1
|
Nealy Z, Wang S, Patel AR. The complex role of cardiovascular imaging in viability testing. Prog Cardiovasc Dis 2025; 88:113-125. [PMID: 39788340 PMCID: PMC11835452 DOI: 10.1016/j.pcad.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Myocardial viability assessment is used to determine if chronically dysfunctional myocardium may benefit from coronary revascularization. Cardiac magnetic resonance with late gadolinium enhancement is the current gold standard for visualizing myocardial scar and provides valuable insight into myocardial viability. Viability assessments can also be made with Cardiac Positron Emission Tomography, Echocardiography, Single Photon Emission Tomography, and Cardiac Computed Tomography with each having advantages and disadvantages. Despite the classical interpretation that viability predicts segmental functional improvement, more recent studies have found that revascularization of viable myocardium has conflicting roles in predicting benefits for patients, especially as it relates to major adverse cardiovascular events, development of heart failure symptoms, and all-cause mortality. This review covers these conflicts along with an in-depth review of the pathophysiologic processes that are fundamental to myocardial viability and the various methods used for determining viability.
Collapse
Affiliation(s)
- Zachariah Nealy
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Shuo Wang
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Amit R Patel
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
2
|
Ko KY, Wang SY, Yen RF, Shiau YC, Hsu JC, Tsai HY, Lee CL, Chiu KM, Wu YW. Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy. J Nucl Cardiol 2020; 27:269-279. [PMID: 30109593 DOI: 10.1007/s12350-018-1395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of this study was to prospectively quantify the rate of myocardial glucose uptake (MRGlu) in myocardium with different perfusion-metabolism patterns and determine its prognostic value in patients with ischemic cardiomyopathy. METHODS AND RESULTS 79 patients with ischemic cardiomyopathy were prospectively enrolled for dynamic cardiac FDG PET, and then followed for at least 6 months. Perfusion-metabolism patterns were determined based on visual score analysis of 201Tl SPECT and FDG PET. MRGlu was analyzed using the Patlak kinetic model. The primary end-point was cardiovascular mortality. Significantly higher MRGlu was observed in viable compared with non-viable areas. Negative correlations were found between MRGlu in transmural match and a history of hyperlipidemia, statin usage, and triglyceride levels. Diabetic patients receiving dipeptidyl peptidase-4 inhibitors (DPP4i) had a significantly lower MRGlu in transmural match, mismatch, and reverse mismatch. Patients with MRGlu in transmural match ≥ 23.40 or reverse mismatch ≥ 36.90 had a worse outcome. CONCLUSIONS Myocardial glucose utilization was influenced by substrates and medications, including statins and DPP4i. MRGlu could discriminate between viable and non-viable myocardium, and MRGlu in transmural match and reverse mismatch may be prognostic predictors of cardiovascular death in patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin County, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chien Shiau
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jung-Cheng Hsu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hao-Yuan Tsai
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Lin Lee
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Tsai SY, Wu YW, Wang SY, Shiau YC, Chiu KM, Tsai HY, Lee CL, Hsu JC, Tu CM, Lin HH, Huang SH. Clinical significance of quantitative assessment of right ventricular glucose metabolism in patients with heart failure with reduced ejection fraction. Eur J Nucl Med Mol Imaging 2019; 46:2601-2609. [PMID: 31410543 DOI: 10.1007/s00259-019-04471-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Dynamic 18F-fluorodeoxyglucose (FDG) PET can be used to quantitatively assess the rate of myocardial glucose uptake (MRGlu). The aim of this study was to evaluate the clinical significance and prognostic value of right ventricular (RV) MRGlu in patients with coronary artery disease and heart failure with reduced ejection fraction. METHODS Patients with left ventricular ejection fraction (LVEF) ≤ 40% were consecutively enrolled for FDG PET between November 2012 and May 2017. Global LV and RV MRGlu (μmol/min/100 g) were analyzed. Outcome events were independently assessed using electronic medical records to determine hospitalization for revascularization, new-onset ischemic events, heart failure, cardiovascular, and all-cause death. Differences between LV and RV MRGlu and associations with clinical characteristics and echocardiographic data were evaluated. Associations among FDG PET findings and outcomes were analyzed using Kaplan-Meier survival analysis. RESULTS Seventy-five patients (mean age 62.2 ± 12.7 years, male 85.3%, LVEF 19.3 ± 8.6%) were included for analysis. The mean glucose utilization ratio of RV-to-LV (RV/LV MRGlu) was 89.5 ± 264.9% (r = 0.77, p < 0.001). Positive correlations between RV MRGlu and maximal tricuspid regurgitation peak gradient (r = 0.28, p = 0.033) and peak tricuspid regurgitation jet velocity (r = 0.29, p = 0.021) were noted. LVEF was positively correlated with LV MRGlu (r = 0.27, p = 0.018), but negatively correlated with end-diastolic volume (r = - 0.37, p = 0.001), end-systolic volume (r = - 0.54, p < 0.001), and RV/LV MRGlu (r = - 0.40, p < 0.001). However, RV MRGlu was not well correlated with LVEF. Forty-three patients received revascularization procedures after FDG PET, and 13 patients died in a mean follow-up period of 496 ± 453 days (1-1788 days), including nine cardiovascular deaths. Higher RV and LV MRGlu values, LVEF ≤ 16% and LV end-diastolic volume ≥ 209 ml of gated-PET were associated with poor overall survival and cardiac outcomes. CONCLUSIONS In patients with coronary artery disease and ischemic cardiomyopathy, RV glucose utilization was positively correlated with RV pressure overload, but not LVEF. Global LV and RV MRGlu, LVEF, and LV end-diastolic volume showed significant prognostic value.
Collapse
Affiliation(s)
- Szu-Ying Tsai
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist, New Taipei City, 220, Taiwan
- Ministry of Health and Welfare Nantou Hospital, Nantou County, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist, New Taipei City, 220, Taiwan.
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | - Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist, New Taipei City, 220, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chien Shiau
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist, New Taipei City, 220, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hao-Yuan Tsai
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Lin Lee
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jung-Cheng Hsu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chung-Ming Tu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Heng-Hsu Lin
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shan-Hui Huang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
4
|
Bhambhvani P. Under the hood of the stunned takotsubo heart. J Nucl Cardiol 2018; 25:1271-1273. [PMID: 28188444 DOI: 10.1007/s12350-017-0821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Pradeep Bhambhvani
- Department of Radiology, Division of Molecular Imaging and Therapeutics, The University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
5
|
Sarikaya I, Elgazzar AH, Alfeeli MA, Sharma PN, Sarikaya A. Status of F-18 fluorodeoxyglucose uptake in normal and hibernating myocardium after glucose and insulin loading. J Saudi Heart Assoc 2017; 30:75-85. [PMID: 29910577 PMCID: PMC6000987 DOI: 10.1016/j.jsha.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 11/28/2022] Open
Abstract
Objective F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) has been increasingly used in myocardial viability imaging. In routine PET viability studies, oral glucose and intravenous insulin loading is commonly utilized. In an optimal study, glucose and insulin loading is expected to cause FDG uptake both in hibernating and normal myocardium. However, in routine studies it is not uncommon to see absent or reduced FDG uptake in normal myocardium. In this retrospective study we further analyzed our PET viability images to evaluate FDG uptake status in myocardium under the oral glucose and intravenous insulin loading protocol that we use in our hospital. Methods Patients who had both myocardial perfusion single photon emission computed tomography (SPECT) and FDG PET cardiac viability studies were selected for analysis. FDG uptake status in normal and abnormal myocardial segments on perfusion SPECT was evaluated. Based on SPECT and PET findings, patients were divided into two main groups and four subgroups. Group 1 included PET viable studies and Group 2 included PET-nonviable studies. Subgroups based on FDG uptake in normal myocardium were 1a and 2a (normal uptake) and 1b and 2b (absent or significantly reduced uptake). Results Seventy-one patients met the inclusion criteria. Forty-two patients were PET-viable and 29 were PET-nonviable. In 33 of 71 patients (46.4%) there was absent or significantly reduced FDG uptake in one or more normal myocardial segments, which was identified more in PET-viable than PET-nonviable patients (59.5% vs. 27.5%, p = 0.008). This finding was also more frequent in diabetic than nondiabetic patients (53% vs. 31.8%), but the difference was not significant (p = 0.160). Conclusions In nearly half of our patients, one or more normal myocardial segments showed absent or significantly reduced FDG uptake. This finding, particularly if it is diffuse, could be from suboptimal study, inadequacy of current glucose and insulin loading protocols, or various other patient-related causes affecting FDG uptake both in the normal and hibernating myocardium. In cases with significantly reduced FDG uptake in normal myocardium, PET images should be interpreted cautiously to prevent false-negative results for viability.
Collapse
Affiliation(s)
- Ismet Sarikaya
- Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Kuwait
| | - A H Elgazzar
- Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Kuwait
| | - M A Alfeeli
- Department of Nuclear Medicine, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait
| | - P N Sharma
- Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Kuwait
| | - A Sarikaya
- Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Turkey
| |
Collapse
|
6
|
Bayeva M, Sawicki KT, Butler J, Gheorghiade M, Ardehali H. Molecular and cellular basis of viable dysfunctional myocardium. Circ Heart Fail 2014; 7:680-91. [PMID: 25028350 DOI: 10.1161/circheartfailure.113.000912] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marina Bayeva
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Konrad Teodor Sawicki
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Javed Butler
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Mihai Gheorghiade
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.)
| | - Hossein Ardehali
- From the Division of Cardiology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL (M.B., K.T.S., M.G., H.A.); and Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (J.B.).
| |
Collapse
|
7
|
Badeau RM, Honka MJ, Lautamäki R, Stewart M, Kangas AJ, Soininen P, Ala-Korpela M, Nuutila P. Systemic metabolic markers and myocardial glucose uptake in type 2 diabetic and coronary artery disease patients treated for 16 weeks with rosiglitazone, a PPARγ agonist. Ann Med 2014; 46:18-23. [PMID: 24266715 DOI: 10.3109/07853890.2013.853369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Treatment with rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, in type 2 diabetic mellitus (T2DM) patients is under scrutiny because it affects adversely cardiovascular outcomes. In T2DM patients, with existing coronary heart disease, short-term treatment with rosiglitazone increases myocardial glucose uptake (MGU). Serum metabolic and lipoprotein subclass changes, which may be associated with this rosiglitazone-induced improvement, are unknown. METHODS Patients with both T2DM and coronary heart disease were separated into placebo (n = 26) and treatment (rosiglitazone 4-8 mg; n = 25) groups. After 16 weeks of treatment, serum NMR metabolomics was used to measure circulating low-molecular-weight metabolites and lipoprotein subclasses and lipids that are associated with T2DM before and after the treatment. Significant metabolic measure changes after rosiglitazone treatment were correlated to MGU values assessed with [(18)F]fluorodeoxyglucose positron emission tomography. RESULTS Compared to placebo, the treatment significantly increased circulating glutamine and decreased lactate concentrations. Circulating lactate concentrations showed a significant inverse association with MGU after rosiglitazone treatment. CONCLUSION In T2DM patients with existing coronary heart disease, short-term rosiglitazone treatment caused minor improvements in metabolism: serum lactate and glutamine concentrations changed, reflecting improvements in insulin sensitivity, and circulating lactate concentrations inversely correlated to increases in myocardial glucose uptake.
