UK
| | - Ines Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Dana K Dawson
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
25
|
Abstract
Heart failure and related morbidity and mortality are increasing at an alarming rate, in large part, because of increases in aging, obesity, and diabetes mellitus. The clinical outcomes associated with heart failure are considerably worse for patients with diabetes mellitus than for those without diabetes mellitus. In people with diabetes mellitus, the presence of myocardial dysfunction in the absence of overt clinical coronary artery disease, valvular disease, and other conventional cardiovascular risk factors, such as hypertension and dyslipidemia, has led to the descriptive terminology, diabetic cardiomyopathy. The prevalence of diabetic cardiomyopathy is increasing in parallel with the increase in diabetes mellitus. Diabetic cardiomyopathy is initially characterized by myocardial fibrosis, dysfunctional remodeling, and associated diastolic dysfunction, later by systolic dysfunction, and eventually by clinical heart failure. Impaired cardiac insulin metabolic signaling, mitochondrial dysfunction, increases in oxidative stress, reduced nitric oxide bioavailability, elevations in advanced glycation end products and collagen-based cardiomyocyte and extracellular matrix stiffness, impaired mitochondrial and cardiomyocyte calcium handling, inflammation, renin-angiotensin-aldosterone system activation, cardiac autonomic neuropathy, endoplasmic reticulum stress, microvascular dysfunction, and a myriad of cardiac metabolic abnormalities have all been implicated in the development and progression of diabetic cardiomyopathy. Molecular mechanisms linked to the underlying pathophysiological changes include abnormalities in AMP-activated protein kinase, peroxisome proliferator-activated receptors, O-linked N-acetylglucosamine, protein kinase C, microRNA, and exosome pathways. The aim of this review is to provide a contemporary view of these instigators of diabetic cardiomyopathy, as well as mechanistically based strategies for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Guanghong Jia
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.)
| | - Michael A Hill
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.)
| | - James R Sowers
- From the Diabetes and Cardiovascular Research Center (G.J., J.R.S.) and Department of Medical Pharmacology and Physiology (M.A.H., J.R.S.), University of Missouri School of Medicine, Columbia; Dalton Cardiovascular Research Center, University of Missouri, Columbia (M.A.H., J.R.S.); and Research Service, Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.R.S.).
| |
Collapse
|
26
|
Zhang S, Wang H, Li L, Chang X, Ma H, Zhang M, Qing X, Zhang L, Zhang Z. Qishen Yiqi Drop Pill, a novel compound Chinese traditional medicine protects against high glucose-induced injury in cardiomyocytes. J Cell Mol Med 2019; 23:6393-6402. [PMID: 31278860 PMCID: PMC6714141 DOI: 10.1111/jcmm.14527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 05/17/2019] [Accepted: 06/19/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Qishen Yiqi Drop Pill (QSYQ) has been recognized as a potential protective agent for various cardiovascular diseases. However, the effect of QSYQ in cardiac complications associated with diabetes is not clear currently. In this study, we investigate whether QSYQ could exert cardiac protective effects against high glucose-induced injuries in cardiac H9c2 cells. METHODS H9c2 cells were exposed to 24 hours of high glucose in presence or absence of QSYQ and LY294002. Cell cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were determined. Levels of bax, bcl-2, p53, cleaved caspase-3, PI3K and Akt were evaluated by Western blot. RESULTS Our data indicated that QSYQ significantly increased the cell viability and decreased cytotoxicity. By analysing the apoptotic rate as well as the expression levels of cytoapoptosis-related factors including cleaved caspase-3, bax, bcl-2, and p53, we found that QSYQ could remarkably suppress apoptosis of cardiomyoblasts caused by high glucose. In addition, it also showed that QSYQ reduced the generation of ROS. We further found that QSYQ treatment could inhibit the loss of mitochondrial membrane potential and mPTP opening. Moreover, Western blot analysis showed enhanced phosphorylation of PI3K/Akt. The specific inhibitor of PI3K, LY294002 not only inhibited QSYQ induced PI3K/Akt signalling pathway activation, but alleviated its protective effects. CONCLUSIONS In summary, these findings demonstrated that QSYQ effectively protected H9c2 cells against the series injuries due to high glucose at least partially by activating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Shouyan Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Hao Wang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Lixia Li
