1
|
Garcia E, Claudi L, La Chica Lhoëst MT, Polishchuk A, Samouillan V, Benitez Amaro A, Pinero J, Escolà-Gil JC, Sabidó E, Leta R, Vilades D, Llorente Cortes V. Reduced blood EPAC1 protein levels as a marker of severe coronary artery disease: the role of hypoxic foam cell-transformed smooth muscle cells. J Transl Med 2025; 23:523. [PMID: 40346550 DOI: 10.1186/s12967-025-06513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Vascular smooth muscle cells loaded with cholesterol (foam-VSMCs) play a crucial role in the progression of human atherosclerosis. Exchange Protein Directly Activated by cAMP 1 (EPAC1) is a critical protein in the regulation of vascular tone, endothelial function, and inflammation. Our objectives were to identify proteins specifically secreted by foam human coronary VSMCs (foam-hcVSMC) to evaluate their potential as circulating biomarkers for diagnosing coronary artery disease (CAD), and to ascertain the mechanisms underlying their levels in the blood of patients with CAD. METHODS AND RESULTS Differential proteomics identified EPAC1 as a differential foam-hcVSMC-secreted protein. Circulating EPAC1 levels were measured by ELISA in blood from 202 patients with suspected CAD who underwent coronary computed tomography angiography (CCTA). Blood EPAC1 levels were significantly lower in CAD patients compared to controls (p < 0.001). EPAC1 levels were reduced in both men and women with severe CAD (SIS > 4) compared to those with moderate CAD (SIS 1-4). ROC analysis identified 9.16 ng/ml as the optimal EPAC1 cut-off for severe CAD. At this threshold, EPAC1 predicted severe CAD (SIS > 4) with 69.6% sensitivity and 79.4% specificity, outperforming hs-CRP and hs-TnT in predicting CAD severity. Real-time PCR and Western blot analysis revealed that human foam-SMCs under hypoxic conditions exhibited a significant reduction in EPAC1 mRNA (p = 0.013) and protein (p < 0.001) levels. CONCLUSIONS These findings suggest that circulating EPAC1 protein levels lower than 9.16 ng/mL are predictive of severe CAD in humans. Hypoxic foam-SMCs, characteristic of advanced atherosclerotic lesions, exhibit diminished production of EPAC1, potentially contributing to the decreased circulating EPAC1 levels in patients with severe CAD.
Collapse
Affiliation(s)
- Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Lene Claudi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Maria Teresa La Chica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Anna Polishchuk
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Valerie Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, 31062, Toulouse, France
| | - Aleyda Benitez Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Janet Pinero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology; Universitat Pompeu i Fabra (UPF), Barcelona, Spain
| | - Ruben Leta
- Cardiac Imaging Unit, Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - David Vilades
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Cardiac Imaging Unit, Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - Vicenta Llorente Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain.
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain.
- CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Vianello E, Beltrami AP, Aleksova A, Janjusevic M, Fluca AL, Corsi Romanelli MM, La Sala L, Dozio E. The Advanced Glycation End-Products (AGE)-Receptor for AGE System (RAGE): An Inflammatory Pathway Linking Obesity and Cardiovascular Diseases. Int J Mol Sci 2025; 26:3707. [PMID: 40332316 PMCID: PMC12028226 DOI: 10.3390/ijms26083707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
The AGE (advanced glycation end-products)-RAGE (receptor for AGE) system is a pro-inflammatory pathway that contributes to the pathogenesis of obesity and obesity-related cardiovascular disorders (CVD). Circulating AGE and the soluble form of RAGE (sRAGE) has been suggested as a potential biomarker of CVD related to obesity. In this study, we aim to (1) summarize the current knowledge about the role of obesity in the onset and progression of CVD, (2) discuss the role of the AGE-RAGE system as a pathway promoting obesity and linking obesity to CVD, and (3) highlight available strategies for reducing AGE-RAGE system activation and the associated beneficial effects.
Collapse
Affiliation(s)
- Elena Vianello
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.V.); (M.M.C.R.); (L.L.S.)
- Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Antonio P. Beltrami
- Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy;
- Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Aneta Aleksova
- Department of Medical Surgical and Health Sciences, Università degli Studi di Trieste, 34129 Trieste, Italy; (A.A.); (M.J.); (A.L.F.)
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy
| | - Milijana Janjusevic
- Department of Medical Surgical and Health Sciences, Università degli Studi di Trieste, 34129 Trieste, Italy; (A.A.); (M.J.); (A.L.F.)
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy
| | - Alessandra L. Fluca
- Department of Medical Surgical and Health Sciences, Università degli Studi di Trieste, 34129 Trieste, Italy; (A.A.); (M.J.); (A.L.F.)
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, 34100 Trieste, Italy
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.V.); (M.M.C.R.); (L.L.S.)
- Department of Clinical and Experimental Pathology, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Lucia La Sala
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.V.); (M.M.C.R.); (L.L.S.)
- IRCCS Multimedica, 20138 Milan, Italy
| | - Elena Dozio
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.V.); (M.M.C.R.); (L.L.S.)
- Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| |
Collapse
|
3
|
La Chica Lhoëst MT, Martínez A, Garcia E, Dandurand J, Polishchuk A, Benitez-Amaro A, Cenarro A, Civeira F, Bernabé A, Vilades D, Escolà-Gil JC, Samouillan V, Llorente-Cortes V. ApoB100 remodeling and stiffened cholesteryl ester core raise LDL aggregation in familial hypercholesterolemia patients. J Lipid Res 2025; 66:100703. [PMID: 39557294 PMCID: PMC11731490 DOI: 10.1016/j.jlr.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Patients with familial hypercholesterolemia (FH) exhibit a significant residual cardiovascular risk. A new cardiovascular risk factor is the susceptibility of individual LDL particles to aggregation. This study examined LDL aggregation and its relationship with LDL lipid composition and biophysical properties in patients with FH compared to controls. LDL aggregation was measured as the change in particle size, assessed by dynamic light scattering, after exposure to sphingomyelinase, which breaks down sphingomyelin in the LDL phospholipid layer. Dynamic light scattering and transmission electron microscopy showed that LDL in FH patients exhibited smaller size and greater susceptibility to aggregation. Biochemical analyses revealed a higher cholesteryl ester (CE)/ApoB100 ratio in LDL from FH patients. Differential scanning calorimetry showed that LDL from FH patients had higher transition temperatures, indicating a more ordered CE core. Fourier transform infrared spectroscopy revealed fewer flexible α-helices (1658 cm⁻1) and more stable α-helices (1651 cm⁻1) in ApoB100 of LDL from FH patients. These structural changes correlated with higher CE content and increased LDL aggregation. In conclusion, a more ordered CE core in smaller LDL particles, combined with a higher proportion of stable α-helices in ApoB100, promotes LDL aggregation in FH patients. These findings suggest ApoB100 conformational structure as a new potential therapeutic targets within LDL to reduce cardiovascular risk in FH patients.