Collapse
Affiliation(s)
- Robert M Badeau
- Turku PET Centre, University of Turku and Turku University Hospital , Turku , Finland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Low-carbohydrate diet versus euglycemic hyperinsulinemic clamp for the assessment of myocardial viability with 18F-fluorodeoxyglucose-PET: a pilot study. Int J Cardiovasc Imaging 2013; 30:415-23. [PMID: 24253855 DOI: 10.1007/s10554-013-0324-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
Positron emission tomography with (18)F-fluorodeoxyglucose (FDG-PET) is considered the gold standard for myocardial viability. A pilot study was undertaken to compare FDG-PET using euglycemic hyperinsulinemic clamp before (18)F-fluorodeoxyglucose ((18)F-FDG) administration (PET-CLAMP) with a new proposed technique consisting of a 24-h low-carbohydrate diet before (18)F-FDG injection (PET-DIET), for the assessment of hypoperfused but viable myocardium (hibernating myocardium). Thirty patients with previous myocardial infarction were subjected to rest (99m)Tc-sestamibi-SPECT and two (18)F-FDG studies (PET-CLAMP and PET-DIET). Myocardial tracer uptake was visually scored using a 5-point scale in a 17-segment model. Hibernating myocardium was defined as normal or mildly reduced metabolism ((18)F-FDG uptake) in areas with reduced perfusion ((99m)Tc-sestamibi uptake) since (18)F-FDG uptake was higher than the degree of hypoperfusion-perfusion/metabolism mismatch indicating a larger flow defect. PET-DIET identified 79 segments and PET-CLAMP 71 as hibernating myocardium. Both methods agreed in 61 segments (agreement = 94.5 %, κ = 0.78). PET-DIET identified 230 segments and PET-CLAMP 238 as nonviable. None of the patients had hypoglycemia after DIET, while 20 % had it during CLAMP. PET-DIET compared with PET-CLAMP had a good correlation for the assessment of hibernating myocardium. To our knowledge, these data provide the first evidence of the possibility of myocardial viability assessment with this technique.
Collapse
|
9
|
McCrary JR, Wann LS, Thompson RC. PET imaging with FDG to guide revascularization in patients with systolic heart failure. Egypt Heart J 2013. [DOI: 10.1016/j.ehj.2012.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
10
|
F-18 fluorodeoxyglucose uptake and water-perfusable tissue fraction in assessment of myocardial viability. Ann Nucl Med 2012; 26:644-55. [PMID: 22797841 PMCID: PMC3475968 DOI: 10.1007/s12149-012-0631-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 06/18/2012] [Indexed: 11/27/2022]
Abstract
Objectives 15O-water-perfusable tissue fraction (PTF) has been shown to be a potential index for assessing myocardial viability in PET, an alternative to 18F-fluorodeoxyglucose (FDG). This study aimed to directly compare these two independent methods in assessing myocardial viability in patients with abnormal wall motion. Methods PET study was performed on 16 patients with previous myocardial infarction, before coronary artery bypass graft operation (CABG). The protocol included a 15O-carbonmonoxide static, a 15O-water dynamic and an 18F-FDG dynamic scan, during the euglycemic hyperinsulinemic clamp. Echocardiography was performed at the time of PET and 5–12 months after the CABG, and the wall motion recovery was evaluated on segmental and global bases. Consistency between PTF and 18F-FDG was evaluated visually and also in a quantitative manner. Predictive values for the wall motion recovery were also compared between the two approaches. Results The image quality of 18F-FDG was superior to that of 15O-water. The qualitative PTF showed significantly smaller defects than 18F-FDG, and the quantitative PTF showed slightly greater values than 18F-FDG in the infarcted region. The two methods were, however, consistent visually and also quantitatively. The predictive values of the wall motion recovery were almost equal between the two approaches. The absolute 18F-FDG uptake was varied in normal segments, and predictive values for the wall motion recovery by the absolute 18F-FDG was less (accuracy: 80 %) compared with those by the relative 18F-FDG (accuracy: 87 %) and the quantitative PTF (accuracy: 89 %). Conclusion Despite the small sample size, PTF appears to give consistent results with the 18F-FDG approach, and might be an alternative viability assessment.
Collapse
|
11
|
Osterholt M, Sen S, Dilsizian V, Taegtmeyer H. Targeted metabolic imaging to improve the management of heart disease. JACC Cardiovasc Imaging 2012; 5:214-26. [PMID: 22340831 DOI: 10.1016/j.jcmg.2011.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/14/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
Tracer techniques are powerful methods for assessing rates of biological processes in vivo. A case in point is intermediary metabolism of energy providing substrates, a central feature of every living cell. In the heart, the tight coupling between metabolism and contractile function offers an opportunity for the simultaneous assessment of cardiac performance at different levels in vivo: coronary flow, myocardial perfusion, oxygen delivery, metabolism, and contraction. Noninvasive imaging techniques used to identify the metabolic footprints of either normal or perturbed cardiac function are discussed.
Collapse
Affiliation(s)
- Moritz Osterholt
- Department of Internal Medicine/Division of Cardiology, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
12
|
Mäki MT, Koskenvuo JW, Ukkonen H, Saraste A, Tuunanen H, Pietilä M, Nesterov SV, Aalto V, Airaksinen KEJ, Pärkkä JP, Lautamäki R, Kervinen K, Miettinen JA, Mäkikallio TH, Niemelä M, Säily M, Koistinen P, Savolainen ER, Ylitalo K, Huikuri HV, Knuuti J. Cardiac Function, Perfusion, Metabolism, and Innervation following Autologous Stem Cell Therapy for Acute ST-Elevation Myocardial Infarction. A FINCELL-INSIGHT Sub-Study with PET and MRI. Front Physiol 2012; 3:6. [PMID: 22363288 PMCID: PMC3277266 DOI: 10.3389/fphys.2012.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/10/2012] [Indexed: 01/04/2023] Open
Abstract
Purpose: Beneficial mechanisms of bone marrow cell (BMC) therapy for acute ST-segment elevation myocardial infarct (STEMI) are largely unknown in humans. Therefore, we evaluated the feasibility of serial positron emission tomography (PET) and MRI studies to provide insight into the effects of BMCs on the healing process of ischemic myocardial damage. Methods: Nineteen patients with successful primary reteplase thrombolysis (mean 2.4 h after symptoms) for STEMI were randomized for BMC therapy (2.9 × 106 CD34+ cells) or placebo after bone marrow aspiration in a double-blind, multi-center study. Three days post-MI, coronary angioplasty, and paclitaxel eluting stent implantation preceded either BMC or placebo therapy. Cardiac PET and MRI studies were performed 7–12 days after therapies and repeated after 6 months, and images were analyzed at a central core laboratory. Results: In BMC-treated patients, there was a decrease in [11C]-HED defect size (−4.9 ± 4.0 vs. −1.6 ± 2.2%, p = 0.08) and an increase in [18F]-FDG uptake in the infarct area at risk (0.06 ± 0.09 vs. −0.05 ± 0.16, p = 0.07) compared to controls, as well as less left ventricular dilatation (−4.4 ± 13.3 vs. 8.0 ± 16.7 mL/m2, p = 0.12) at 6 months follow-up. However, BMC treatment was inferior to placebo in terms of changes in rest perfusion in the area at risk (−0.09 ± 0.17 vs. 0.10 ± 0.17, p = 0.03) and infarct size (0.4 ± 4.2 vs. −5.1 ± 5.9 g, p = 0.047), and no effect was observed on ejection fraction (p = 0.37). Conclusion: After the acute phase of STEMI, BMC therapy showed only minor trends of long-term benefit in patients with rapid successful thrombolysis. There was a trend of more decrease in innervation defect size and enhanced glucose metabolism in the infarct-related myocardium and also a trend of less ventricular dilatation in the BMC-treated group compared to placebo. However, no consistently better outcome was observed in the BMC-treated group compared to placebo.
Collapse
Affiliation(s)
- Maija T Mäki
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maurer AH, Burshteyn M, Adler LP, Steiner RM. How to differentiate benign versus malignant cardiac and paracardiac 18F FDG uptake at oncologic PET/CT. Radiographics 2012; 31:1287-305. [PMID: 21918045 DOI: 10.1148/rg.315115003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patients undergoing 2-[fluorine 18]fluoro-2-deoxy-d-glucose (FDG) whole-body oncologic positron emission tomography (PET)/computed tomography (CT) are studied while fasting. Cardiac FDG uptake in fasted patients has been widely reported as variable. It is important to understand the normal patterns of cardiac FDG activity that can be seen in oncologic FDG PET/CT studies. These include focal and regional patterns of increased FDG myocardial activity. Focal activity can be observed in papillary muscles, the atria, the base, and the distal anteroapical region of the left ventricle. Regional increased cardiac FDG activity may be diffuse or localized in the posterolateral wall or the base of the left ventricle. Abnormal patterns of cardiac FDG activity not related to malignancy include those associated with lipomatous hypertrophy of the interatrial septum, epicardial and pericardial fat, increased atrial activity associated with atrial fibrillation or a prominent crista terminalis, cardiac sarcoidosis, endocarditis, myocarditis, and pericarditis. Knowledge of these patterns of cardiac FDG activity is important to be able to recognize malignant disease involving the paracardiac spaces, myocardium, and pericardium. With a better understanding of the range of normal and abnormal patterns of cardiac FDG activity, important benign and malignant diseases involving the heart and pericardium can be recognized and diagnosed.