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Xuewei Chang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Huifang Ma
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Mingming Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Xiaochun Qing
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Lijun Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| | - Zhuo Zhang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Institute of Cardio-cerebrovascular Diseases, Luoyang Key Laboratory of Cardiac-cerebro Tissue Injury and Repair, Luoyang, China
| |
Collapse
|
27
|
Sun L, Yu M, Zhou T, Zhang S, He G, Wang G, Gang X. Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Mol Med Rep 2019; 20:2051-2062. [PMID: 31322242 DOI: 10.3892/mmr.2019.10473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
The incidence of diabetes mellitus has become a major public health concern due to lifestyle alterations. Moreover, the complications associated with diabetes mellitus deeply influence the quality of life of patients. Diabetic cardiomyopathy (DC) is a type of diabetes mellitus complication characterized by functional and structural damage in the myocardium but not accompanied by coronary arterial disease. Currently, diagnosing and preventing DC is still a challenge for physicians due to its atypical symptoms. For this reason, it is necessary to summarize the current knowledge on DC, especially in regards to the underlying molecular mechanisms toward the goal of developing useful diagnostic approaches and effective drugs based on these mechanisms. There exist several review articles which have focused on these points, but there still remains a lot to learn from published studies. In this review, the features, diagnosis and molecular mechanisms of DC are reviewed. Furthermore, potential therapeutic and prophylactic drugs are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ming Yu
- Department of Cardiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
28
|
Bois JP, Gropler RJ. Is it time to reassess the role of myocardial metabolic modulation for the treatment of heart failure? J Nucl Cardiol 2019; 26:598-601. [PMID: 28975499 DOI: 10.1007/s12350-017-1068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Affiliation(s)
- John P Bois
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Robert J Gropler
- Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA.
| |
Collapse
|
29
|
Abdelmonem M, Shahin NN, Rashed LA, Amin HAA, Shamaa AA, Shaheen AA. Hydrogen sulfide enhances the effectiveness of mesenchymal stem cell therapy in rats with heart failure: In vitro preconditioning versus in vivo co-delivery. Biomed Pharmacother 2019; 112:108584. [DOI: 10.1016/j.biopha.2019.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
|
30
|
Feng W, Lei T, Wang Y, Feng R, Yuan J, Shen X, Wu Y, Gao J, Ding W, Lu Z. GCN2 deficiency ameliorates cardiac dysfunction in diabetic mice by reducing lipotoxicity and oxidative stress. Free Radic Biol Med 2019; 130:128-139. [PMID: 30389499 DOI: 10.1016/j.freeradbiomed.2018.10.445] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/18/2022]
Abstract
Excessive myocardial lipid accumulation is a major feature of diabetic cardiomyopathy (DCM). Although general control nonderepressible 2 (GCN2) has been identified as a sensor of amino acid availability, it also functions as an important regulator of hepatic lipid metabolism. Our previous studies have reported that GCN2 promotes pressure overload or doxorubicin-induced cardiac dysfunction by increasing cardiomyocyte apoptosis and myocardial oxidative stress. However, the impact of GCN2 on the development of DCM remains unclear. In this study, we investigated the effect of GCN2 on DCM in type 1 and type 2 diabetes animal models. After streptozotocin (STZ) or high-fat diet (HFD) plus low-dose STZ treatments, GCN2-/- mice developed less cardiac dysfunction, hyperlipidemia, myocardial hypertrophy, fibrosis, lipid accumulation, oxidative stress, inflammation and apoptosis compared with wild-type (WT) mice. In diabetic hearts, GCN2 deficiency attenuated the upregulation of peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), the phosphorylation of eIF2α and the induction of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), as well as the reduction of Bcl-2. Furthermore, we found that knockdown of GCN2 attenuated, whereas overexpression of GCN2 exacerbated, high glucose or palmitic acid-induced cell death, oxidative and endoplasmic reticulum stress and lipid accumulation in H9C2 cells. Collectively, our data provide evidence that GCN2 deficiency protects cardiac function by reducing lipid accumulation, oxidative stress and cell death. Our findings suggest that strategies to inhibit GCN2 activity in the heart may be novel approaches for DCM therapy.