Collapse
Affiliation(s)
- Maria Teresa La Chica Lhoëst
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; Biochemistry Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Martínez
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain
| | - Eduardo Garcia
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; Biochemistry Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jany Dandurand
- CIRIMAT, Université de Toulouse Paul Sabatier, Equipe PHYPOL, Toulouse, France
| | - Anna Polishchuk
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Amable Bernabé
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Spain
| | - David Vilades
- CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain; Cardiac Imaging Unit, Department of Cardiology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; Biochemistry Department, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valerie Samouillan
- CIRIMAT, Université de Toulouse Paul Sabatier, Equipe PHYPOL, Toulouse, France.
| | - Vicenta Llorente-Cortes
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Maimaitiaili N, Zeng Y, Ju P, Zhakeer G, E G, Yao H, Shi Y, Zhai M, Zhuang J, Peng W, Zhuoga D, Yu Q. NLRC3 deficiency promotes hypoxia-induced pulmonary hypertension development via IKK/NF-κB p65/HIF-1α pathway. Exp Cell Res 2023; 431:113755. [PMID: 37586455 DOI: 10.1016/j.yexcr.2023.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Hypoxia-induced pulmonary hypertension is a subgroup of type 3 pulmonary hypertension (PH) with the recommended treatment limited to oxygen therapy and lacks potential therapeutic targets. To investigate the role of NLRC3 in hypoxia-induced PH and its potential mechanism, we first collected lung tissues of high-altitude pulmonary hypertension (HAPH) patients. Immunohistochemistry and immunofluorescence showed that NLRC3 was downregulated and was mainly co-localized with the smooth muscle cells of the pulmonary vessels in HAPH patients. Besides, we found that NLRC3 was also expressed in endothelial cells in HAPH patients for the first time. Then, wild type (WT) and NLRC3 knockout (NLRC3-/-) mice were used to construct hypoxia models and primary pulmonary arterial smooth muscle cells (PASMCs) of rats and endothelial cells were cultured for verification. Right heart catheterization and echocardiography suggested that NLRC3 knockout promoted right ventricular systolic pressure (RVSP) up-regulation, right ventricular hypertrophy and fibrosis in hypoxia-induced mice. This study first demonstrated that NLRC3 deficiency promoted hypoxia-stimulated PASMCs proliferation, Human umbilical vein endothelial cells (HUVECs) apoptosis, migration and inflammation through IKK/NF-κB p65/HIF-1α pathway in vitro and in vivo, further promoted vascular remodeling and PH progression, which provided a new target for the treatment of hypoxia-induced PH.
Collapse
Affiliation(s)
- Nuerbiyemu Maimaitiaili
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yanxi Zeng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Peinan Ju
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Gulinigeer Zhakeer
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Guangxi E
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Hongyun Yao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yefei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ming Zhai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China; Department of Cardiology, Shigatse People's Hospital, Tibet, China.
| | - Deji Zhuoga
- Department of Cardiology, Shigatse People's Hospital, Tibet, China.
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Chen T, Wang L, Chen C, Li R, Zhu N, Liu R, Niu Y, Xiao Z, Liu H, Liu Q, Tu K. HIF-1α-activated TMEM237 promotes hepatocellular carcinoma progression via the NPHP1/Pyk2/ERK pathway. Cell Mol Life Sci 2023; 80:120. [PMID: 37041420 PMCID: PMC11072547 DOI: 10.1007/s00018-023-04767-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Hypoxia-inducible factors (HIFs) are the most essential endogenous transcription factors in the hypoxic microenvironment and regulate multiple genes involved in the proliferation, migration, invasion, and EMT of hepatocellular carcinoma (HCC) cells. However, the regulatory mechanism of HIFs in driving HCC progression remains poorly understood. METHODS Gain- and loss-of-function experiments were carried out to investigate the role of TMEM237 in vitro and in vivo. The molecular mechanisms involved in HIF-1α-induced TMEM237 expression and TMEM237-mediated enhancement of HCC progression were confirmed by luciferase reporter, ChIP, IP-MS and Co-IP assays. RESULTS TMEM237 was identified as a novel hypoxia-responsive gene in HCC. HIF-1α directly bound to the promoter of TMEM237 to transactivate its expression. The overexpression of TMEM237 was frequently detected in HCC and associated with poor clinical outcomes in patients. TMEM237 facilitated the proliferation, migration, invasion, and EMT of HCC cells and promoted tumor growth and metastasis in mice. TMEM237 interacted with NPHP1 and strengthened the interaction between NPHP1 and Pyk2 to trigger the phosphorylation of Pyk2 and ERK1/2, thereby contributing to HCC progression. The TMEM237/NPHP1 axis mediates hypoxia-induced activation of the Pyk2/ERK1/2 pathway in HCC cells. CONCLUSIONS Our study demonstrated that HIF-1α-activated TMEM237 interacted with NPHP1 to activate the Pyk2/ERK pathway, thereby promoting HCC progression.
Collapse
Affiliation(s)
- Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liang Wang
- Department of Burn and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Chao Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Runtian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ning Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hui Liu
- Department of Medical Equipment, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
7
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
8
|
Role of the LRP1-pPyk2-MMP9 pathway in hyperoxia-induced lung injury in neonatal rats. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1289-1294. [PMID: 34911615 PMCID: PMC8690715 DOI: 10.7499/j.issn.1008-8830.2108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the role of the low-density lipoprotein receptor-related protein 1 (LRP1)-proline-rich tyrosine kinase 2 phosphorylation (pPyk2)-matrix metalloproteinases 9 (MMP9) pathway in hyperoxia-induced lung injury in neonatal rats. METHODS A total of 16 neonatal rats were randomly placed in chambers containing room air (air group) or 95% medical oxygen (hyperoxia group) immediately after birth, with 8 rats in each group. All of the rats were sacrificed on day 8 of life. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue. ELISA was used to measure the levels of soluble LRP1 (sLRP1) and MMP9 in serum and bronchoalveolar lavage fluid (BALF). Western blot was used to measure the protein expression levels of LRP1, MMP9, Pyk2, and pPyk2 in lung tissue. RT-PCR was used to measure the mRNA expression levels of LRP1 and MMP9 in lung tissue. RESULTS The hyperoxia group had significantly higher levels of sLRP1 and MMP9 in serum and BALF than the air group (P<0.05). Compared with the air group, the hyperoxia group had significant increases in the protein expression levels of LRP1, MMP9, and pPyk2 in lung tissue (P<0.05). The hyperoxia group had significantly higher relative mRNA expression levels of LRP1 and MMP9 in lung tissue than the air group (P<0.05). CONCLUSIONS The activation of the LRP1-pPyk2-MMP9 pathway is enhanced in hyperoxia-induced lung injury in neonatal rats, which may be involved in the pathogenesis of bronchopulmonary dysplasia.
Collapse
|
9
|
Munshaw S, Bruche S, Redpath AN, Jones A, Patel J, Dubé KN, Lee R, Hester SS, Davies R, Neal G, Handa A, Sattler M, Fischer R, Channon KM, Smart N. Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling. J Clin Invest 2021; 131:127884. [PMID: 33784254 PMCID: PMC8121525 DOI: 10.1172/jci127884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesized that Thymosin β4 (Tβ4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of platelet-derived growth factor BB (PDGF-BB) signaling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tβ4-null mice displayed aortic VSMC and elastin defects that phenocopy those of LRP1 mutants, and their compromised vascular integrity predisposed them to Angiotensin II-induced aneurysm formation. Aneurysmal vessels were characterized by enhanced VSMC phenotypic modulation and augmented PDGFR-β signaling. In vitro, enhanced sensitivity to PDGF-BB upon loss of Tβ4 was associated with dysregulated endocytosis, with increased recycling and reduced lysosomal targeting of LRP1-PDGFR-β. Accordingly, the exacerbated aneurysmal phenotype in Tβ4-null mice was rescued upon treatment with the PDGFR-β antagonist Imatinib. Our study identifies Tβ4 as a key regulator of LRP1 for maintaining vascular health, and provides insights into the mechanisms of growth factor-controlled VSMC phenotypic modulation underlying aortic disease progression.