Collapse
Affiliation(s)
- Alan H Maurer
- Department of Radiology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
14
|
Grover S, Srinivasan G, Selvanayagam JB. Evaluation of myocardial viability with cardiac magnetic resonance imaging. Prog Cardiovasc Dis 2011; 54:204-14. [PMID: 22014488 DOI: 10.1016/j.pcad.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Assessment of myocardial viability is of clinical and scientific significance. Traditionally, the detection of myocardial viability (either stunning or hibernation) has been used in aiding diagnosis before revascularization, especially in high-risk patients. There is a considerable body of observational evidence showing substantial improvement after revascularization in patients with significant left ventricular dysfunction and myocardial viability. Recent randomized evidence has questioned the benefit of viability testing but must be interpreted with caution. Dobutamine stress echocardiography, nuclear imaging, and cardiovascular magnetic resonance are the mainstays of viability testing and provide information on contractile function, cellular metabolism, and myocardial fibrosis, respectively. Larger, multicenter trials with outcome data are needed to define the nature of viability testing and, particularly, cardiovascular magnetic resonance in moderate-to-severe ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Suchi Grover
- Department of Cardiovascular Medicine, Flinders Medical Centre, Australia
| | | | | |
Collapse
|
15
|
Abstract
In addition to the typical abnormalities in myocardial structure and function, it is well established that the cardiac metabolism is abnormal in patients with heart failure (HF). Insulin resistance is a common co-morbidity in HF patients and also modulates cardiac metabolism in HF. The notion that an altered myocardial metabolism may contribute to the disease pathogenesis and optimizing it may serve therapeutic purposes underscores the importance of identifying the metabolic characteristics of HF patients. In this paper, the literature on the metabolic changes in human HF is reviewed, and the effects of metabolic modulators on patients with HF are discussed.
Collapse
Affiliation(s)
- Helena Tuunanen
- Turku PET Centre, University of Turku, c/o Turku University Hospital, PO Box 52, 20521 Turku, Finland
| | | |
Collapse
|
16
|
Halbirk M, Nørrelund H, Møller N, Schmitz O, Gøtzsche L, Nielsen R, Nielsen-Kudsk JE, Nielsen SS, Nielsen TT, Eiskjær H, Bøtker HE, Wiggers H. Suppression of circulating free fatty acids with acipimox in chronic heart failure patients changes whole body metabolism but does not affect cardiac function. Am J Physiol Heart Circ Physiol 2010; 299:H1220-5. [DOI: 10.1152/ajpheart.00475.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circulating free fatty acids (FFAs) may worsen heart failure (HF) due to myocardial lipotoxicity and impaired energy generation. We studied cardiac and whole body effects of 28 days of suppression of circulating FFAs with acipimox in patients with chronic HF. In a randomized double-blind crossover design, 24 HF patients with ischemic heart disease [left ventricular ejection fraction: 26 ± 2%; New York Heart Association classes II ( n = 13) and III ( n = 5)] received 28 days of acipimox treatment (250 mg, 4 times/day) and placebo. Left ventricular ejection fraction, diastolic function, tissue-Doppler regional myocardial function, exercise capacity, noninvasive cardiac index, NH2-terminal pro-brain natriuretic peptide (NT-pro-BNP), and whole body metabolic parameters were measured. Eighteen patients were included for analysis. FFAs were reduced by 27% in the acipimox-treated group [acipimox vs. placebo ( day 28 − day 0): −0.10 ± 0.03 vs. +0.01 ± 0.03 mmol/l, P < 0.01]. Glucose and insulin levels did not change. Acipimox tended to increase glucose and decrease lipid utilization rates at the whole body level and significantly changed the effect of insulin on substrate utilization. The hyperinsulinemic euglycemic clamp M value did not differ. Global and regional myocardial function did not differ. Exercise capacity, cardiac index, systemic vascular resistance, and NT-pro-BNP were not affected by treatment. In conclusion, acipimox caused minor changes in whole body metabolism and decreased the FFA supply, but a long-term reduction in circulating FFAs with acipimox did not change systolic or diastolic cardiac function or exercise capacity in patients with HF.
Collapse
Affiliation(s)
- Mads Halbirk
- Departments of 1Cardiology and
- Endocrinology, Aarhus University Hospital, Aarhus
| | | | - Niels Møller
- Endocrinology, Aarhus University Hospital, Aarhus
| | - Ole Schmitz
- Endocrinology, Aarhus University Hospital, Aarhus
| | | | - Roni Nielsen
- Departments of 1Cardiology and
- Endocrinology, Aarhus University Hospital, Aarhus
| | | | | | | | | | | | | |
Collapse
|
17
|
Fallavollita JA, Luisi AJ, Yun E, deKemp RA, Canty JM. An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J Nucl Cardiol 2010; 17:637-45. [PMID: 20387134 PMCID: PMC5856237 DOI: 10.1007/s12350-010-9228-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 03/19/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Positron emission tomography (PET) with insulin-stimulated (18)F-2-deoxyglucose (FDG) uptake is the gold standard for myocardial viability. However, insulin stimulation is infrequently performed due to time and inconvenience. We therefore assessed the clinical applicability of an abbreviated hyperinsulinemic-euglycemic clamp. METHODS AND RESULTS Dynamic FDG PET was performed in 50 patients with ischemic cardiomyopathy (ejection fraction: .30 +/- .10) using an abbreviated hyperinsulinemic-euglycemic clamp with separate Non-Diabetic (n = 26) and Diabetic (n = 24) protocols (American Society of Nuclear Cardiology guidelines), and supplemental potassium. In regions with normal resting perfusion ((13)N-ammonia uptake >or=80% maximal segment), there were no differences in either maximal (Non-Diabetic: .60 +/- .20 vs Diabetic: .60 +/- .17 micromol/min/g, P = .93) or mean rates of myocardial glucose uptake (MGU) (Non-Diabetic: .52 +/- .18 vs Diabetic: .52 +/- .14 micromol/min/g, P = .63) between the protocols. Multivariate analysis showed that diastolic blood pressure alone (maximal MGU, r (2) = .20, P = .001) or with NYHA Heart Failure Class (mean MGU, r (2) = .25, P = .003) could account for some of the variability in normal-region MGU. Potassium supplementation safely attenuated the decline in plasma levels. CONCLUSIONS This abbreviated hyperinsulinemic-euglycemic clamp produced similar MGU values in normal resting myocardium in non-diabetic and diabetic subjects, which are no different than published rates with a standard insulin clamp. Thus, this abbreviated approach is sufficient to overcome myocardial insulin resistance.
Collapse
|
18
|
Abstract
In the myocardial cell, a series of enzyme-catalyzed reactions results in the efficient transfer of chemical energy into mechanical energy. The goals of this article are to emphasize the ability of noninvasive imaging techniques using isotopic tracers to detect the metabolic footprints of heart disease and to propose that cardiac metabolic imaging is more than a useful adjunct to current myocardial perfusion imaging studies. A strength of metabolic imaging is in the assessment of regional myocardial differences in metabolic activity, probing for 1 substrate at a time. We hope that new and developing methods of cardiac imaging will lead to the earlier detection of heart disease and improve the management and quality of life for patients afflicted with ischemic and nonischemic heart muscle disorders.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, USA.
| |
Collapse
|
19
|
Unsuspected hibernating myocardium detected by routine oncology 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2009; 37:409. [DOI: 10.1007/s00259-009-1323-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
|
20
|
Imaging myocardial metabolism and ischemic memory. ACTA ACUST UNITED AC 2008; 5 Suppl 2:S42-8. [PMID: 18641606 DOI: 10.1038/ncpcardio1186] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 02/05/2008] [Indexed: 01/13/2023]
Abstract
The advent of myocardial metabolic imaging more than 30 years ago ushered in a paradigm shift in the clinical management of patients with ischemic and nonischemic heart disease. A classic example is the so-called metabolic memory of altered glucose and fatty acid metabolism in regions of myocardial ischemia and reperfusion. At the cellular level, metabolic memory is driven by changes in the activities and expression of a host of metabolic enzymes, including reactivation of the fetal gene program. The future of metabolic imaging will require a more-refined understanding of the pathways of metabolic adaptation and maladaptation of the heart. Recent evidence suggests that metabolic signals alter metabolic fluxes and give rise to specific metabolic patterns that, in turn, lead to changes in translational and/or transcriptional activities in the cardiac myocyte. In other words, metabolism provides a link between environmental stimuli and a host of intracellular signaling pathways. This concept has not yet been fully explored in vivo, although metabolic adaptation represents the earliest response to myocardial ischemia and left ventricular remodeling.
Collapse
|
21
|
Briede J, Stivrina M, Vigante B, Stoldere D, Duburs G. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart. Cell Biochem Funct 2008; 26:238-45. [PMID: 17990288 DOI: 10.1002/cbf.1442] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus (DM) is an important cardiovascular risk factor and is associated with abnormalities in endothelial and vascular smooth muscle cell function, evoked by chronic hyperglycemia and hyperlipidemia. Chronic insulin deficiency or resistance is marked by decreases in the intensity of glucose transport, glucose phosphorylation, and glucose oxidation, plus decreases in ATP levels in cardiac myocytes. It is important to search for new agents that promote glucose consumption in the heart and partially inhibit extensive fatty acid beta-oxidation observed in diabetic, ischemia. When the oxygen supply for myocardium is decreased, the heart accumulates potentially toxic intermediates of fatty acid beta-oxidation, that is, long-chain acylcarnitine and long-chain acyl-CoA metabolites. Exogenous glucose and heart glycogen become an important compensatory source of energy. Therefore we studied the effect of the antidiabetic 1,4-dihydropyridine compound cerebrocrast at concentrations from 10(-10) M to 10(-7) M on isolated rat hearts using the method of Langendorff, on physiological parameters and energy metabolism. Cerebrocrast at concentrations from 10(-10) M to 10(-7) M has a negative inotropic effect on the rat heart. It inhibits L-type Ca(2+)channels thereby diminishing the cellular Ca(2+) supply, reducing contractile activity, and oxygen consumption, that normally favors enhanced glucose uptake, metabolism, and production of high-energy phosphates (ATP content) in myocardium. Cerebrocrast decreases heart rate and left ventricular (LV) systolic pressure; at concentrations of 10(-10) M and 10(-9) M it evokes short-term vasodilatation of coronary arteries. Increase of ATP content in the myocytes induced by cerebrocrast has a ubiquitous role. It can preserve the integrity of the cell plasma membranes, maintain normal cellular function, and inhibit release of lactate dehydrogenase (LDH) from cells that is associated with diabetes and heart ischemia. Administration of cerebrocrast together with insulin shows that both compounds only slightly enhance glucose uptake in myocardium, but significantly normalize the rate of contraction and relaxation ( +/- dp/dt). The effect of insulin on coronary flow is more pronounced by administration of insulin together with cerebrocrast at a concentration of 10(-7) M. Cerebrocrast may promote a shift of glucose consumption from aerobic to anerobic conditions (through the negative inotropic properties), and may be very significant in prevention of cardiac ischemic episodes.