Collapse
Affiliation(s)
- Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Lei
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Feng
- Beijing Laboratory Animal Research Center, Beijing 100012, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Wu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Ding
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|
32
|
Contemporary Advances in Myocardial Metabolic Imaging and Their Impact on Clinical Care: a Focus on Positron Emission Tomography (PET). CURRENT CARDIOVASCULAR IMAGING REPORTS 2018. [DOI: 10.1007/s12410-018-9444-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Warren JS, Oka SI, Zablocki D, Sadoshima J. Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646024 DOI: 10.1152/ajpheart.00103.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studies using omics-based approaches have advanced our knowledge of metabolic remodeling in cardiac hypertrophy and failure. Metabolomic analysis of the failing heart has revealed global changes in mitochondrial substrate metabolism. Peroxisome proliferator-activated receptor-α (PPARα) plays a critical role in synergistic regulation of cardiac metabolism through transcriptional control. Metabolic reprogramming via PPARα signaling in heart failure ultimately propagates into myocardial energetics. However, emerging evidence suggests that the expression level of PPARα per se does not always explain the energetic state in the heart. The transcriptional activities of PPARα are dynamic, yet highly coordinated. An additional level of complexity in the PPARα regulatory mechanism arises from its ability to interact with various partners, which ultimately determines the metabolic phenotype of the diseased heart. This review summarizes our current knowledge of the PPARα regulatory mechanisms in cardiac metabolism and the possible role of PPARα in epigenetic modifications in the diseased heart. In addition, we discuss how metabolomics can contribute to a better understanding of the role of PPARα in the progression of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Junco Shibayama Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; .,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
34
|
Abstract
The heart is a biological pump that converts chemical to mechanical energy. This process of energy conversion is highly regulated to the extent that energy substrate metabolism matches energy use for contraction on a beat-to-beat basis. The biochemistry of cardiac metabolism includes the biochemistry of energy transfer, metabolic regulation, and transcriptional, translational as well as posttranslational control of enzymatic activities. Pathways of energy substrate metabolism in the heart are complex and dynamic, but all of them conform to the First Law of Thermodynamics. The perspectives expand on the overall idea that cardiac metabolism is inextricably linked to both physiology and molecular biology of the heart. The article ends with an outlook on emerging concepts of cardiac metabolism based on new molecular models and new analytical tools. © 2016 American Physiological Society. Compr Physiol 6:1675-1699, 2016.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Truong Lam
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Giovanni Davogustto
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| |
Collapse
|
35
|
Byrne NJ, Levasseur J, Sung MM, Masson G, Boisvenue J, Young ME, Dyck JRB. Normalization of cardiac substrate utilization and left ventricular hypertrophy precede functional recovery in heart failure regression. Cardiovasc Res 2016; 110:249-57. [PMID: 26968698 DOI: 10.1093/cvr/cvw051] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
AIMS Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. METHODS AND RESULTS Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. CONCLUSIONS The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery.
Collapse
Affiliation(s)
- Nikole J Byrne
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Miranda M Sung
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Grant Masson
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jamie Boisvenue
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Yu W, Zha W, Ke Z, Min Q, Li C, Sun H, Liu C. Curcumin Protects Neonatal Rat Cardiomyocytes against High Glucose-Induced Apoptosis via PI3K/Akt Signalling Pathway. J Diabetes Res 2016; 2016:4158591. [PMID: 26989696 PMCID: PMC4771910 DOI: 10.1155/2016/4158591] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 01/30/2023] Open
Abstract
The function of curcumin on NADPH oxidase-related ROS production and cardiac apoptosis, together with the modulation of protein signalling pathways, was investigated in cardiomyocytes. Primary cultures of neonatal rat cardiomyocytes were exposed to 30 mmol/L high glucose with or without curcumin. Cell viability, apoptosis, superoxide formation, the expression of NADPH oxidase subunits, and potential regulatory molecules, Akt and GSK-3β, were assessed in cardiomyocytes. Cardiomyocytes exposure to high glucose led to an increase in both cell apoptosis and intracellular ROS levels, which were strongly prevented by curcumin treatment (10 μM). In addition, treatment with curcumin remarkably suppressed the increased activity of Rac1, as well as the enhanced expression of gp91(phox) and p47(phox) induced by high glucose. Lipid peroxidation and SOD were reversed in the presence of curcumin. Furthermore, curcumin treatment markedly inhibited the reduced Bcl-2/Bax ratio elicited by high glucose exposure. Moreover, curcumin significantly increased Akt and GSK-3β phosphorylation in cardiomyocytes treated with high glucose. In addition, LY294002 blocked the effects of curcumin on cardiomyocytes exposure to high glucose. In conclusion, these results demonstrated that curcumin attenuated high glucose-induced cardiomyocyte apoptosis by inhibiting NADPH-mediated oxidative stress and this protective effect is most likely mediated by PI3K/Akt-related signalling pathway.