Collapse
MESH Headings
- Angiotensin II/adverse effects
- Angiotensin II/pharmacology
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Becaplermin/genetics
- Becaplermin/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/genetics
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Thymosin/genetics
- Thymosin/metabolism
- Thymosin/pharmacology
Collapse
Affiliation(s)
- Sonali Munshaw
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Susann Bruche
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Andia N. Redpath
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Alisha Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Munich, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Munich, Germany
| | - Jyoti Patel
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Svenja S. Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Davies
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Giles Neal
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Munich, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Munich, Germany
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Keith M. Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicola Smart
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| |
Collapse
|
10
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Nandi SS, Katsurada K, Sharma NM, Anderson DR, Mahata SK, Patel KP. MMP9 inhibition increases autophagic flux in chronic heart failure. Am J Physiol Heart Circ Physiol 2020; 319:H1414-H1437. [PMID: 33064567 DOI: 10.1152/ajpheart.00032.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased matrix metalloprotease 9 (MMP9) after myocardial infarction (MI) exacerbates ischemia-induced chronic heart failure (CHF). Autophagy is cardioprotective during CHF; however, whether increased MMP9 suppresses autophagic activity in CHF is unknown. This study aimed to determine whether increased MMP9 suppressed autophagic flux and MMP9 inhibition increased autophagic flux in the heart of rats with post-MI CHF. Sprague-Dawley rats underwent either sham surgery or coronary artery ligation 6-8 wk before being treated with MMP9 inhibitor for 7 days, followed by cardiac autophagic flux measurement with lysosomal inhibitor bafilomycin A1. Furthermore, autophagic flux was measured in vitro by treating H9c2 cardiomyocytes with two independent pharmacological MMP9 inhibitors, salvianolic acid B (SalB) and MMP9 inhibitor-I, and CRISPR/cas9-mediated MMP9 genetic ablation. CHF rats showed cardiac infarct, significantly increased left ventricular end-diastolic pressure (LVEDP), and increased MMP9 activity and fibrosis in the peri-infarct areas of left ventricular myocardium. Measurement of the autophagic markers LC3B-II and p62 with lysosomal inhibition showed decreased autophagic flux in the peri-infarct myocardium. Treatment with SalB for 7 days in CHF rats decreased MMP9 activity and cardiac fibrosis but increased autophagic flux in the peri-infarct myocardium. As an in vitro corollary study, measurement of autophagic flux in H9c2 cardiomyocytes and fibroblasts showed that pharmacological inhibition or genetic ablation of MMP9 upregulates autophagic flux. These data are consistent with our observations that MMP9 inhibition upregulates autophagic flux in the heart of rats with CHF. In conclusion, the results in this study suggest that the beneficial outcome of MMP9 inhibition in pathological cardiac remodeling is in part mediated by improved autophagic flux.NEW & NOTEWORTHY This study elucidates that the improved cardiac extracellular matrix (ECM) remodeling and cardioprotective effect of matrix metalloprotease 9 (MMP9) inhibition in chronic heart failure (CHF) are via increased autophagic flux. Autophagy is cardioprotective; however, the mechanism of autophagy suppression in CHF is unknown. We for the first time demonstrated here that increased MMP9 suppressed cardiac autophagy and ablation of MMP9 increased cardiac autophagic flux in CHF rats. Restoring the physiological level of autophagy in the failing heart is a challenge, and our study addressed this challenge. The novelty and highlights of this report are as follows: 1) MMP9 regulates cardiomyocyte and fibroblast autophagy, 2) MMP9 inhibition protects CHF after myocardial infarction (MI) via increased cardiac autophagic flux, 3) MMP9 inhibition increased cardiac autophagy via activation of AMP-activated protein kinase (AMPK)α, Beclin-1, Atg7 pathway and suppressed mechanistic target of rapamycin (mTOR) pathway.
Collapse
Affiliation(s)
- Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daniel R Anderson
- Department of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil K Mahata
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, University of California, San Diego, California.,Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
12
|
Scrodentoids H and I, a Pair of Natural Epimerides from Scrophularia dentata, Inhibit Inflammation through JNK-STAT3 Axis in THP-1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1842347. [PMID: 32802115 PMCID: PMC7403932 DOI: 10.1155/2020/1842347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
Background Scrophularia dentata is an important medicinal plant and used for the treatment of exanthema and fever in Traditional Tibetan Medicine. Scrodentoids H and I (SHI), a pair of epimerides of C19-norditerpenoids isolated from Scrophularia dentata, could transfer to each other in room temperature and were firstly reported in our previous work. Here, we first reported the anti-inflammatory effects of SHI on LPS-induced inflammation. Purpose To evaluate the anti-inflammatory property of SHI, we investigated the effects of SHI on LPS-activated THP-1 cells. Methods THP-1 human macrophages were pretreated with SHI and stimulated with LPS. Proinflammatory cytokines IL-1β and IL-6 were measured by RT-PCR and enzyme-linked immunosorbent assays (ELISA). The mechanism of action involving phosphorylation of ERK, JNK, P38, and STAT3 was measured by western Blot. The NF-κB promoter activity was evaluated by Dual-Luciferase Reporter Assay System in TNF-α stimulated 293T cells. Results SHI dose-dependently reduced the production of proinflammatory cytokines IL-1β and IL-6. The ability of SHI to reduce production of cytokines is associated with phosphorylation depress of JNK and STAT3 rather than p38, ERK, and NF-κB promoter. Conclusions Our experimental results indicated that anti-inflammatory effects of SHI exhibit attenuation of LPS-induced inflammation and inhibit activation through JNK/STAT3 pathway in macrophages. These results suggest that SHI might have a potential in treating inflammatory disease.
Collapse
|
13
|
Zha LH, Zhou J, Li TZ, Luo H, Zhang MQ, Li S, Yu ZX. NLRC3 inhibits MCT-induced pulmonary hypertension in rats via attenuating PI3K activation. J Cell Physiol 2019; 234:15963-15976. [PMID: 30767203 DOI: 10.1002/jcp.28255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activation plays a critical role in the pulmonary vascular remodeling of pulmonary hypertension (PH). The nucleotide-oligomerization domain (NOD)-like receptor subfamily C3 (NLRC3) inhibits proliferation and inflammation via PI3K signaling in cancer. We previously showed NLRC3 was significantly reduced in PH patients, but the mechanism of function remains unclear. This study aimed to determine the potential role of NLRC3 in PH. We found that NLRC3 was downregulated in the pulmonary arteries of PH animal models and platelet-derived growth factor-BB (PDGF-BB) stimulated pulmonary arterial smooth muscle cells (PASMCs). NLRC3 pretreatment reduced right ventricular systolic pressure, attenuated pulmonary vascular remodeling and RVHI, and ameliorated proliferation, migration, and inflammation. Monocrotaline (MCT)- and PDGF-BB-mediated PI3K activation were suppressed by NLRC3 pretreatment. 740Y-P decreased the effect of NLRC3. Collectively, NLRC3 protected against MCT-induced rat PH and PDGF-BB-induced PASMC proliferation, migration, and inflammation through a mechanism involving PI3K inhibition. NLRC3 may have a therapeutic effect on PH and provide a promising therapeutic strategy for PH.