Collapse
Affiliation(s)
- Janina Briede
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | | |
Collapse
|
22
|
Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, Bergmann SR, Brunken RC, Case J, Delbeke D, DiCarli MF, Garcia EV, Goldstein RA, Gropler RJ, Travin M, Patterson R, Schelbert HR. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2007; 13:e121-51. [PMID: 17174789 DOI: 10.1016/j.nuclcard.2006.08.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Abstract
PURPOSE OF REVIEW Cardiac magnetic resonance imaging has an expanding role as a preferred modality for the detection and characterization of myocardial viability. RECENT FINDINGS Improving the accuracy of cardiac magnetic resonance for detecting viable myocardium has been one focus of investigators. In segments with intermediate transmurality of late gadolinium enhancement, dobutamine response improves the predictive power of cardiac magnetic resonance. A subtractive imaging technique with both short and long inversion times can enhance discrimination of subendocardial infarction and blood pool, but with increased noise and misregistration artifacts. Similar pharmacokinetics between cardiac magnetic resonance contrast agents and computed tomography contrast allows delayed enhancement imaging with computed tomography. Contrast between normal segments and scar remains vastly superior with cardiac magnetic resonance and no radiation is administered. Quantitation of blood flow demonstrated that resting myocardial blood flow is reduced in hibernating myocardium. SUMMARY Because of its safety, accuracy, ease of interpretation, and increasing availability, cardiac magnetic resonance-based assessment of myocardial viability has quickly transitioned from bench to bedside. Routine clinical implementation has prompted improved diagnostic capabilities and easier image interpretation. As a research tool, cardiac magnetic resonance continues to provide valuable insights into the fundamental nature of viability.
Collapse
Affiliation(s)
- David C Isbell
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
24
|
Søndergaard HM, Bøttcher M, Marie Madsen M, Schmitz O, Hansen SB, Nielsen TT, Bøtker HE. Impact of type 2 diabetes on myocardial insulin sensitivity to glucose uptake and perfusion in patients with coronary artery disease. J Clin Endocrinol Metab 2006; 91:4854-61. [PMID: 16984986 DOI: 10.1210/jc.2006-1416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND HYPOTHESIS Myocardial insulin resistance (IR) is a feature of coronary artery disease (CAD) with reduced left ventricular ejection fraction (LVEF). Whether type 2 diabetes mellitus (T2DM) with CAD and preserved LVEF induces myocardial IR and whether insulin in these patients acts as a myocardial vasodilator is debated. METHODS We studied 27 CAD patients (LVEF > 50%): 12 with T2DM (CAD+DM), 15 without T2DM (CAD-NoDM). Regional myocardial and skeletal glucose uptake, myocardial and skeletal muscle perfusion were measured with positron emission tomography. Myocardial muscle perfusion was measured at rest and during hyperemia in nonstenotic and stenotic regions with and without acute hyperinsulinemia. RESULTS Myocardial glucose uptake was similar in CAD+DM and CAD-NoDM in both nonstenotic and stenotic regions [0.38 +/- 0.08 and 0.36 +/- 0.11 micromol/g.min; P value nonsignificant (NS)] and (0.35 +/- 0.09 and 0.37 +/- 0.13 micromol/g.min; P = NS). Skeletal glucose uptake was reduced in CAD+DM (0.05 +/- 0.04 vs. 0.10 +/- 0.05 micromol/g.min; P = 0.02), and likewise, whole-body glucose uptake was reduced in CAD+DM (4.0 +/- 2.8 vs. 7.0 +/- 2.4 mg/kg.min; P = 0.01). Insulin did not alter myocardial muscle perfusion at rest or during hyperemia. Insulin increased skeletal muscle perfusion in CAD-NoDM (0.11 +/- 0.03 vs. 0.06 +/- 0.03 ml/g.min; P = 0.02), but not in CAD+DM (0.08 +/- 0.04 and 0.09 +/- 0.05 ml/g.min; P = NS). CONCLUSION Myocardial IR to glucose uptake is not an inherent feature in T2DM patients with preserved LVEF. Acute physiological insulin exposure exerts no coronary vasodilation in CAD patients irrespective of T2DM.
Collapse
Affiliation(s)
- Hanne M Søndergaard
- Department of Cardiology B, Aarhus University Hospital (SKS), Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Lautamäki R, Borra R, Iozzo P, Komu M, Lehtimäki T, Salmi M, Jalkanen S, Airaksinen KEJ, Knuuti J, Parkkola R, Nuutila P. Liver steatosis coexists with myocardial insulin resistance and coronary dysfunction in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2006; 291:E282-90. [PMID: 16478772 DOI: 10.1152/ajpendo.00604.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver (NAFL) is a common comorbidity in patients with type 2 diabetes and links to the risk of coronary syndromes. The aim was to determine the manifestations of metabolic syndrome in different organs in patients with liver steatosis. We studied 55 type 2 diabetic patients with coronary artery disease using positron emission tomography. Myocardial perfusion was measured with [15O]H2O and myocardial and skeletal muscle glucose uptake with 2-deoxy-2-[18F]fluoro-D-glucose during hyperinsulinemic euglycemia. Liver fat content was determined by magnetic resonance proton spectroscopy. Patients were divided on the basis of their median (8%) into two groups with low (4.6 +/- 2.0%) and high (17.4 +/- 8.0%) liver fat content. The groups were well matched for age, BMI, and fasting plasma glucose. In addition to insulin resistance at the whole body level (P = 0.012) and muscle (P = 0.002), the high liver fat group had lower insulin-stimulated myocardial glucose uptake (P = 0.040) and glucose extraction rate (P = 0.0006) compared with the low liver fat group. In multiple regression analysis, liver fat content was the most significant explanatory variable for myocardial insulin resistance. In addition, the high liver fat group had increased concentrations of high sensitivity C-reactive protein, soluble forms of E-selectin, vascular adhesion protein-1, and intercellular adhesion molecule-1 (P < 0.05) and lower coronary flow reserve (P = 0.02) compared with the low liver fat group. In conclusion, in patients with type 2 diabetes and coronary artery disease, liver fat content is a novel independent indicator of myocardial insulin resistance and reduced coronary functional capacity. Further studies will reveal the effect of hepatic fat reduction on myocardial metabolism and coronary function.
Collapse
|
26
|
Abstract
Glucose-insulin and potassium (GIK) infusions are beneficial in treating ischemic myocardial depression. Myocardial depression is also an important feature in septic shock. We describe two cases of pressor-resistant hypodynamic septic shock that responded to high-dose GIK infusions. In each case, hemodynamic profiles improved sufficiently to allow withdrawal of vasopressor agents. Further assessment of GIK in patients with hypodynamic septic shock is necessary to confirm efficacy and prognostic significance.
Collapse
Affiliation(s)
- Shahir S Hamdulay
- Department of Intensive Care Medicine, University College London Foundation Hospitals, The Middlesex Hospital, London W12 0HS, UK.
| | | | | |
Collapse
|
27
|
Lautamäki R, Airaksinen KEJ, Seppänen M, Toikka J, Härkönen R, Luotolahti M, Borra R, Sundell J, Knuuti J, Nuutila P. Insulin improves myocardial blood flow in patients with type 2 diabetes and coronary artery disease. Diabetes 2006; 55:511-6. [PMID: 16443788 DOI: 10.2337/diabetes.55.02.06.db05-1023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin infusion improves myocardial blood flow (MBF) in healthy subjects. Until now, the effect of insulin on myocardial perfusion in type 2 diabetic subjects with coronary artery disease (CAD) has been unknown. We studied the effects of insulin on MBF in ischemic regions evaluated by single-photon emission-computed tomography and coronary angiography and in nonischemic regions in 43 subjects (ages 63 +/- 7 years) with type 2 diabetes (HbA(1c) 7.1 +/- 0.9%). MBF was measured at fasting and during a euglycemic-hyperinsulinemic clamp at rest (n = 43) and during adenosine-induced (140 mug . kg(-1) . min(-1) for 7 min) hyperemia (n = 26) using positron emission tomography and (15)O-labeled water. MBF was significantly attenuated in ischemic regions as compared with in nonischemic regions (P < 0.0001) and was increased by insulin as compared with in the fasting state (P < 0.0001). At rest, insulin infusion increased MBF by 13% in ischemic regions (P = 0.043) and 22% in nonischemic regions (P = 0.003). During adenosine infusion, insulin enhanced MBF by 20% (P = 0.018) in ischemic regions and 18% (P = 0.045) in nonischemic regions. In conclusion, insulin infusion improved MBF similarly in ischemic and nonischemic regions in type 2 diabetic subjects with CAD. Consequently, in addition to its metabolic effects, insulin infusion may improve endothelial function and thus increase the threshold for ischemia and partly contribute to the beneficial effects found in clinical trials in these subjects.