Collapse
Affiliation(s)
- Wei Yu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacology, Hubei University of Science and Technology, Xianning 437100, China
| | - Wenliang Zha
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhiqiang Ke
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Min
- Department of Pharmacology, Hubei University of Science and Technology, Xianning 437100, China
| | - Cairong Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
| | - Huirong Sun
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chao Liu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
- *Chao Liu:
| |
Collapse
|
37
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
38
|
Hamirani YS, Kundu BK, Zhong M, McBride A, Li Y, Davogustto GE, Taegtmeyer H, Bourque JM. Noninvasive Detection of Early Metabolic Left Ventricular Remodeling in Systemic Hypertension. Cardiology 2015; 133:157-62. [PMID: 26594908 DOI: 10.1159/000441276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Hypertension (HTN) is a common cause of left ventricular hypertrophy (LVH). Sustained pressure overload induces a permanent myocardial switch from fatty-acid to glucose metabolism. In this study, we tested the hypothesis that metabolic remodeling, characterized by increased myocardial glucose uptake, precedes structural and functional remodeling in HTN-induced LVH. METHODS We recruited 31 patients: 11 with HTN only, 9 with HTN and LVH and 11 normotensive controls without LVH. Transthoracic echocardiography was performed to assess the function, mass, wall thickness and diastolic function of the left ventricle. Positron emission tomography imaging was performed, and the rate of myocardial 2-deoxy-2-[18F]fluoro-D-glucose uptake, Ki, was determined using a 3-compartment kinetic model. RESULTS The mean Ki values were significantly higher in HTN patients than in those with HTN and LVH (p < 0.001) and in controls (p = 0.003). The unexpected decrease in Ki with LVH may be secondary to a decreased Ki with diastolic dysfunction (DD), 0.039 ± 0.032 versus 0.072 ± 0.013 (p = 0.004). There was also a significant stepwise decrease in Ki with increasing DD grade (p = 0.04). CONCLUSION Glucose metabolic remodeling is detectable in hypertensive patients before the development of LVH. Furthermore, lower glucose uptake rates are observed in patients with DD. The mechanism for this last finding requires further investigation.
Collapse
Affiliation(s)
- Yasmin S Hamirani
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville, Va., USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Davogustto G, Taegtmeyer H. The changing landscape of cardiac metabolism. J Mol Cell Cardiol 2015; 84:129-32. [PMID: 25937535 DOI: 10.1016/j.yjmcc.2015.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Giovanni Davogustto
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
40
|
Liu F, Song R, Feng Y, Guo J, Chen Y, Zhang Y, Chen T, Wang Y, Huang Y, Li CY, Cao C, Zhang Y, Hu X, Xiao RP. Upregulation of MG53 Induces Diabetic Cardiomyopathy Through Transcriptional Activation of Peroxisome Proliferation-Activated Receptor α. Circulation 2015; 131:795-804. [DOI: 10.1161/circulationaha.114.012285] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Diabetic cardiomyopathy, which contributes to >50% diabetic death, is featured by myocardial lipid accumulation, hypertrophy, fibrosis, and cardiac dysfunction. The mechanism underlying diabetic cardiomyopathy is poorly understood. Recent studies have shown that a striated muscle-specific E3 ligase Mitsugumin 53 (MG53, or TRIM72) constitutes a primary causal factor of systemic insulin resistance and metabolic disorders. Although it is most abundantly expressed in myocardium, the biological and pathological roles of MG53 in triggering cardiac metabolic disorders remain elusive.
Methods and Results—
Here we show that cardiac-specific transgenic expression of MG53 induces diabetic cardiomyopathy in mice. Specifically, MG53 transgenic mouse develops severe diabetic cardiomyopathy at 20 weeks of age, as manifested by insulin resistance, compromised glucose uptake, increased lipid accumulation, myocardial hypertrophy, fibrosis, and cardiac dysfunction. Overexpression of MG53 leads to insulin resistant via destabilizing insulin receptor and insulin receptor substrate 1. More importantly, we identified a novel role of MG53 in transcriptional upregulation of peroxisome proliferation-activated receptor alpha and its target genes, resulting in lipid accumulation and lipid toxicity, thereby contributing to diabetic cardiomyopathy.