Collapse
Affiliation(s)
- Li-Huang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Zhou
- MedicalScience Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tang-Zhiming Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Luo
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Men-Qiu Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Sheng Li
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zai-Xin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
14
|
Shan F, Huang Z, Xiong R, Huang Q, Li J. HIF1α‐induced upregulation of KLF4 promotes migration of human vascular smooth muscle cells under hypoxia. J Cell Physiol 2019; 235:141-150. [PMID: 31270801 DOI: 10.1002/jcp.28953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Fabo Shan
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury Research Institute of Surgery, Daping Hospital, Army Medical University Chongqing P.R. China
| | - Zhizhong Huang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury Research Institute of Surgery, Daping Hospital, Army Medical University Chongqing P.R. China
| | - Renping Xiong
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury Research Institute of Surgery, Daping Hospital, Army Medical University Chongqing P.R. China
| | - Qing‐Yuan Huang
- Department of Cold Environmental Medicine College of High Altitude Military Medicine, Army Medical University Chongqing P.R. China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery Daping Hospital, Army Medical University Chongqing P.R. China
| |
Collapse
|
15
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
16
|
Mantione ME, Lombardi M, Baccellieri D, Ferrara D, Castellano R, Chiesa R, Alfieri O, Foglieni C. IL-1β/MMP9 activation in primary human vascular smooth muscle-like cells: Exploring the role of TNFα and P2X7. Int J Cardiol 2018; 278:202-209. [PMID: 30583923 DOI: 10.1016/j.ijcard.2018.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vascular smooth muscle cells exhibit phenotypic plasticity in response to microenvironmental stimuli and contribute to vascular remodelling through mechanisms only partially understood. In atherosclerosis, P2X-purinoceptor7 (P2X7) has been related to interleukin-1β (IL-1β) and metalloproteinase 9 (MMP9). The hypoxia-inducible factor-1alpha (HIF1α) was associated to remodelling. Here the activation of IL-1β and MMP9 was studied in relationship to P2X7 and HIF1α in cells exploited from human carotid plaque and internal mammary artery. METHODS AND RESULTS Migrating cells expressed HIF1α-regulated canopy FGF-signalling regulator 2 and CD117, and led to primary cells with SMC-like phenotype (VSMC), P2X7+. We investigated in VSMC the effects of hypoxia, of treatment with tumour necrosis factor-α (TNFα) and/or with P2X7 antagonist, A740003. Quantitative RT-PCR showed that hypoxia unaffected IL-1β and down-regulated MMP9 mRNAs, without activating HIF1α. TNFα increased IL-1β mRNA via NLR Family Pyrin Domain-Containing 3, with production of proIL-1β but no rise of mature IL-1β. Zymography demonstrated that A740003 triggered MMP9 secretion from VSMC. Combination of A740003 with TNFα abrogated this effect. Combination was ineffective on IL-1β activation elicited by TNFα, but down-regulated HIF1α mRNA. A740003 induced the intracellular P2X7 aggregation and differently perturbed lysosome and mitochondria network compared to TNFα. CONCLUSIONS Cells migration from human arteries leads to partially differentiated VSMC analogous to neointimal cells within atherosclerotic lesions. Down-regulated HIF1α in stimulated VSMC translates in resilience in atherosclerotic lesions. P2X7-independent partial activation of IL-1β elicited by TNFα underlines complexity of the cytokine secretion. Data also supported P2X7 as modulator of MMP9 secretion, important for atherosclerosis progression.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cardiovascular Research Area, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Lombardi
- Cardiovascular Research Area, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Domenico Baccellieri
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - David Ferrara
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Renata Castellano
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Roberto Chiesa
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ottavio Alfieri
- Cardio-thoracic-vascular Department, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Foglieni
- Cardiovascular Research Area, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
17
|
Galangin Inhibits Thrombin-Induced MMP-9 Expression in SK-N-SH Cells via Protein Kinase-Dependent NF-κB Phosphorylation. Int J Mol Sci 2018; 19:ijms19124084. [PMID: 30562971 PMCID: PMC6321481 DOI: 10.3390/ijms19124084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
Galangin, a member of the flavonol compounds of the flavonoids, could exert anti-inflammatory effects in various cell types. It has been used for the treatment of arthritis, airway inflammation, stroke, and cognitive impairment. Thrombin, one of the regulators of matrix metalloproteinase (MMPs), has been known as a vital factor of physiological and pathological processes, including cell migration, the blood–brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. MMP-9 especially may contribute to neurodegenerative diseases. However, the effect of galangin in combating thrombin-induced MMP-9 expression is not well understood in neurons. Therefore, we attempted to explore the molecular mechanisms by which galangin inhibited MMP-9 expression and cell migration induced by thrombin in SK-N-SH cells (a human neuroblastoma cell line). Gelatin zymography, western blot, real-time PCR, and cell migration assay were used to elucidate the inhibitory effects of galangin on the thrmbin-mediated responses. The results showed that galangin markedly attenuated the thrombin-stimulated phosphorylation of proto-oncogene tyrosine-protein kinase (c-Src), proline-rich tyrosine kinase 2 (Pyk2), protein kinase C (PKC)α/β/δ, protein kinase B (Akt), mammalian target of rapamycin (mTOR), p42/p44 mitogen-activated protein kinase (MAPK), Jun amino-terminal kinases (JNK)1/2, p38 MAPK, forkhead box protein O1 (FoxO1), p65, and c-Jun and suppressed MMP-9 expression and cell migration in SK-N-SH cells. Our results concluded that galangin blocked the thrombin-induced MMP-9 expression in SK-N-SH cells via inhibiting c-Src, Pyk2, PKCα/βII/δ, Akt, mTOR, p42/p44 MAPK, JNK1/2, p38 MAPK, FoxO1, c-Jun, and p65 phosphorylation and ultimately attenuated cell migration. Therefore, galangin may be a potential candidate for the management of brain inflammatory diseases.
Collapse
|
18
|
Liu Y, Zhang H, Yan L, Du W, Zhang M, Chen H, Zhang L, Li G, Li J, Dong Y, Zhu D. MMP-2 and MMP-9 contribute to the angiogenic effect produced by hypoxia/15-HETE in pulmonary endothelial cells. J Mol Cell Cardiol 2018; 121:36-50. [PMID: 29913136 DOI: 10.1016/j.yjmcc.2018.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 11/15/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are the predominant gelatinases in the developing lung. Studies have shown that the expression of MMP-2 and MMP-9 is upregulated in hypoxic fibroblasts, 15-hydroxyeicosatetraenoic acid (15-HETE) regulated fibroblasts migration via modulating MMP-2 or MMP-9, and that hypoxia/15-HETE is a predominant contributor to the development of pulmonary arterial hypertension (PAH) through increased angiogenesis. However, the roles of MMP-2 and MMP-9 in pulmonary arterial endothelial cells (PAECs) angiogenesis as well as the molecular mechanism of hypoxia-regulated MMP-2 and MMP-9 expression have not been identified. The aim of this study was to investigate the role of MMP-2 and MMP-9 in PAEC proliferation and vascular angiogenesis and to determine the effects of hypoxia-induced 15-HETE on the expression of MMP-2 and MMP-9. Western blot, immunofluorescence, and real-time PCR were used to measure the expression of MMP-2 and MMP-9 in hypoxic PAECs. Immunohistochemical staining, flow cytometry, and tube formation as well as cell proliferation, viability, scratch-wound, and Boyden chamber migration assays were used to identify the roles and relationships between MMP-2, MMP-9, and 15-HETE in hypoxic PAECs. We found that hypoxia increased MMP-2 and MMP-9 expression in pulmonary artery endothelium both in vivo and in vitro in a time-dependent pattern. Moreover, administration of the MMP-2 and MMP-9 inhibitor MMI-166 significantly reversed hypoxia-induced increases in right ventricular systemic pressure (RVSP), right ventricular function, and thickening of the tunica media. Furthermore, up-regulation of MMP-2 and MMP-9 expression was induced by 15-HETE, which regulates PAEC proliferation, migration, and cell cycle transition that eventually leads to angiogenesis. Our study demonstrated that hypoxia increases the expression of MMP-2 and MMP-9 through the 15-lipoxygenase/15-HETE pathway, and that MMP-2 and MMP-9 promote PAEC angiogenesis. These findings suggest that MMP-2 and MMP-9 may serve as new potential therapeutic targets for the treatment of PAH.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Hongyue Zhang
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Lixin Yan
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Wei Du
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province, China
| | - Min Zhang
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang Province, China
| | - He Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lixin Zhang
- Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, Heilongjiang Province, China
| | - Guangqun Li
- Medical Laboratory Technology, Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Jijin Li
- Medical Laboratory Technology, Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Yinchu Dong
- Medical Laboratory Technology, Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Daling Zhu
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Department of Biopharmaceutical Sciences, Harbin Medical University, Daqing, Heilongjiang Province, China.
| |
Collapse
|
19
|
COMP-prohibitin 2 interaction maintains mitochondrial homeostasis and controls smooth muscle cell identity. Cell Death Dis 2018; 9:676. [PMID: 29867124 PMCID: PMC5986769 DOI: 10.1038/s41419-018-0703-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are highly phenotypically plastic, and loss of the contractile phenotype in VSMCs has been recognized at the early onset of the pathology of a variety of vascular diseases. However, the endogenous regulatory mechanism to maintain contractile phenotype in VSMCs remains elusive. Moreover, little has been known about the role of the mitochondrial bioenergetics in terms of VSMC homeostasis. Herein, we asked if glycoprotein COMP (Cartilage oligomeric matrix protein) is involved in mitochondrial bioenergetics and therefore regulates VSMCs homeostasis. By using fluorescence assay, subcellular western blot and liquid chromatography tandem mass spectrometry analysis, we found that extracellular matrix protein COMP unexpectedly localized within mitochondria. Further mitochondrial transplantation revealed that both mitochondrial and non-mitochondrial COMP maintained VSMC identity. Moreover, microarray analysis revealed that COMP deficiency impaired mitochondrial oxidative phosphorylation in VSMCs. Further study confirmed that COMP deficiency caused mitochondrial oxidative phosphorylation dysfunction accompanied by morphological abnormality. Moreover, the interactome of mitochondrial COMP revealed that COMP interacted with prohibitin 2, and COMP-prohibitin 2 interaction maintained mitochondrial homeostasis. Additionally, disruption of COMP-prohibitin 2 interaction caused VSMC dedifferentiation in vitro and enhanced the neointima formation post rat carotid artery injury in vivo. In conclusion, COMP-prohibitin 2 interaction in mitochondria plays an important role in maintaining the contractile phenotype of VSMCs by regulating mitochondrial oxidative phosphorylation. Maintaining the homeostasis of mitochondrial respiration through COMP-prohibitin 2 interaction may shed light on prevention of vascular disease.