Collapse
|
28
|
Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic Energetics and Genetics in the Heart. Ann N Y Acad Sci 2006; 1047:208-18. [PMID: 16093498 DOI: 10.1196/annals.1341.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
From the first stages of differentiation in the embryo to the end of life, energy substrate metabolism and function are inextricably linked features of the heart. The principle of energy substrate metabolism is simple. For a given developmental stage and for a given environment, the heart oxidizes the most efficient fuel on the path to ATP. The "multitasking" of energy substrate metabolism in the heart entails more than the generation of reducing equivalents for oxidative phosphorylation of ADP in the respiratory chain. In the postnatal heart, substrate switching and metabolic flexibility are features of normal function. In the stressed heart, metabolic remodeling precedes, triggers, and sustains functional and structural remodeling. This manuscript reviews the pleiotropic actions of metabolism in energy transfer, signal transduction, cardiac growth, gene expression, and viability. Examples are presented to illustrate that metabolic signals of stressed and failing heart are the product of complex cellular processes. An early feature of the maladapted heart is a loss of metabolic flexibility. The example of lipotoxic heart failure illustrates the concept of sustained metabolic dysregulation as a cause of contractile dysfunction of the heart. Thus, a paradigm emerges in which metabolic signals not only regulate fluxes through enzyme catalyzed reactions in existing metabolic pathways, but also regulate transcriptional, translational, and post-translational signaling in the heart. As new insights are gained into metabolic adaptation and maladaptation of the heart, metabolic modulation may become an effective strategy for the treatment of heart failure.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- University of Texas Health Science Center, Department of Internal Medicine, Division of Cardiology, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
29
|
Lautamäki R, Airaksinen KEJ, Seppänen M, Toikka J, Luotolahti M, Ball E, Borra R, Härkönen R, Iozzo P, Stewart M, Knuuti J, Nuutila P. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study. Diabetes 2005; 54:2787-94. [PMID: 16123370 DOI: 10.2337/diabetes.54.9.2787] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rosiglitazone therapy improves insulin sensitivity and glucose uptake in patients with uncomplicated type 2 diabetes. In coronary artery disease (CAD), glucose is an important source of energy and preserved myocardial glucose uptake is essential for the viability of jeopardized myocardium. The aim was to test whether rosiglitazone changes myocardial metabolism in type 2 diabetic patients with CAD. We studied 54 patients (38 men and 16 women) with type 2 diabetes (HbA(1c) 7.2 + 0.9%) and CAD. Myocardial glucose uptake was measured with [(18)F]fluoro-2-deoxy-d-glucose positron emission tomography in ischemic (evaluated by single-photon emission tomography and coronary angiography) and nonischemic regions during euglycemic-hyperinsulinemic clamp before and after a 16-week intervention period with rosiglitazone (n = 27) or placebo (n = 27). Rosiglitazone significantly improved glycemic control (P < 0.0001) and whole-body insulin sensitivity (P < 0.0001). Rosiglitazone increased myocardial glucose uptake from 20.6 +/- 11.8 to 25.5 +/- 12.4 micromol . 100 g(-1) . min(-1) (P = 0.038 vs. baseline, P = 0.023 vs. placebo) in ischemic regions and from 21.7 +/- 12.1 to 28.0 +/- 12.7 micromol . 100 g(-1) . min(-1) (P = 0.014 vs. baseline, P = 0.003 vs. placebo) in nonischemic regions. The increase in myocardial glucose uptake was partly explained by the suppression of free fatty acid levels during clamp. Rosiglitazone therapy significantly increased insulin sensitivity and improved myocardial glucose uptake in type 2 diabetic patients with CAD. These results suggest that rosiglitazone therapy may facilitate myocardial glucose storage and utilization in these patients.
Collapse
Affiliation(s)
- Riikka Lautamäki
- Turku PET Centre, Turku University Central Hospital, Kiinamyllynkatu 4-8, P.O. Box 52, FIN-20521 Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wiggers H, Nørrelund H, Nielsen SS, Andersen NH, Nielsen-Kudsk JE, Christiansen JS, Nielsen TT, Møller N, Bøtker HE. Influence of insulin and free fatty acids on contractile function in patients with chronically stunned and hibernating myocardium. Am J Physiol Heart Circ Physiol 2005; 289:H938-46. [PMID: 15805229 DOI: 10.1152/ajpheart.00150.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is unknown whether short-term modulation of substrate supply affects cardiac performance in heart failure patients with chronic ischemic myocardium. The aim of this study was to determine whether modulation of myocardial substrate metabolism with insulin and free fatty acids (FFAs) affects contractile function of chronically stunned (CST) and hibernating (HIB) myocardium at rest and after maximal exercise. We studied eight nondiabetic patients with ejection fraction (EF) 30 ± 4% (SE) and CST/HIB in 49 ± 6% of the left ventricle: 36 ± 6% CST and 13 ± 2% HIB as determined by 99mTechnetium-Sestamibi single photon emission computed tomography (SPECT) and [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET). Each patient was subjected to a 3-h infusion of 1) saline, 2) insulin-glucose (i.e., euglycemic insulin clamp; high insulin, suppressed FFA), and 3) somatostatin-heparin (suppressed insulin, high FFA). Echocardiographic endpoints were global EF and regional contractile function [maximum velocity ( Vmax) and strain rate (εmax)] as determined by tissue Doppler imaging at steady state and after maximal exercise. EF was similar at baseline and steady state and increased after exercise to 36 ± 5% ( P < 0.05). Baseline regional Vmax and εmax were highest in control, intermediate in CST and HIB, and lowest in infarct regions ( P < 0.05). Steady-state EF, Vmax, and εmax were not affected by metabolic modulation in any region. After maximal exercise, contractile function increased in control, CST, and HIB ( P < 0.05), but not in infarct, regions. Exercise-induced contractile increments were unaffected by metabolic modulation. Metabolic modulation does not influence contractile function in CST and HIB regions. Chronic ischemic myocardium has preserved ability to adapt to extreme, short-term changes in substrate supply at rest and after maximal exercise.
Collapse
Affiliation(s)
- Henrik Wiggers
- Department of Cardiology, Skejby Hospital, Aarhus Univ. Hospital, DK-8200 Aarhus N, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ghesani M, Depuey EG, Rozanski A. Role of F-18 FDG positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography 2005; 22:165-77. [PMID: 15693785 DOI: 10.1111/j.0742-2822.2005.04032.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Positron emission tomography (PET) is a functional imaging technique with important clinical applications in cardiology, oncology, and neurology. In cardiac imaging, its role has been extensively evaluated in the noninvasive diagnosis of coronary artery disease and in the determination of prognosis. Additionally, cardiac PET with F-18 fluorodeoxyglucose (FDG) is very helpful in selection of patients with coronary artery disease and left ventricular dysfunction who would benefit from coronary artery revascularization. Cardiac PET is arguably considered by many as a gold standard in this particular application. F-18, unlike other positron emitters, has a reasonably long physical half-life, which permits its distribution through commercial radiopharmacies. This is further facilitated by increasing popularity of FDG PET in oncology, which makes cardiac FDG PET a practical option for hospitals and outpatient centers equipped with PET scanners. In addition, gamma camera single photon emission computed tomography (SPECT) systems, routinely used in nuclear medicine departments, can be equipped with coincidence circuit or high-energy 511 KeV collimators, providing a cost-effective means of FDG cardiac imaging. Myocardial utilization of glucose as a substrate is variable, depending, among other factors, on serum levels of glucose and insulin. Therefore, patient preparation is important in obtaining good-quality images and in turn allowing for accurate interpretation of myocardial viability. There are various protocols to choose from that provide diagnostic image quality in both diabetic and nondiabetic patients. Mismatch between blood flow and FDG metabolism, an indicator of viable, jeopardized myocardium, can predict postrevascularization improvement in left ventricular function, symptomatic relief, and long-term survival.
Collapse
Affiliation(s)
- Munir Ghesani
- Division of Nuclear Medicine, Department of Radiology, St Luke's Roosevelt Hospital, New York, New York 10019, USA.
| | | | | |
Collapse
|
32
|
Depre C, Vatner SF. Mechanisms of Cell Survival in Myocardial Hibernation. Trends Cardiovasc Med 2005; 15:101-10. [PMID: 16039970 DOI: 10.1016/j.tcm.2005.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/25/2005] [Accepted: 04/27/2005] [Indexed: 11/30/2022]
Abstract
Myocardial hibernation represents a condition of regional ventricular dysfunction in patients with chronic coronary artery disease, which reverses gradually after revascularization. The precise mechanism mediating the regional dysfunction is still debated. One hypothesis suggests that chronic hypoperfusion results in a self-protecting downregulation in myocardial function and metabolism to match the decreased oxygen supply. An alternative hypothesis suggests that the myocardium is subject to repetitive episodes of ischemic dysfunction resulting from an imbalance between myocardial metabolic demand and supply that eventually creates a sustained depression of contractility. It is generally agreed that hibernating myocardium is submitted repeatedly to ischemic stress, and therefore one question persists: how do myocytes survive in the setting of chronic ischemia? The hallmark of hibernating myocardium is a maintained viability of the dysfunctional myocardium which relies on an increased uptake of glucose. We propose that, in addition to this metabolic adjustment, there must be molecular switches that confer resistance to ischemia in hibernating myocardium. Such mechanisms include the activation of a genomic program of cell survival as well as autophagy. These protective mechanisms are induced by ischemia and remain activated chronically as long as either sustained or intermittent ischemia persists.
Collapse
Affiliation(s)
- Christophe Depre
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry New Jersey, New Jersey Medical School, Newark, 07103, USA
| | | |
Collapse
|
33
|
Abstract
The pathophysiology of myocardial hibernation is characterized as a situation of reduced regional contractile function distal to a coronary artery stenosis that recovers after removal of the coronary stenosis. A subacute "downregulation" of contractile function in response to reduced regional myocardial blood flow exists, which normalizes regional energy and substrate metabolism but does not persist for more than 12-24 h. Chronic hibernation develops in response to one or more episodes of myocardial ischemia-reperfusion, possibly progressing from repetitive stunning with normal blood flow to hibernation with reduced blood flow. An upregulation of a protective gene program is seen in hibernating myocardium, putting it into the context of preconditioning. The morphology of hibernating myocardium is characterized by both adaptive and degenerative features.
Collapse
Affiliation(s)
- Gerd Heusch
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | |
Collapse
|
34
|
Alamanni F, Parolari A, Repossini A, Doria E, Bortone F, Campolo J, Pepi M, Sisillo E, Naliato M, Bigi R, Biglioli P, Parodi O. Coronary blood flow, metabolism, and function in dysfunctional viable myocardium before and early after surgical revascularisation. Heart 2004; 90:1291-8. [PMID: 15486124 PMCID: PMC1768513 DOI: 10.1136/hrt.2003.022327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2004] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To assess the link between perfusion, metabolism, and function in viable myocardium before and early after surgical revascularisation. DESIGN Myocardial blood flow (MBF, thermodilution technique), metabolism (lactate, glucose, and free fatty acid extraction and fluxes), and function (transoesophageal echocardiography) were assessed in patients with critical stenosis of the left anterior descending coronary artery (LAD) before and 30 minutes after surgical revascularisation. SETTING Tertiary cardiac centre. PATIENTS 23 patients (mean (SEM) age 57 (1.7) years with LAD stenosis: 17 had dysfunctional viable myocardium in the LAD territory, as shown by thallium-201 rest redistribution and dobutamine stress echocardiography (group 1), and six had normally contracting myocardium (group 2). RESULTS LAD MBF was lower in group 1 than in group 2 (58 (7) v 113 (21) ml/min, p < 0.001) before revascularisation and improved postoperatively in group 1 (129 (133) ml/min, p < 0.001) but not in group 2 (105 (20) ml/min, p = 0.26). Group 1 also had functional improvement in the LAD territory at intraoperative echocardiography (mean regional wall motion score from 2.6 (0.85) to 1.5 (0.98), p < 0.01). Oxidative metabolism, with lactate and free fatty acid extraction, was found preoperatively and postoperatively in both groups; however, lactate and free fatty acid uptake increased after revascularisation only in group 1. CONCLUSIONS MBF is reduced and oxidative metabolism is preserved at rest in dysfunctional but viable myocardium. Surgical revascularisation yields immediate perfusion and functional improvement, and increases the uptake of lactate and free fatty acids.