Conclusions—
Our results suggest that overexpression of myocardial MG53 is sufficient to induce diabetic cardiomyopathy via dual mechanisms involving upregulation of peroxisome proliferation-activated receptor alpha and impairment of insulin signaling. These findings not only reveal a novel function of MG53 in regulating cardiac peroxisome proliferation-activated receptor alpha gene expression and lipid metabolism, but also underscore MG53 as an important therapeutic target for diabetes mellitus and associated cardiomyopathy.
Collapse
Affiliation(s)
- Fenghua Liu
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Ruisheng Song
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yuanqing Feng
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Jiaojiao Guo
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yanmin Chen
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yong Zhang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Tao Chen
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yanru Wang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yanyi Huang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Chuan-Yun Li
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Chunmei Cao
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yan Zhang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Xinli Hu
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Rui-ping Xiao
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| |
Collapse
|
41
|
Bodiga VL, Eda SR, Bodiga S. Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 2014; 19:49-63. [PMID: 23404649 DOI: 10.1007/s10741-013-9374-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence demonstrates that advanced glycation end products (AGEs) play a pivotal role in the development and progression of diabetic heart failure, although there are numerous other factors that mediate the disease response. AGEs are generated intra- and extracellularly as a result of chronic hyperglycemia. Then, following the interaction with receptors for advanced glycation end products (RAGEs), a series of events leading to vascular and myocardial damage are elicited and sustained, which include oxidative stress, increased inflammation, and enhanced extracellular matrix accumulation resulting in diastolic and systolic dysfunction. Whereas targeting glycemic control and treating additional risk factors, such as obesity, dyslipidemia, and hypertension, are mandatory to reduce chronic complications and prolong life expectancy in diabetic patients, drug therapy tailored to reducing the deleterious effects of the AGE-RAGE interactions is being actively investigated and showing signs of promise in treating diabetic cardiomyopathy and associated heart failure. This review shall discuss the formation of AGEs in diabetic heart tissue, potential targets of glycation in the myocardium, and underlying mechanisms that lead to diabetic cardiomyopathy and heart failure along with the use of AGE inhibitors and breakers in mitigating myocardial injury.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Department of Biotechnology, Krishna University, Machilipatnam, Andhra Pradesh, India
| | | | | |
Collapse
|
42
|
Pereira L, Ruiz-Hurtado G, Rueda A, Mercadier JJ, Benitah JP, Gómez AM. Calcium signaling in diabetic cardiomyocytes. Cell Calcium 2014; 56:372-80. [PMID: 25205537 DOI: 10.1016/j.ceca.2014.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/24/2014] [Accepted: 08/07/2014] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is one of the most common medical conditions. It is associated to medical complications in numerous organs and tissues, of which the heart is one of the most important and most prevalent organs affected by this disease. In fact, cardiovascular complications are the most common cause of death among diabetic patients. At the end of the 19th century, the weakness of the heart in diabetes was noted as part of the general muscular weakness that exists in that disease. However, it was only in the eighties that diabetic cardiomyopathy was recognized, which comprises structural and functional abnormalities in the myocardium in diabetic patients even in the absence of coronary artery disease or hypertension. This disorder has been associated with both type 1 and type 2 diabetes, and is characterized by early-onset diastolic dysfunction and late-onset systolic dysfunction, in which alteration in Ca(2+) signaling is of major importance, since it controls not only contraction, but also excitability (and therefore is involved in rhythmic disorder), enzymatic activity, and gene transcription. Here we attempt to give a brief overview of Ca(2+) fluxes alteration reported on diabetes, and provide some new data on differential modulation of Ca(2+) handling alteration in males and females type 2 diabetic mice to promote further research. Due to space limitations, we apologize for those authors whose important work is not cited.