Collapse
|
20
|
Varghese JF, Patel R, Yadav UCS. Novel Insights in the Metabolic Syndrome-induced Oxidative Stress and Inflammation-mediated Atherosclerosis. Curr Cardiol Rev 2018; 14:4-14. [PMID: 28990536 PMCID: PMC5872260 DOI: 10.2174/1573403x13666171009112250] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/09/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Context: Atherosclerosis is a progressive pathological process and a leading cause of mor-tality worldwide. Clinical research and epidemiological studies state that atherosclerosis is caused by an amalgamation of metabolic and inflammatory deregulation involving three important pathological events including Endothelial Dysfunction (ED), Foam Cell Formation (FCF), and Vascular Smooth Muscle Cells (VSMCs) proliferation and migration. Objectives: Research in recent years has identified Metabolic Syndrome (MS), which involves factors such as obesity, insulin resistance, dyslipidemia and diabetes, to be responsible for the pathophysiol-ogy of atherosclerosis. These factors elevate oxidative stress and inflammation-induced key signalling molecules and various microRNAs (miRs). In present study, we have reviewed recently identified molecular targets in the pathophysiology of atherosclerosis. Methods: Scientific literature obtained from databases such as university library, PubMed and Google along with evidences from published experimental work in relevant journals has been sum-marized in this review article. Results: The molecular events and cell signalling implicated in atherogenic processes of ED, FCF and VSMCs hyperplasia are sequential and progressive, and involve cross talks at many levels. Specific molecules such as transcription factors, inflammatory cytokines and chemokines and miRs have been identified playing crucial role in most of the events leading to atherosclerosis. Conclusion: Studies associated with MS induced oxidative stress- and inflammation- mediated sig-nalling pathways along with critical miRs help in better understanding of the pathophysiology of ath-erosclerosis. Several key molecules discussed in this review could be potent target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Johnna F Varghese
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| | - Rohit Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| | - Umesh C S Yadav
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat - 382030, India
| |
Collapse
|
21
|
de Lima AD, Guido MC, Tavares ER, Carvalho PO, Marques AF, de Melo MDT, Salemi VMC, Kalil-Filho R, Maranhão RC. The Expression of Lipoprotein Receptors Is Increased in the Infarcted Area After Myocardial Infarction Induced in Rats With Cardiac Dysfunction. Lipids 2018; 53:177-187. [DOI: 10.1002/lipd.12014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Aline D. de Lima
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Maria C. Guido
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Elaine R. Tavares
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Priscila O. Carvalho
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Alyne F. Marques
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Marcelo D. T. de Melo
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Vera M. C. Salemi
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Roberto Kalil-Filho
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Raul C. Maranhão
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
- Faculty of Pharmaceutical Sciences; University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| |
Collapse
|
22
|
You B, Liu Y, Chen J, Huang X, Peng H, Liu Z, Tang Y, Zhang K, Xu Q, Li X, Cheng G, Shi R, Zhang G. Vascular peroxidase 1 mediates hypoxia-induced pulmonary artery smooth muscle cell proliferation, apoptosis resistance and migration. Cardiovasc Res 2017; 114:188-199. [PMID: 29186367 DOI: 10.1093/cvr/cvx234] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/25/2017] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
Reactive oxygen species (ROS) play essential roles in the pulmonary vascular remodelling associated with hypoxia-induced pulmonary hypertension (PH). Vascular peroxidase 1 (VPO1) is a newly identified haeme-containing peroxidase that accelerates oxidative stress development in the vasculature. This study aimed to determine the potential role of VPO1 in hypoxia-induced PH-related vascular remodelling.
Methods and results
The vascular morphology and VPO1 expression were assessed in the pulmonary arteries of Sprague–Dawley (SD) rats. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) and VPO1 expression and HOCl production were significantly increased in hypoxic rats, which also exhibited obvious vascular remodelling. Furthermore, a hypoxia-induced PH model was generated by exposing primary rat pulmonary artery smooth muscle cells (PASMCs) to hypoxic conditions (3% O2, 48 h), which significantly increased the expression of NOX4 and VPO1 and the production of HOCl. These hypoxic changes were accompanied by enhanced proliferation, apoptosis resistance, and migration. In PASMCs, hypoxia-induced changes, including effects on the expression of cell cycle regulators (cyclin B1 and cyclin D1), apoptosis-related proteins (bax, bcl-2, and cleaved caspase-3), migration promoters (matrix metalloproteinases 2 and 9), and NF-κB expression, as well as the production of HOCl, were all inhibited by silencing VPO1 with small interfering RNAs. Moreover, treatment with HOCl under hypoxic conditions upregulated NF-κB expression and enhanced proliferation, apoptosis resistance, and migration in PASMCs, whereas BAY 11-7082 (an inhibitor of NF-κB) significantly inhibited these effects.
Conclusion
Collectively, these results demonstrate that VPO1 promotes hypoxia-induced proliferation, apoptosis resistance, and migration in PASMCs via the NOX4/VPO1/HOCl/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Baiyang You
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yanbo Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Chen
- Department of Humanistic Nursing, Xiangya Nursing School, Central South University, Changsha, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoya Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yixin Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Kai Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Revuelta-López E, Soler-Botija C, Nasarre L, Benitez-Amaro A, de Gonzalo-Calvo D, Bayes-Genis A, Llorente-Cortés V. Relationship among LRP1 expression, Pyk2 phosphorylation and MMP-9 activation in left ventricular remodelling after myocardial infarction. J Cell Mol Med 2017; 21:1915-1928. [PMID: 28378397 PMCID: PMC5571517 DOI: 10.1111/jcmm.13113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/30/2016] [Indexed: 01/09/2023] Open
Abstract
Left ventricular (LV) remodelling after myocardial infarction (MI) is a crucial determinant of the clinical course of heart failure. Matrix metalloproteinase (MMP) activation is strongly associated with LV remodelling after MI. Elucidation of plasma membrane receptors related to the activation of specific MMPs is fundamental for treating adverse cardiac remodelling after MI. The aim of current investigation was to explore the potential association between the low‐density lipoprotein receptor‐related protein 1 (LRP1) and MMP‐9 and MMP‐2 spatiotemporal expression after MI. Real‐time PCR and Western blot analyses showed that LRP1 mRNA and protein expression levels, respectively, were significantly increased in peri‐infarct and infarct zones at 10 and 21 days after MI. Confocal microscopy demonstrated high colocalization between LRP1 and the fibroblast marker vimentin, indicating that LRP1 is mostly expressed by cardiac fibroblasts in peri‐infarct and infarct areas. LRP1 also colocalized with proline‐rich tyrosine kinase 2 (pPyk2) and MMP‐9 in cardiac fibroblasts in ischaemic areas at 10 and 21 days after MI. Cell culture experiments revealed that hypoxia increases LRP1, pPyk2 protein levels and MMP‐9 activity in fibroblasts, without significant changes in MMP‐2 activity. MMP‐9 activation by hypoxia requires LRP1 and Pyk2 phosphorylation in fibroblasts. Collectively, our in vivo and in vitro data support a major role of cardiac fibroblast LRP1 levels on MMP‐9 up‐regulation associated with ventricular remodelling after MI.