Collapse
Affiliation(s)
- F Alamanni
- Centro Cardiologico Monzino, IRCCS, Department of Cardiac Surgery and Cardiology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hernandez-Pampaloni M, Bax JJ, Morita K, Dutka DP, Camici PG. Incidence of stunned, hibernating and scarred myocardium in ischaemic cardiomyopathy. Eur J Nucl Med Mol Imaging 2004; 32:314-21. [PMID: 15791441 DOI: 10.1007/s00259-004-1682-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 08/05/2004] [Indexed: 10/26/2022]
Abstract
PURPOSE Different criteria to identify residual viability in chronically dysfunctioning myocardium in patients with coronary artery disease (CAD) can be derived by the combined assessment of myocardial blood flow (MBF) and glucose utilisation (MRG) using positron emission tomography (PET). The aim of this study was to evaluate, in a large number of patients, the prevalence of these different patterns by purely quantitative means. METHODS One hundred and sixteen consecutive patients with ischaemic cardiomyopathy (LVEF < or =40%) underwent resting 2D echocardiography to assess regional contractile function (16-segment model). PET with 15O-labelled water (H2 15O) and 18F-fluorodeoxyglucose (FDG) was used to quantify MBF and MRG during hyperinsulinaemic euglycaemic clamp. Dysfunctional segments with normal MBF (> or =0.6 ml min(-1) g(-1)) were classified as stunned, and segments with reduced MBF (<0.6 ml min(-1) g(-1)) as hibernating if MRG was > or =0.25 micromol min(-1) g(-1). Segments with reduced MBF and MRG <0.20 micromol min(-1) g(-1) were classified as transmural scars and segments with reduced MBF and MRG between 0.20 and 0.25 micromol min(-1) g(-1) as non-transmural scars. RESULTS Eight hundred and thirty-four (46%) segments were dysfunctional. Of these, 601 (72%) were chronically stunned, with 368 (61%) having normal MRG (0.47+/-0.20 micromol min(-1) g(-1)) and 233 (39%) reduced MRG (0.16+/-0.05 micromol min(-1) g(-1)). Seventy-four (9%) segments with reduced MBF had preserved MRG (0.40+/-0.18 micromol min(-1) g(-1)) and were classified as hibernating myocardium. In addition, 15% of segments were classified as transmural and 4% as non-transmural scar. The mean MBF was highest in stunned myocardium (0.95+/-0.32 ml min(-1) g(-1)), intermediate in hibernating myocardium and non-transmural scars (0.47+/-0.09 ml min(-1) g(-1) and 0.48+/-0.08 ml min(-1) g(-1), respectively), and lowest in transmural scars (0.40+/-0.14 ml min(-1) g(-1), P<0.01). MRG was comparable in hibernating and stunned myocardium with preserved MRG (0.40+/-0.19 micromol min(-1) g(-1) vs 0.46+/-0.20 micromol min(-1) g(-1), NS), and lowest in stunned myocardium with reduced MRG and transmural scars. CONCLUSION Chronic stunning is more prevalent than expected. The degree of MRG reduction in stunned myocardium may disclose segments at higher risk of permanent damage.
Collapse
|
36
|
Herrero P, Dence CS, Sharp TL, Welch MJ, Gropler RJ. Impact of reversible trapping of tracer and the presence of blood metabolites on measurements of myocardial glucose utilization performed by PET and 18F-fluorodeoxyglucose using the Patlak method. Nucl Med Biol 2004; 31:883-92. [PMID: 15464390 DOI: 10.1016/j.nucmedbio.2004.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study we demonstrated that significant egress of FDG from myocardium occurs within the first hour after tracer injection leading to nonlinear Patlak plots. There are also significant amounts of acidic FDG metabolites present in the blood. However, the impact of these metabolites on the estimates of myocardial glucose utilization (MGU) is negligible. Although further studies will be required to elucidate the reason for the egress of tracer from myocardium, not accounting for it will result in erroneous estimates of MGU.
Collapse
Affiliation(s)
- Pilar Herrero
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
37
|
Laine H, Sundell J, Nuutila P, Raitakari OT, Luotolahti M, Rönnemaa T, Elomaa T, Koskinen P, Knuuti J. Insulin induced increase in coronary flow reserve is abolished by dexamethasone in young men with uncomplicated type 1 diabetes. Heart 2004; 90:270-6. [PMID: 14966043 PMCID: PMC1768122 DOI: 10.1136/hrt.2003.013722] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To examine the role of the sympathetic nervous system in regulating insulin's action on coronary perfusion in uncomplicated type 1 diabetes by blocking centrally mediated sympathetic activity with dexamethasone. METHODS Positron emission tomography and oxygen 15 labelled water were used to quantify myocardial blood flow basally and during adenosine infusion with or without simultaneous euglycaemic physiological hyperinsulinaemia in nine non-smoking men with type 1 diabetes and 12 healthy non-diabetic men. Each patient was studied both with and without previous dexamethasone treatment for two days (2 mg/day). RESULTS Insulin increased coronary flow reserve in diabetic (from 4.3 (0.7) to 5.1 (0.6), p < 0.05) and non-diabetic (from 4.3 (0.3) to 5.4 (0.4), p < 0.05) patients. In contrast to non-diabetic patients dexamethasone pretreatment abolished the insulin induced increase in coronary flow reserve in diabetic patients (p < 0.05) leading to lower coronary flow reserve in diabetic than in non-diabetic patients (3.9 (0.6) v 7.1 (0.9), p < 0.05). CONCLUSIONS These results show that insulin's ability to modulate coronary perfusion is sustained in young patients with type 1 diabetes without microvascular complications or autonomic neuropathy. Dexamethasone treatment abolished the insulin induced increase in coronary flow reserve in diabetic patients but not in healthy study participants, suggesting that sympathetic activation plays an important part in regulating insulin's effects on myocardial perfusion in patients with type 1 diabetes.
Collapse
Affiliation(s)
- H Laine
- Turku PET Centre, Turku University Central Hospital, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schelbert HR, Beanlands R, Bengel F, Knuuti J, Dicarli M, Machac J, Patterson R. PET myocardial perfusion and glucose metabolism imaging: Part 2-Guidelines for interpretation and reporting. J Nucl Cardiol 2003; 10:557-71. [PMID: 14569249 DOI: 10.1016/j.nuclcard.2003.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Camici PG, Rimoldi OE. Pathophysiology and diagnosis of hibernating myocardium in patients with post-ischemic heart failure: the contribution of PET. Ann Nucl Med 2003; 17:341-50. [PMID: 12971630 DOI: 10.1007/bf03006599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Identification and treatment of hibernating myocardium (HM) lead to improvement in LV function and prognosis in patients with post-ischemic heart failure. Different techniques are used to diagnose HM: echocardiography, MRI, SPECT and PET and, in patients with moderate LV impairment, their predictive values are similar. There are few data on patients with severe LV dysfunction and heart failure in whom the greatest benefits are apparent after revascularization. Quantification of FDG uptake with PET during hyperinsulinemic euglycemic clamp is accurate in these patients with the greatest mortality risk in whom other techniques may give high false negative rates. The debate on whether resting myocardial blood flow to HM is reduced or not has stimulated new research on heart failure in patients with coronary artery disease. PET with H2(15)O or 13NH3 has been used for the absolute quantification of regional blood flow in human HM. When HM is properly identified, resting blood flow is not different from that in healthy volunteers although a reduction of approximately 20% can be demonstrated in a minority of cases. PET studies have shown that the main feature of HM is a severe impairment of coronary vasodilator reserve that improves after revascularization in parallel with LV function. Thus, the pathophysiology of HM is more complex than initially postulated. The recent evidence that repetitive ischemia in patients can be cumulative and lead to more severe and prolonged stunning, lends further support to the hypothesis that, at least initially, stunning and HM are two facets of the same coin.
Collapse
Affiliation(s)
- Paolo G Camici
- MRC Clinical Sciences Centre and National Heart and Lung Institute, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, United Kingdom.
| | | |
Collapse
|
40
|
Galasko GIW, Lahiri A. The non-invasive assessment of hibernating myocardium in ischaemic cardiomyopathy--a myriad of techniques. Eur J Heart Fail 2003; 5:217-27. [PMID: 12798818 DOI: 10.1016/s1388-9842(03)00008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Heart failure is placing an ever-increasing burden on society. Many subjects with heart failure and underlying coronary artery disease have a significant amount of akinetic but viable myocardium that is able to contract should myocardial perfusion improve (hibernating myocardium). Non-randomised studies have shown prognostic benefit in subjects with hibernating myocardium undergoing revascularisation. Several non-invasive techniques have been developed to assess the presence or absence of hibernating myocardium. This review will examine the epidemiology and underlying pathogenesis of hibernating myocardium; evaluate the non-invasive techniques for diagnosing hibernating myocardium, and look at therapeutic intervention in subjects with hibernating myocardium.
Collapse
Affiliation(s)
- Gavin I W Galasko
- Department of Cardiovascular Medicine, Northwick Park Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK
| | | |
Collapse
|
41
|
Zaha V, Francischetti I, Doenst T. Insulin improves postischemic recovery of function through PI3K in isolated working rat heart. Mol Cell Biochem 2003; 247:229-32. [PMID: 12841653 DOI: 10.1023/a:1024183527668] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insulin improves contractile function after ischemia, but does not increase glucose uptake in the isolated working rat heart. We tested the hypothesis that the positive inotropic effect of insulin is independent of the signaling pathway responsible for insulin-stimulated glucose uptake. We inhibited this pathway at the level of phosphatidyl inositol 3-kinase (PI3K) with wortmannin. Hearts were perfused for 70 min at physiological workload with Krebs-Henseleit buffer containing [2-(3)H] glucose (5 mM, 0.05 microCi/ml) and oleate (0.4 mM, 1% BSA) in the presence (WM, n = 5) or absence (control, n = 7) of wortmannin (WM, 3 micromol/L). After 20 min, hearts were subjected to 15 min of total global ischemia followed by 35 min of reperfusion. Insulin (1 mU/ml) was added at the beginning of reperfusion (WM + insulin n = 8, insulin n = 8). Cardiac power before ischemia was 8.1 +/- 0.7 mW. Recovery of contractile function after ischemia was significantly increased in the presence of insulin (73.5 +/- 8.9% vs. 38.5 +/- 6.7%, p < 0.01). The addition of wortmannin completely abolished the effect of insulin on recovery (32.6 +/- 6.4%). Glucose uptake was 1.84 +/- 0.32 micromol/min/g dry before ischemia and was slightly elevated during reperfusion (2.68 +/- 0.35 micromol/min/g dry, n.s.). Insulin did not affect postischemic glucose uptake. In the presence of wortmannin, glucose uptake was lowest during reperfusion (n.s.). The results suggest that PI3K is involved in the insulin-induced improvement in postischemic recovery of contractile function. This effect of insulin is independent of its effect on glucose uptake.