Collapse
Affiliation(s)
- Laetitia Pereira
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | - Gema Ruiz-Hurtado
- Unidad de Hipertensión, Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Angélica Rueda
- Departamento de Bioquímica, Cinvestav-IPN, México, DF, Mexico
| | - Jean-Jacques Mercadier
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France; Université Paris Diderot - Sorbonne Paris Cité, Assistance Publique - Hôpitaux de Paris (AP-HP), France
| | - Jean-Pierre Benitah
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France
| | - Ana María Gómez
- Inserm, UMR S769, Faculté de Pharmacie, Université Paris Sud, Labex LERMIT, DHU TORINO, Châtenay-Malabry, France.
| |
Collapse
|
43
|
Kondrat'eva DS, Afanas'ev SA, Popov SV. Expression of Ca(2+)-ATPase in sarcoplasmic reticulum in rat cardiomyocytes during experimental postinfarction cardiosclerosis and diabetes mellitus. Bull Exp Biol Med 2014; 156:750-2. [PMID: 24824687 DOI: 10.1007/s10517-014-2440-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 11/29/2022]
Abstract
We studied the expression of Ca(2+)-ATPase in sarcoplasmic reticulum of rat cardiomyocytes during isolated and combined development of postinfarction cardiosclerosis and diabetes mellitus. Postinfarction cardiosclerosis was formed within 6 weeks after coronary artery occlusion. Diabetes mellitus developed within 6 weeks after intraperitoneal injection of streptozotocin (60 mg/kg). Ca(2+)-ATPase in homogenate of rat myocardium was assayed by immunoblotting. Ischemic and diabetic remodeling of the myocardium was associated with reduced expression of Ca(2+)-ATPase in the sarcoplasmic reticulum. Combined pathology was characterized by minimum decrease in the level of this protein. It was concluded that induction of diabetes mellitus at the early stage of postinfarction cardiosclerosis triggered adaptive mechanisms that prevent the decrease in Ca(2+)-ATPase level in the sarcoplasmic reticulum of cardiomyocytes.
Collapse
Affiliation(s)
- D S Kondrat'eva
- Research Institute of Cardiology, Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia,
| | | | | |
Collapse
|
44
|
Carley AN, Taegtmeyer H, Lewandowski ED. Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart. Circ Res 2014; 114:717-29. [PMID: 24526677 DOI: 10.1161/circresaha.114.301863] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolic signaling mechanisms are increasingly recognized to mediate the cellular response to alterations in workload demand, as a consequence of physiological and pathophysiological challenges. Thus, an understanding of the metabolic mechanisms coordinating activity in the cytosol with the energy-providing pathways in the mitochondrial matrix becomes critical for deepening our insights into the pathogenic changes that occur in the stressed cardiomyocyte. Processes that exchange both metabolic intermediates and cations between the cytosol and mitochondria enable transduction of dynamic changes in contractile state to the mitochondrial compartment of the cell. Disruption of such metabolic transduction pathways has severe consequences for the energetic support of contractile function in the heart and is implicated in the pathogenesis of heart failure. Deficiencies in metabolic reserve and impaired metabolic transduction in the cardiomyocyte can result from inherent deficiencies in metabolic phenotype or maladaptive changes in metabolic enzyme expression and regulation in the response to pathogenic stress. This review examines both current and emerging concepts of the functional linkage between the cytosol and the mitochondrial matrix with a specific focus on metabolic reserve and energetic efficiency. These principles of exchange and transport mechanisms across the mitochondrial membrane are reviewed for the failing heart from the perspectives of chronic pressure overload and diabetes mellitus.
Collapse
Affiliation(s)
- Andrew N Carley
- From the Center for Cardiovascular Research, University of Illinois at Chicago College of Medicine, Chicago IL (A.N.C., E.D.L.); and Department of Internal Medicine, Division of Cardiology, The University of Texas Medical School at Houston (H.T.)
| | | | | |
Collapse
|
45
|
Abstract
Abnormalities in myocardial substrate metabolism play a central role in the manifestations of most forms of cardiac disease such as ischemic heart disease, heart failure, hypertensive heart disease, and the cardiomyopathy due to either obesity or diabetes mellitus. Their importance is exemplified by both the development of numerous imaging tools designed to detect the specific metabolic perturbations or signatures related to these different diseases, and the vigorous efforts in drug discovery/development targeting various aspects of myocardial metabolism. Since the prior review in 2005, we have gained new insights into how perturbations in myocardial metabolism contribute to various forms of cardiac disease. For example, the application of advanced molecular biologic techniques and the development of elegant genetic models have highlighted the pleiotropic actions of cellular metabolism on energy transfer, signal transduction, cardiac growth, gene expression, and viability. In parallel, there have been significant advances in instrumentation, radiopharmaceutical design, and small animal imaging, which now permit a near completion of the translational pathway linking in-vitro measurements of metabolism with the human condition. In this review, most of the key advances in metabolic imaging will be described, their contribution to cardiovascular research highlighted, and potential new clinical applications proposed.