Collapse
Affiliation(s)
- Elena Revuelta-López
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Tries i Pujol, Badalona (Barcelona), Spain
| | - Carol Soler-Botija
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Tries i Pujol, Badalona (Barcelona), Spain
| | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David de Gonzalo-Calvo
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Program, Health Sciences Research Institute Germans Tries i Pujol, Badalona (Barcelona), Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
24
|
Xu T, Liu S, Ma T, Jia Z, Zhang Z, Wang A. Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension. Redox Biol 2016; 11:286-296. [PMID: 28030785 PMCID: PMC5192477 DOI: 10.1016/j.redox.2016.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/09/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
The cardioprotective benefits of aldehyde dehydrogenase 2 (ALDH2) are well established, although the regulatory role of ALDH2 in vascular remodeling in pulmonary arterial hypertension (PAH) is largely unknown. ALDH2 potently regulates the metabolism of aldehydes such as 4-hydroxynonenal (4-HNE), the endogenous product of lipid peroxidation. Thus, we hypothesized that ALDH2 ameliorates the proliferation and migration of human pulmonary artery smooth muscle cells (HPASMCs) by inhibiting 4-HNE accumulation and regulating downstream signaling pathways, thereby ameliorating pulmonary vascular remodeling. We found that low concentrations of 4-HNE (0.1 and 1μM) stimulated cell proliferation by enhancing cyclin D1 and c-Myc expression in primary HPASMCs. Low 4-HNE concentrations also enhanced cell migration by activating the nuclear factor kappa B (NF-κB) signaling pathway, thereby regulating matrix metalloprotein (MMP)-9 and MMP2 expression in vitro. In vivo, Alda-1, an ALDH2 agonist, significantly stimulated ALDH2 activity, reducing elevated 4-HNE and malondialdehyde levels and right ventricular systolic pressure in a monocrotaline-induced PAH animal model to the level of control animals. Our findings indicate that 4-HNE plays an important role in the abnormal proliferation and migration of HPASMCs, and that ALDH2 activation can attenuate 4-HNE-induced PASMC proliferation and migration, possibly by regulating NF-κB activation, in turn ameliorating vascular remodeling in PAH. This mechanism might reflect a new molecular target for treating PAH.
Collapse
Affiliation(s)
- Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China.
| | - Shuangyue Liu
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China
| | - Tingting Ma
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China
| | - Ziyi Jia
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhifei Zhang
- Department of Physiology and Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing 100069, PR China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121000, PR China.
| |
Collapse
|
25
|
Bijli KM, Kang BY, Sutliff RL, Hart CM. Proline-rich tyrosine kinase 2 downregulates peroxisome proliferator-activated receptor gamma to promote hypoxia-induced pulmonary artery smooth muscle cell proliferation. Pulm Circ 2016; 6:202-10. [PMID: 27252847 DOI: 10.1086/686012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypoxia stimulates pulmonary hypertension (PH), in part by increasing the proliferation of human pulmonary artery smooth muscle cells (HPASMCs) via sustained activation of mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and nuclear factor-kappa B (NF-κB); elevated expression of NADPH oxidase 4 (Nox4); and downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) levels. However, the upstream mediators that control these responses remain largely unknown. We hypothesized that proline-rich tyrosine kinase 2 (Pyk2) plays a critical role in the mechanism of hypoxia-induced HPASMC proliferation. To test this hypothesis, HPASMCs were exposed to normoxia or hypoxia (1% O2) for 72 hours. Hypoxia activated Pyk2 (detected as Tyr402 phosphorylation), and inhibition of Pyk2 with small interfering RNA (siRNA) or tyrphostin A9 attenuated hypoxia-induced HPASMC proliferation. Pyk2 inhibition attenuated ERK 1/2 activation as early as 24 hours after the onset of hypoxia, suggesting a proximal role for Pyk2 in this response. Pyk2 inhibition also attenuated hypoxia-induced NF-κB activation, reduced HPASMC PPARγ messenger RNA levels and activity, and increased NF-κB-mediated Nox4 levels. The siRNA-mediated PPARγ knockdown enhanced Pyk2 activation, whereas PPARγ overexpression reduced Pyk2 activation in HPASMCs, confirming a reciprocal relationship between Pyk2 and PPARγ. Pyk2 depletion also attenuated hypoxia-induced NF-κB p65 activation and reduced PPARγ protein levels in human pulmonary artery endothelial cells. These in vitro findings suggest that Pyk2 plays a central role in the proliferative phenotype of pulmonary vascular wall cells under hypoxic conditions. Coupled with recent reports that hypoxia-induced PH is attenuated in Pyk2 knockout mice, these findings suggest that Pyk2 may represent a novel therapeutic target in PH.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| | - Bum-Yong Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Yang CC, Hsiao LD, Yang CM, Lin CC. Thrombin Enhanced Matrix Metalloproteinase-9 Expression and Migration of SK-N-SH Cells via PAR-1, c-Src, PYK2, EGFR, Erk1/2 and AP-1. Mol Neurobiol 2016; 54:3476-3491. [PMID: 27181591 DOI: 10.1007/s12035-016-9916-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/03/2016] [Indexed: 01/30/2023]
Abstract
Neuroinflammation is a hallmark of neurodegenerative disorders in the central nerve system (CNS). Thrombin has been known as one of the factors in pathological processes including migration, blood-brain barrier breakdown, brain edema formation, neuroinflammation, and neuronal death. Thrombin has been shown to be a regulator of matrix metalloproteinase (MMPs) expression leading to cell migration. Among MMPs, the elevated expression of MMP-9 has been observed in patients with brain diseases, which may contribute to the pathology of neuroinflammatory and neurodegenerative diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells were not completely understood. Here, we used gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay to demonstrate that thrombin induced the expression of pro-form MMP-9 protein and messenger RNA (mRNA), and promoter activity in SK-N-SH cells, which were attenuated by pretreatment with the pharmacological inhibitor of protease-activated receptor-1 (PAR-1, SCH79797), Gi-coupled receptor (GPA2), c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), or AP-1 (TanshinoneIIA) and transfection with small interfering RNA (siRNA) of PAR-1, Gi, c-Src, Pyk2, EGFR, Akt, p44, p42, or c-Jun. Moreover, thrombin-stimulated c-Src, Pyk2, EGFR, Akt, p42/p44 MAPK, or c-Jun phosphorylation was attenuated by their respective inhibitor of PP1, PF431396, AG1478, SH-5, U0126, or TanshinoneIIA. Finally, pretreatment with these inhibitors also blocked thrombin-induced SK-N-SH cell migration. Our results concluded that thrombin binding to PAR-1 receptor activated Gi-protein/c-Src/Pyk2/EGFR/PI3K/Akt/p42/p44 MAPK cascade, which in turn elicited AP-1 activation and ultimately evoked MMP-9 expression and cell migration in SK-N-SH cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Lin-Kou, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan. .,Department of Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-San, Tao-Yuan, Taiwan.