Collapse
Affiliation(s)
- Vlad Zaha
- Department of Cardiovascular Surgery, Albert-Ludwigs University of Freiburg, Freiburg i. Br, Germany
| | | | | |
Collapse
|
42
|
Jaroudi WA, Jurjus AR, El-Sabban ME, Kamal MT, Bitar KM, Bikhazi AB. Endothelium and myocyte cellular insulin receptor alterations in a rat model of myocardial infarction. Can J Physiol Pharmacol 2003; 81:267-73. [PMID: 12733825 DOI: 10.1139/y02-157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is considered to be one of the leading causes of death in adults. While extensive research on mechanisms contributing to the pathogenesis of myocardial infarction (MI) has been underway, it is not known whether insulin receptor characteristics and postreceptor signaling have been fully addressed as yet. Present work attempts to investigate whether the remodeling process effectively induces alteration(s) in insulin-binding characteristics at the coronary endothelium and cardiomyocytes using a rat heart model of MI. MI was induced by ligation of the left anterior descending coronary artery of adult male Sprague-Dawley rats. Two animal groups were used in the study: (i) sham-operated CHAPS-untreated and CHAPS-treated, and (ii) MI CHAPS-untreated and MI CHAPS-treated. A physical model describing 1:1 stoichiometry of reversible insulin binding to its receptors present on the endothelium and at cardiomyocytes after CHAPS treatment was considered for data analysis. Quantitation of the collected effluents after heart perfusion, the inlet at the aortic and outlet at the coronary sinus sites, were curve fitted using a first-order Bessel function, which determines the binding constants (k(n)), the reversible constant (k(-n)), the dissociation constant (k(d) = k(-n)/k(n)), and the residency time constant (tau = 1/k(-n)). In addition, hearts were excised, separated into right and left ventricles, and individually weighed, and areas of infarcted regions were measured. Results of the MI group showed significant increases in relative heart mass, left ventricle mass, and right ventricle mass normalized to total body mass. MI induced severe ischemia and irreversible myocardial injury as assessed by planimetry and histologic studies. The data showed differences in insulin receptor affinities at the endothelial and cardiac myocytes in the sham and in the MI-operated rats. The observed reduction in the binding affinity of insulin at the myocyte postinfarction may explain the pathogenic role of insulin in ischemic heart disease and, hence, resistance. Therefore, insulin administration during and post MI might be cardioprotective.
Collapse
Affiliation(s)
- Wael A Jaroudi
- Department of Physiology, Faculty of Medicine, P.O. Box 11-0236, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | |
Collapse
|
43
|
Khoury VK, Haluska B, Prins J, Marwick TH. Effects of glucose-insulin-potassium infusion on chronic ischaemic left ventricular dysfunction. Heart 2003; 89:61-5. [PMID: 12482794 PMCID: PMC1767487 DOI: 10.1136/heart.89.1.61] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Glucose-insulin-potassium (GIK) infusion improves cardiac function and outcome during acute ischaemia. OBJECTIVE To determine whether GIK infusion benefits patients with chronic ischaemic left ventricular dysfunction, and if so whether this is related to the presence and nature of viable myocardium. METHODS 30 patients with chronic ischaemic left ventricular dysfunction had dobutamine echocardiography and were given a four hour infusion of GIK. Segmental responses were quantified by improvement in wall motion score index (WMSI) and peak systolic velocity using tissue Doppler. Global responses were assessed by left ventricular volume and ejection fraction, measured using a three dimensional reconstruction. Myocardial perfusion was determined in 15 patients using contrast echocardiography. RESULTS WMSI (mean (SD)) improved with dobutamine (from 1.8 (0.4) to 1.6 (0.4), p < 0.001) and with GIK (from 1.8 (0.4) to 1.7 (0.4), p < 0.001); there was a similar increment for both. Improvement in wall motion score with GIK was observed in 55% of the 62 segments classed as viable by dobutamine echocardiography, and in 5% of 162 classed as non-viable. There was an increment in peak systolic velocity after both dobutamine echocardiography (from 2.5 (1.8) to 3.2 (2.2) cm/s, p < 0.01) and GIK (from 3.0 (1.6) to 3.5 (1.7) cm/s, p < 0.001). The GIK effects were not mediated by changes in pulse, mean arterial pressure, lactate, or catecholamines, nor did they correlate with myocardial perfusion. End systolic volume improved after GIK (p = 0.03), but only in 25 patients who had viable myocardium on dobutamine echocardiography. CONCLUSIONS In patients with viable myocardium and chronic left ventricular dysfunction, GIK improves wall motion score, myocardial velocity, and end systolic volume, independent of effects on haemodynamics or catecholamines. The response to GIK is observed in areas of normal and abnormal perfusion assessed by contrast echocardiography.
Collapse
Affiliation(s)
- V K Khoury
- University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
44
|
Beanlands RSB, Ruddy TD, deKemp RA, Iwanochko RM, Coates G, Freeman M, Nahmias C, Hendry P, Burns RJ, Lamy A, Mickleborough L, Kostuk W, Fallen E, Nichol G. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol 2002; 40:1735-43. [PMID: 12446055 DOI: 10.1016/s0735-1097(02)02489-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether the extent of viability or scar is important in the amount of recovery of left ventricular (LV) function, and to develop a model for predicting recovery after revascularization that could be tested in a randomized trial. BACKGROUND F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) is used to define viable myocardium in patients with coronary artery disease (CAD) and severe LV dysfunction and to guide revascularization decisions. Whether this approach improves clinical outcomes has not been tested in a randomized trial. Before doing so, an objective model for prediction of recovery is required. METHODS A total of 82 patients with CAD and an ejection fraction (EF) < or =35% had FDG PET perfusion imaging before revascularization. Complete follow-up was available on 70 patients (86%). Patients had radionuclide angiograms at baseline and three months post-revascularization. RESULTS Diabetes (p = 0.029), time to operation (p = 0.008), and scar score (p = 0.001) were significant independent predictors of the change in EF. Previous coronary artery bypass graft confounded the effect of age. There was a significant interaction between the perfusion tracer used and mismatch score (p = 0.02). The multivariable prediction model incorporating PET and clinical variables had a goodness of fit with p = 0.001. Across tertiles of scar scores (I, small: 0% to 16%; II, moderate: 16% to 27.5%; III, large: 27.5% to 47%), the changes in EFs were 9.0 +/- 1.9%, 3.7 +/- 1.6%, and 1.3 +/- 1.5% (p = 0.003: I vs. III), respectively. CONCLUSIONS In patients with severe LV dysfunction, the amount of scar was a significant independent predictor of LV function recovery after revascularization. A combination of PET and clinical parameters predicts the degree of recovery. This model is being applied in a large randomized controlled trial to determine the effectiveness of therapy guided by FDG PET.
Collapse
Affiliation(s)
- Rob S B Beanlands
- Cardiac PET Centre, Divisions of Cardiology and Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yetkin E, Senen K, Ileri M, Atak R, Battaoglu B, Yetkin O, Tandogan I, Turhan H, Cehreli S. Identification of viable myocardium in patients with chronic coronary artery disease and myocardial dysfunction: comparison of low-dose dobutamine stress echocardiography and echocardiography during glucose-insulin-potassium infusion. Angiology 2002; 53:671-6. [PMID: 12463620 DOI: 10.1177/000331970205300607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-dose dobutamine stress echocardiography (LDDSE) is one of the methods most used to assess myocardial viability. Glucose-insulin-potassium (GIK) has been shown to increase contraction of the ischemic zone. The aim of this study was to compare LDDSE and echocardiography during GIK infusion for detection of myocardial viability in patients with chronic coronary artery disease (CAD) and myocardial dysfunction. Twenty-one patients who had chronic CAD and myocardial dysfunction were included in the study. Glucose-insulin-potassium protocol consisted of a fixed dose of insulin (100 microU/kg/hour IV) and a variable glucose/potassium infusion rate. GIK echocardiography was made at baseline and after 60 minutes of GIK infusion. During continuous electrocardiographic, blood pressure, and echocardiographic monitoring, an intravenous infusion of dobutamine (3 microg/kg body weight/min) was started with an infusion pump and continued for 5 minutes and then increased to 5 microg/kg/min and 10 microg/kg/min for another 5 minutes. The detected viable myocardium was defined as 1 or 2 scores decreasing in at least 2 adjacent abnormal segments during LDDSE and GIK echocardiography. Viability was detected in 19% (52 segments) of the asynergic segments at baseline with GIK echocardiography and 16% (44 segments) of those segments with LDDSE (p>0.05). Left ventricular wall motion score index at baseline was 2.24+/-0.35 and it decreased significantly during both LDDSE (p=0.004 vs 2.11+/-0.36) and GIK echocardiography (p=0.001 vs 2.09+/-0.32). The agreement between LDDSE and GIK echocardiography for detection of myocardial viability was 95%. This study shows that GIK echocardiography is similar to LDDSE for detection of myocardial viability. With the support of further clinical studies GIK echocardiography can be used to detect myocardial viability in patients with chronic CAD.