Collapse
Affiliation(s)
- Robert J Gropler
- Division of Radiological Sciences, Cardiovascular Imaging Laboratory, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, St. Louis, MO, 63110, USA,
| |
Collapse
|
46
|
Ekeruo IA, Solhpour A, Taegtmeyer H. Metformin in Diabetic Patients with Heart Failure: Safe and Effective? CURRENT CARDIOVASCULAR RISK REPORTS 2013; 7:417-422. [PMID: 24466358 PMCID: PMC3899937 DOI: 10.1007/s12170-013-0355-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Management of diabetic patients with heart failure is a complex endeavor. The initial reluctance to use metformin in these patients has given way to a broader acceptance after clinical trials and meta-analyses have revealed that some of the insulin-sensitizing agents lead to adverse cardiovascular events. We have proposed that an increase of substrate uptake by the insulin-resistant heart is detrimental because the heart is already flooded with fuel. In light of this evidence, metformin offers a unique safety profile in the patient with diabetes and heart failure. Our article expands on the use of metformin in patients with heart failure. We propose that the drug targets both the source as well as the destination (in this case the heart) of excess fuel. We consider treatment of diabetic heart failure patients with metformin both safe and effective.
Collapse
Affiliation(s)
- Ijeoma Ananaba Ekeruo
- The University of Texas Medical School at Houston, Division of Cardiovascular Medicine
| | - Amirreza Solhpour
- The University of Texas Medical School at Houston, Division of Cardiovascular Medicine
| | - Heinrich Taegtmeyer
- The University of Texas Medical School at Houston, Division of Cardiovascular Medicine
| |
Collapse
|
47
|
Guglielmino K, Jackson K, Harris TR, Vu V, Dong H, Dutrow G, Evans JE, Graham J, Cummings BP, Havel PJ, Chiamvimonvat N, Despa S, Hammock BD, Despa F. Pharmacological inhibition of soluble epoxide hydrolase provides cardioprotection in hyperglycemic rats. Am J Physiol Heart Circ Physiol 2012; 303:H853-62. [PMID: 22865388 DOI: 10.1152/ajpheart.00154.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycemic regulation improves myocardial function in diabetic patients, but finding optimal therapeutic strategies remains challenging. Recent data have shown that pharmacological inhibition of soluble epoxide hydrolase (sEH), an enzyme that decreases the endogenous levels of protective epoxyeicosatrienoic acids (EETs), improves glucose homeostasis in insulin-resistant mice. Here, we tested whether the administration of sEH inhibitors preserves cardiac myocyte structure and function in hyperglycemic rats. University of California-Davis-type 2 diabetes mellitus (UCD-T2DM) rats with nonfasting blood glucose levels in the range of 150-200 mg/dl were treated with the sEH inhibitor 1-(1-acetypiperidin-4-yl)-3-adamantanylurea (APAU) for 6 wk. Administration of APAU attenuated the progressive increase of blood glucose concentration and preserved mitochondrial structure and myofibril morphology in cardiac myocytes, as revealed by electron microscopy imaging. Fluorescence microscopy with Ca(2+) indicators also showed a 40% improvement of cardiac Ca(2+) transients in treated rats. Sarcoplasmic reticulum Ca(2+) content was decreased in both treated and untreated rats compared with control rats. However, treatment limited this reduction by 30%, suggesting that APAU may protect the intracellular Ca(2+) effector system. Using Western blot analysis on cardiac myocyte lysates, we found less downregulation of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), the main route of Ca(2+) reuptake in the sarcoplasmic reticulum, and lower expression of hypertrophic markers in treated versus untreated UCD-T2DM rats. In conclusion, APAU enhances the therapeutic effects of EETs, resulting in slower progression of hyperglycemia, efficient protection of myocyte structure, and reduced Ca(2+) dysregulation and SERCA remodeling in hyperglycemic rats. The results suggest that sEH/EETs may be an effective therapeutic target for cardioprotection in insulin resistance and diabetes.