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan. .,Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou, 5 Fu-Hsin Street, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|
27
|
Zhang W, Zhang H, Mu H, Zhu W, Jiang X, Hu X, Shi Y, Leak RK, Dong Q, Chen J, Gao Y. Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury. Neurobiol Dis 2016; 91:37-46. [PMID: 26921472 DOI: 10.1016/j.nbd.2016.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to protect the neonatal brain against hypoxic/ischemic (H/I) injury. However, the mechanism of n-3 PUFA-afforded neuroprotection is not well understood. One major determinant of H/I vulnerability is the permeability of the blood-brain barrier (BBB). Therefore, we examined the effects of n-3 PUFAs on BBB integrity after neonatal H/I. Female rats were fed a diet with or without n-3 PUFA enrichment from day 2 of pregnancy to 14days after parturition. H/I was introduced in 7day-old offspring. We observed relatively rapid BBB penetration of the small molecule cadaverine (640Da) at 4h post-H/I and a delayed penetration of larger dextrans (3kD-40kD) 24-48h after injury. Surprisingly, the neonatal BBB was impermeable to Evans Blue or 70kD dextran leakage for up to 48h post-H/I, despite evidence of IgG extravasation at this time. As expected, n-3 PUFAs ameliorated H/I-induced BBB damage, as shown by reductions in tracer efflux and IgG extravasation, preservation of BBB ultrastructure, and enhanced tight junction protein expression. Furthermore, n-3 PUFAs prevented the elevation in matrix metalloproteinase (MMP) activity in the brain and blood after H/I. Thus, n-3 PUFAs may protect neonates against BBB damage by blunting MMPs activation after H/I.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hui Zhang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hongfeng Mu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wen Zhu
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoyan Jiang
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurology of Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
28
|
Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep 2016; 6:21520. [PMID: 26861754 PMCID: PMC4748282 DOI: 10.1038/srep21520] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/26/2016] [Indexed: 12/17/2022] Open
Abstract
Changes in cellular oxygen tension play important roles in physiological processes including development and pathological processes such as tumor promotion. The cellular adaptations to sustained hypoxia are mediated by hypoxia-inducible factors (HIFs) to regulate downstream target gene expression. With hypoxia, the stabilized HIF-α and aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF-β) heterodimer bind to hypoxia response elements (HREs) and regulate expression of target genes. Here, we report that WNT11 is induced by hypoxia in many cell types, and that transcription of WNT11 is regulated primarily by HIF-1α. We observed induced WNT11 expression in the hypoxic area of allograft tumors. In addition, in mice bearing orthotopic malignant gliomas, inhibition with bevacizumab of vascular endothelial growth factor, which is an important stimulus for angiogenesis, increased nuclear HIF-1α and HIF-2α, and expression of WNT11. Gain- and loss-of-function approaches revealed that WNT11 stimulates proliferation, migration and invasion of cancer-derived cells, and increases activity of matrix metalloproteinase (MMP)-2 and 9. Since tumor hypoxia has been proposed to increase tumor aggressiveness, these data suggest WNT11 as a possible target for cancer therapies, especially for tumors treated with antiangiogenic therapy.
Collapse
|
29
|
Erapaneedi R, Belousov VV, Schäfers M, Kiefer F. A novel family of fluorescent hypoxia sensors reveal strong heterogeneity in tumor hypoxia at the cellular level. EMBO J 2015; 35:102-13. [PMID: 26598532 DOI: 10.15252/embj.201592775] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is an intensively investigated condition with profound effects on cell metabolism, migration, and angiogenesis during development and disease. Physiologically, hypoxia is linked to tissue homeostasis and maintenance of pluripotency. Hypoxia also contributes to pathologies including cardiovascular diseases and cancer. Despite its importance, microscopic visualization of hypoxia is largely restricted to the detection of reductively activated probes by immunostaining. Here, we describe a novel family of genetically encoded fluorescent sensors that detect the activation of HIF transcription factors reported by the oxygen-independent fluorescent protein UnaG. It comprises sensors with different switching and memory behavior and combination sensors that allow the distinction of hypoxic and reoxygenated cells. We tested these sensors on orthotopically transplanted glioma cell lines. Using a cranial window, we could visualize hypoxia intravitally at cellular resolution. In tissue samples, sensor activity was detected in regions, which were largely devoid of blood vessels, correlated with HIF-1α stabilization, and were highly heterogeneous at a cellular level. Frequently, we detected recently reoxygenated cells outside hypoxic areas in the proximity of blood vessels, suggestive of hypoxia-promoted cell migration.
Collapse
Affiliation(s)
- Raghu Erapaneedi
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany Cluster of Excellence EXC 1003, Cells in Motion CiM, Münster, Germany
| | | | - Michael Schäfers
- Cluster of Excellence EXC 1003, Cells in Motion CiM, Münster, Germany European Institute for Molecular Imaging - EIMI, Münster, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany Cluster of Excellence EXC 1003, Cells in Motion CiM, Münster, Germany
| |
Collapse
|
30
|
de Gonzalo-Calvo D, López-Vilaró L, Nasarre L, Perez-Olabarria M, Vázquez T, Escuin D, Badimon L, Barnadas A, Lerma E, Llorente-Cortés V. Intratumor cholesteryl ester accumulation is associated with human breast cancer proliferation and aggressive potential: a molecular and clinicopathological study. BMC Cancer 2015; 15:460. [PMID: 26055977 PMCID: PMC4460760 DOI: 10.1186/s12885-015-1469-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The metabolic effect of intratumor cholesteryl ester (CE) in breast cancer remains poorly understood. The objective was to analyze the relationship between intratumor CE content and clinicopathological variables in human breast carcinomas. METHODS We classified 30 breast carcinoma samples into three subgroups: 10 luminal-A tumors (ER+/PR+/Her2-), 10 Her-2 tumors (ER-/PR-/Her2+), and 10 triple negative (TN) tumors (ER-/PR-/Her2-). We analyzed intratumor neutral CE, free cholesterol (FC) and triglyceride (TG) content by thin layer chromatography after lipid extraction. RNA and protein levels of lipid metabolism and invasion mediators were analyzed by real time PCR and Western blot analysis. RESULTS Group-wise comparisons, linear regression and logistic regression models showed a close association between CE-rich tumors and higher histologic grade, Ki-67 and tumor necrosis. CE-rich tumors displayed higher mRNA and protein levels of low-density lipoprotein receptor (LDLR) and scavenger receptor class B member 1 (SCARB1). An increased expression of acetyl-Coenzyme A acetyltransferase 1 (ACAT1) in CE-rich tumors was also reported. CONCLUSIONS Intratumor CE accumulation is intimately linked to proliferation and aggressive potential of breast cancer tumors. Our data support the link between intratumor CE content and poor clinical outcome and open the door to new antitumor interventions.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Sant Antoni Mª Claret, 167 08025, Barcelona, Spain.
| | - Laura López-Vilaró
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain.
| | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Sant Antoni Mª Claret, 167 08025, Barcelona, Spain.
| | | | - Tania Vázquez
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain.
| | - Daniel Escuin
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain.
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Sant Antoni Mª Claret, 167 08025, Barcelona, Spain.
| | - Agusti Barnadas
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - Enrique Lerma
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - Vicenta Llorente-Cortés
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Sant Antoni Mª Claret, 167 08025, Barcelona, Spain.
| |
Collapse
|
31
|
Revuelta-López E, Cal R, Herraiz-Martínez A, de Gonzalo-Calvo D, Nasarre L, Roura S, Gálvez-Montón C, Bayes-Genis A, Badimon L, Hove-Madsen L, Llorente-Cortés V. Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes. J Mol Cell Cardiol 2015; 85:25-36. [PMID: 25968337 DOI: 10.1016/j.yjmcc.2015.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/30/2023]
Abstract
The maintenance of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) activity is crucial for cardiac function and SERCA2 is dramatically reduced in the heart exposed to hypoxic/ischemic conditions. Previous work from our group showed that hypoxia upregulates the phosphorylated form of the Ca(2+)-dependent nonreceptor protein tyrosine kinase (PTK) proline-rich tyrosine kinase 2 (pPyk2) protein levels in a low-density lipoprotein receptor-related protein (LRP1)-dependent manner. Pyk2 in turn may modulate SERCA2 in cardiomyocytes although this remains controversial. We therefore aimed to investigate the role of LRP1 on hypoxia-induced SERCA2 depletion in cardiomyocytes and to establish LRP1 signalling mechanisms involved. Western blot analysis showed that hypoxia reduced SERCA2 concomitantly with a sustained increase in LRP1 and pPyk2 protein levels in HL-1 cardiomyocytes. By impairing hypoxia-induced Pyk2 phosphorylation and HIF-1α accumulation, LRP1 deficiency prevented SERCA2 depletion and reduction of the sarcoplasmic reticulum calcium content in cardiomyocytes. Moreover, the inhibition of Pyk2 phosphorylation (with the Src-family inhibitor PP2) or the specific silencing of Pyk2 (with siRNA-anti Pyk2) preserved low HIF-1α and high SERCA2 levels in HL-1 cardiomyocytes exposed to hypoxia. We determined that the LRP1/Pyk2 axis represses SERCA2 mRNA expression via HIF-1α since HIF-1α overexpression abolished the protective effect of LRP1 deficiency on SERCA2 depletion. Our findings show a crucial role of LRP1/Pyk2/HIF-1α in hypoxia-induced cardiomyocyte SERCA2 downregulation, a pathophysiological process closely associated with heart failure.