Collapse
Affiliation(s)
- Ertan Yetkin
- Inonu University Faculty of Medicine, Department of Cardiology, Malatya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E, Camici PG. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes 2002; 51:3020-4. [PMID: 12351442 DOI: 10.2337/diabetes.51.10.3020] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clustering of classical cardiovascular risk factors is insufficient to account for the excess coronary artery disease (CAD) of patients with diabetes, and chronic hyperglycemia and insulin resistance (IR) are obvious culprits. Whole-body and skeletal muscle IR is characteristic of patients with type 2 diabetes, but whether it extends to the normally contracting cardiac muscle is controversial. We investigated whether type 2 diabetes is associated with myocardial IR independent of CAD in a case-control series (n = 55) of male nondiabetic and diabetic (type 2 and type 1) patients with or without angiographically documented CAD. Baseline blood flow ((15)O-water) and insulin-stimulated glucose uptake ((18)F-fluoro-deoxyglucose) during euglycemic (5.6 mmol/l), physiological hyperinsulinemia (40 mU x min(-1) x m(-2) insulin clamp) were measured by positron emission tomography in skeletal muscle and normally contracting myocardium. Skeletal muscle glucose uptake was reduced in association with both CAD and type 2 diabetes. In regions with normal baseline perfusion, insulin-mediated myocardial glucose uptake was reduced in non-CAD type 2 diabetic (0.36 +/- 0.14 micro mol x min(-1). g(-1)) and nondiabetic CAD patients (0.44 +/- 0.15 micro mol x min(- 1) x g(-1)) in comparison with healthy control subjects (0.61 +/- 0.08) or with non-CAD type 1 diabetic patients (0.80 +/- 0.13; P < 0.001 for both CAD and diabetes). Neither basal skeletal muscle nor basal myocardial blood flow differed across groups; both skeletal muscle and myocardial IR were directly related to whole-body IR. We conclude that type 2 diabetes is specifically associated with myocardial IR that is independent of and nonadditive with angiographic CAD and proportional to skeletal muscle and whole-body IR.
Collapse
Affiliation(s)
- Patricia Iozzo
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
47
|
Yetkin E, Senen K, Ileri M, Atak R, Tandogan I, Yetkin O, Kosar F, Turhan H, Cehreli S. Comparison of low-dose dobutamine stress echocardiography and echocardiography during glucose-insulin-potassium infusion for detection of myocardial viability after anterior myocardial infarction. Coron Artery Dis 2002; 13:145-9. [PMID: 12131017 DOI: 10.1097/00019501-200205000-00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Low-dose dobutamine stress echocardiography (LDDSE) is one of the methods most used to assess myocardial viability. Glucose-insulin-potassium (GIK) infusion has been shown to increase contraction of the ischemic zone. The aim of this study was to compare LDDSE and echocardiography during GIK infusion for detection of myocardial viability. METHODS Thirty-two patients who had first anterior myocardial infarction (MI) without previous MI were included in the study. Echocardiographic evaluation was carried out on the 7th +/- 2 days after MI. During continuous electrocardiographic, blood pressure and echocardiographic monitoring, an intravenous infusion of dobutamine (3 microg/kg body weight/min) was started with an infusion pump, continued for 5 min and then increased to 5 microg/kg/min and 10 microg/kg/min for another 5 min. The GIK protocol consisted of a fixed dose of insulin (100 microU/kg/h intravenously) and a variable glucose/potassium infusion rate. GIK echocardiography was done at baseline and after 60 min of GIK. The detected viable myocardium was defined as one or two scores decreasing in at least two adjacent abnormal segments during LDDSE and GIK echocardiography. RESULTS Under resting conditions 225 segments (44%) were normokinetic, 21 segments (4%) dyskinetic, 117 segments (23%) akinetic and 149 segments (29%) hypokinetic. Viability was detected in 20% (57 segments) of the asynergic segments at baseline with GIK echocardiography and in 22% (62 segments) of those segments with LDDSE (P < 0.05). Left ventricular wall motion score index at baseline was 1.87 and it decreased significantly indicating improvement in left ventricular systolic function during both LDDSE and GIK echocardiography (P < 0.001, versus 1.75 and 1.76 respectively). The agreement between LDDSE and GIK echocardiography for detection of myocardial viability was 96%. CONCLUSION We have shown that GIK echocardiography is similar to LDDSE for detection of myocardial viability. With the support of further clinical studies GIK echocardiography could be used to detect myocardial viability after acute MI.
Collapse
Affiliation(s)
- Ertan Yetkin
- Department of Cardiology, Faculty of Medicine, Inonu University Malatya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sundell J, Nuutila P, Laine H, Luotolahti M, Kalliokoski K, Raitakari O, Knuuti J. Dose-dependent vasodilating effects of insulin on adenosine-stimulated myocardial blood flow. Diabetes 2002; 51:1125-30. [PMID: 11916935 DOI: 10.2337/diabetes.51.4.1125] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the peripheral vasculature, insulin induces time- and dose-dependent vasodilation. We have recently demonstrated that insulin potentiates adenosine-stimulated myocardial blood flow. However, it is unknown whether insulin's effects on the coronary vasculature are dose dependent. In this study, we quantitated myocardial blood flow and adenosine-stimulated coronary flow (140 microg.kg(-1).min(-1) for 5 min) in 10 healthy men (age, 32 +/- 6 years; BMI, 24.1 +/- 1.8 kg/m(2)) using positron emission tomography and (15)O-labeled water. Hyperemic myocardial blood flow was measured in the basal state, during euglycemic physiological hyperinsulinemia (serum insulin approximately 65 mU/l) and during supraphysiological hyperinsulinemia (serum insulin approximately 460 mU/l). Basal myocardial blood flow was 0.84 +/- 0.17 ml.g(-1).min(-1). Physiological hyperinsulinemia increased the adenosine-stimulated flow by 20% (from 3.92 +/- 1.17 to 4.72 +/- 0.96 ml.g(- 1).min(-1); P < 0.05). Supraphysiological hyperinsulinemia further enhanced the adenosine-stimulated flow by 19% (to 5.61 +/- 1.03 ml.g(-1).min(-1); P < 0.05). These effects were not explained by changes in systemic hemodynamics, since coronary resistance decreased during each insulin infusion (P < 0.05). In addition, hyperemic myocardial blood flow responses during insulin stimulation were positively correlated with whole-body glucose uptake. The results demonstrate that insulin is able to enhance hyperemic myocardial blood flow in a dose-dependent manner in healthy subjects. These effects might contribute to the known beneficial dose-dependent effects of insulin on myocardial ischemia.
Collapse
Affiliation(s)
- Jan Sundell
- Turku PET Centre, Turku University, Turku, Finland. Department of Medicine, Turku University, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
49
|
Hasegawa S, Kusuoka H, Fukuchi K, Yutani K, Maruyama K, Hori M, Nishimura T. 14 C-deoxyglucose imaging overestimates myocardial viability in subacute infarction of rats. Nucl Med Commun 2002; 23:209-17. [PMID: 11891478 DOI: 10.1097/00006231-200203000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clinical studies using 18F-fluorodeoxyglucose suggest that this tracer may overestimate myocardial viability. This study aimed to elucidate whether 2-deoxyglucose accurately indicates myocardial viability at the early phase of myocardial infarction. Autoradiography with 14C-deoxyglucose was performed in fasting rats whose left coronary artery was occluded for 60 min and then reperfused. 14C-deoxyglucose was injected 30 min after the reperfusion (acute; n=10) or 1 week later (subacute; n=9). Infarction and risk areas were identified by triphenyl tetrazolium chloride or haematoxylin-eosin staining and methylene blue, respectively. Immuno-histochemical staining using anti-glucose transporter 1 and 4 antibodies was performed. At the acute stage, the uptake of deoxyglucose was consistent with the grade of anti-glucose transporter 4 expression. At the subacute stage, the uptake of deoxyglucose in poorly viable myocardium (543.4+/-343.7%: normalized with the uptake at the right ventricle) as well as in the viable one (335.2+/-149.8%) in the risk area was significantly greater than that in the remote area (116.4+/-94.9%, P<0.01). Anti-glucose transporter 1 was expressed in the poorly viable area where inflammatory cells infiltrated. It is concluded that deoxyglucose uptake by inflammatory cells which express anti-glucose transporter 1 causes overestimation of myocardial viability at subacute stage.
Collapse
Affiliation(s)
- S Hasegawa
- Division of Tracer Kinetics, Department of Diagnositic Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wiggers H, Bøttcher M, Egeblad H, Mølgaard H, Nielsen TT, Bøtker HE. Impact of daily life myocardial ischemia in patients with chronic reversible and irreversible myocardial dysfunction. Am J Cardiol 2002; 89:22-8. [PMID: 11779517 DOI: 10.1016/s0002-9149(01)02157-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Repetitive myocardial ischemia during daily life has been suggested as the underlying mechanism of reversible myocardial dysfunction, which may progress into a hibernating state. Thirty-seven patients with ischemic cardiomyopathy (ejection fraction 35 +/- 7%) underwent positron emission tomography (N-13 ammonia and 18-F-fluoro-2-deoxy-glucose [FDG]) and exercise testing before coronary artery bypass grafting (CABG) and 48- hour ambulatory electrocardiographic monitoring to detect ischemia before CABG and 6 months postoperatively. Reversibility of regional myocardial dysfunction was detected by echocardiographic follow-up at 5 days, 2 months, and 6 months after the operation. Preoperatively, ischemic episodes during daily activities were more common (2 [25th to 75th percentiles 0 to 4] vs 0 episodes, p <0.01) and duration of ischemia longer (9 [25th to 75th percentiles 0 to 37] vs 0 [25th to 75th percentiles 0 to 1] minutes, p <0.02) in patients with reversible dysfunction (n = 15) than in patients with irreversible dysfunction (n = 22). The number of ischemic episodes per patient correlated with the numbers of reversibly dysfunctional segments (p = 0.003), viable segments as seen by positron emission tomography (p <0.05), and flow-metabolic mismatch segments (p <0.05). CABG eliminated ambulatory ischemic episodes in patients with reversible dysfunction (0 episodes, p <0.05 vs before CABG). Preoperatively, all patients with reversible dysfunction had a positive exercise test (14 of 15 patients), whereas daily life ischemia was present in 60% of patients. Reversibly dysfunctional segments in patients with ambulatory ischemia had faster recovery of function (15 of 28 patients vs 2 of 12 patients recovered at 5 days, p <0.05), higher FDG uptake (0.86 +/- 0.19% vs 0.71 +/- 0.24%, p <0.05) than in patients without ambulatory ischemia, whereas perfusion was similar (0.63 +/- 0.20 and 0.62 +/- 0.19 ml/g/min). Thus, exercise-induced myocardial ischemia is associated with reversibility of myocardial dysfunction, but not all patients with reversible ischemic cardiomyopathy have ischemic attacks during daily life.
Collapse
Affiliation(s)
- Henrik Wiggers
- Department of Cardiology, Skejby Hospital, Aarhus University Hospitals, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|