Collapse
|
48
|
Despa S, Margulies KB, Chen L, Knowlton AA, Havel PJ, Taegtmeyer H, Bers DM, Despa F. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ Res 2012; 110:598-608. [PMID: 22275486 DOI: 10.1161/circresaha.111.258285] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Hyperamylinemia is common in patients with obesity and insulin resistance, coincides with hyperinsulinemia, and results in amyloid deposition. Amylin amyloids are generally considered a pancreatic disorder in type 2 diabetes. However, elevated circulating levels of amylin may also lead to amylin accumulation and proteotoxicity in peripheral organs, including the heart. OBJECTIVE To test whether amylin accumulates in the heart of obese and type 2 diabetic patients and to uncover the effects of amylin accumulation on cardiac morphology and function. METHODS AND RESULTS We compared amylin deposition in failing and nonfailing hearts from lean, obese, and type 2 diabetic humans using immunohistochemistry and Western blots. We found significant accumulation of large amylin oligomers, fibrils, and plaques in failing hearts from obese and diabetic patients but not in normal hearts and failing hearts from lean, nondiabetic humans. Small amylin oligomers were even elevated in nonfailing hearts from overweight/obese patients, suggesting an early state of accumulation. Using a rat model of hyperamylinemia transgenic for human amylin, we observed that amylin oligomers attach to the sarcolemma, leading to myocyte Ca(2+) dysregulation, pathological myocyte remodeling, and diastolic dysfunction, starting from prediabetes. In contrast, prediabetic rats expressing the same level of wild-type rat amylin, a nonamyloidogenic isoform, exhibited normal heart structure and function. CONCLUSIONS Hyperamylinemia promotes amylin deposition in the heart, causing alterations of cardiac myocyte structure and function. We propose that detection and disruption of cardiac amylin buildup may be both a predictor of heart dysfunction and a novel therapeutic strategy in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology, University of California-Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
O'Rourke B, Van Eyk JE, Foster DB. Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. CONGESTIVE HEART FAILURE (GREENWICH, CONN.) 2011; 17:269-82. [PMID: 22103918 PMCID: PMC4067253 DOI: 10.1111/j.1751-7133.2011.00266.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation of mitochondrial proteins has been recognized for decades, and the regulation of pyruvate- and branched-chain α-ketoacid dehydrogenases by an atypical kinase/phosphatase cascade is well established. More recently, the development of new mass spectrometry-based technologies has led to the discovery of many novel phosphorylation sites on a variety of mitochondrial targets. The evidence suggests that the major classes of kinase and several phosphatases may be present at the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix, but many questions remain to be answered as to the location, timing, and reversibility of these phosphorylation events and whether they are functionally relevant. The authors review phosphorylation as a mitochondrial regulatory strategy and highlight its possible role in the pathophysiology of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Brian O'Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD 21205-2195, USA.
| | | | | |
Collapse
|
50
|
Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 2011; 8:92-103. [PMID: 21912398 DOI: 10.1038/nrendo.2011.138] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has been related to alterations of oxidative metabolism in insulin-responsive tissues. Overt T2DM can present with acquired or inherited reductions of mitochondrial oxidative phosphorylation capacity, submaximal ADP-stimulated oxidative phosphorylation and plasticity of mitochondria and/or lower mitochondrial content in skeletal muscle cells and potentially also in hepatocytes. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as the result of blunted mitochondrial plasticity. Hereditary insulin resistance is frequently associated with reduced mitochondrial activity at rest, probably due to diminished mitochondrial content. Lifestyle and pharmacological interventions can enhance the capacity for oxidative phosphorylation and mitochondrial content and improve insulin resistance in some (pre)diabetic cases. Various mitochondrial features can be abnormal but are not necessarily responsible for all forms of insulin resistance. Nevertheless, mitochondrial abnormalities might accelerate progression of insulin resistance and subsequent organ dysfunction via increased production of reactive oxygen species. This Review discusses the association between mitochondrial function and insulin sensitivity in various tissues, such as skeletal muscle, liver and heart, with a main focus on studies in humans, and addresses the effects of therapeutic strategies that affect mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|