Collapse
Affiliation(s)
| | - Roi Cal
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | | | | | - Laura Nasarre
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
| | - Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiovascular Research Center, CSIC-ICCC, IIB-Sant Pau, Barcelona, Spain
| | | |
Collapse
|
32
|
Costales P, Fuentes-Prior P, Castellano J, Revuelta-Lopez E, Corral-Rodríguez MÁ, Nasarre L, Badimon L, Llorente-Cortes V. K Domain CR9 of Low Density Lipoprotein (LDL) Receptor-related Protein 1 (LRP1) Is Critical for Aggregated LDL-induced Foam Cell Formation from Human Vascular Smooth Muscle Cells. J Biol Chem 2015; 290:14852-65. [PMID: 25918169 DOI: 10.1074/jbc.m115.638361] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP1) mediates the internalization of aggregated LDL (AgLDL), which in turn increases the expression of LRP1 in human vascular smooth muscle cells (hVSMCs). This positive feedback mechanism is thus highly efficient to promote the formation of hVSMC foam cells, a crucial vascular component determining the susceptibility of atherosclerotic plaque to rupture. Here we have determined the LRP1 domains involved in AgLDL recognition with the aim of specifically blocking AgLDL internalization in hVSMCs. The capacity of fluorescently labeled AgLDL to bind to functional LRP1 clusters was tested in a receptor-ligand fluorometric assay made by immobilizing soluble LRP1 "minireceptors" (sLRP1-II, sLRP1-III, and sLRP1-IV) recombinantly expressed in CHO cells. This assay showed that AgLDL binds to cluster II. We predicted three well exposed and potentially immunogenic peptides in the CR7-CR9 domains of this cluster (termed P1 (Cys(1051)-Glu(1066)), P2 (Asp(1090)-Cys(1104)), and P3 (Gly(1127)-Cys(1140))). AgLDL, but not native LDL, bound specifically and tightly to P3-coated wells. Rabbit polyclonal antibodies raised against P3 prevented AgLDL uptake by hVSMCs and were almost twice as effective as anti-P1 and anti-P2 Abs in reducing intracellular cholesteryl ester accumulation. Moreover, anti-P3 Abs efficiently prevented AgLDL-induced LRP1 up-regulation and counteracted the down-regulatory effect of AgLDL on hVSMC migration. In conclusion, domain CR9 appears to be critical for LRP1-mediated AgLDL binding and internalization in hVSMCs. Our results open new avenues for an innovative anti-VSMC foam cell-based strategy for the treatment of vascular lipid deposition in atherosclerosis.
Collapse
Affiliation(s)
- Paula Costales
- From the Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain and
| | - Pablo Fuentes-Prior
- the Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Jose Castellano
- From the Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain and
| | - Elena Revuelta-Lopez
- From the Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain and
| | - Maria Ángeles Corral-Rodríguez
- the Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Laura Nasarre
- From the Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain and
| | - Lina Badimon
- From the Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain and
| | - Vicenta Llorente-Cortes
- From the Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain and
| |
Collapse
|
33
|
Fukai K, Nakamura A, Hoshino A, Nakanishi N, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Ono K, Tateishi S, Ikeda K, Ogata T, Ueyama T, Matoba S. Pyk2 aggravates hypoxia-induced pulmonary hypertension by activating HIF-1α. Am J Physiol Heart Circ Physiol 2015; 308:H951-9. [PMID: 25659487 DOI: 10.1152/ajpheart.00770.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/01/2015] [Indexed: 01/27/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a refractory disease characterized by uncontrolled vascular remodeling and elevated pulmonary arterial pressure. Although synthetic inhibitors of some tyrosine kinases have been used to treat PAH, their therapeutic efficacies and safeties remain controversial. Thus, the establishment of novel therapeutic targets based on the molecular pathogenesis underlying PAH is a clinically urgent issue. In the present study, we demonstrated that proline-rich tyrosine kinase 2 (Pyk2), a nonreceptor type protein tyrosine kinase, plays a crucial role in the pathogenesis of pulmonary hypertension (PH) using an animal model of hypoxia-induced PH. Resistance to hypoxia-induced PH was markedly higher in Pyk2-deficient mice than in wild-type mice. Pathological investigations revealed that medial thickening of the pulmonary arterioles, which is a characteristic of hypoxia-induced PH, was absent in Pyk2-deficient mice, suggesting that Pyk2 is involved in the hypoxia-induced aberrant proliferation of vascular smooth muscle cells in hypoxia-induced PH. In vitro experiments using human pulmonary smooth muscle cells showed that hypoxic stress increased the proliferation and migration of cells in a Pyk2-dependent manner. We also demonstrated that Pyk2 plays a crucial role in ROS generation during hypoxic stress and that this Pyk2-dependent generation of ROS is necessary for the activation of hypoxia-inducible factor-1α, a key molecule in the pathogenesis of hypoxia-induced PH. In summary, the results of the present study reveal that Pyk2 plays an important role in the pathogenesis of hypoxia-induced PH. Therefore, Pyk2 may represent a promising therapeutic target for PAH in a clinical setting.
Collapse
Affiliation(s)
- Kuniyoshi Fukai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Nakamura
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; and
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshifumi Okawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Ariyoshi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Kaimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Motoki Uchihashi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazunori Ono
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Tateishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ikeda
- Clinical Pharmacy, Kobe Pharmaceutical University, Hyogo, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomomi Ueyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| |
Collapse
|
34
|
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
35
|
Llorente-Cortés V, de Gonzalo-Calvo D, Orbe J, Páramo JA, Badimon L. Signature of subclinical femoral artery atherosclerosis in peripheral blood mononuclear cells. Eur J Clin Invest 2014; 44:539-48. [PMID: 24716741 DOI: 10.1111/eci.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Peripheral arterial disease is a relevant public health problem associated with increased risk of morbimortality. Most of the patients with this condition are asymptomatic. Therefore, the development of accessible biochemical markers seems to be necessary to anticipate diagnosis. Our hypothesis is that asymptomatic subjects with objectively confirmed femoral artery atherosclerosis could be distinguished from control subjects by gene expression analysis in peripheral blood mononuclear cells (PBMC). MATERIALS AND METHODS A total of 37 asymptomatic males over 50 years old were recruited at the University Clinic of Navarra (Spain). Nineteen participants were free from atherosclerotic vascular disease and 18 participants presented subclinical femoral artery atherosclerosis defined by means of Doppler ultrasound. PBMC were isolated from blood and the RNA extracted. A panel of atherosclerotic-related genes were evaluated by Taqman low-density array. RESULTS In univariate logistic regression models, we found a direct relationship between IL4, ITGAM and TLR2 expression levels in PBMC and femoral atherosclerosis, even when the models were adjusted for age and hypertension prevalence. Multivariate logistic regression models showed that elevated IL4 expression levels were intimately associated with subclinical femoral atherosclerosis after adjusting for the same potential confounders. CONCLUSIONS Current data suggest that gene expression in PBMC, in particular IL4 expression, could be a useful tool in the diagnosis of femoral artery atherosclerosis in asymptomatic patients. Furthermore, in patients with no differences in cardiovascular risk factors except for hypertension, the results point to the immune and inflammatory deregulation as a feature of subclinical peripheral atherosclerosis.
Collapse
|