1
|
Gao Q, Su Z, Pang X, Chen J, Luo R, Li X, Zhang C, Zhao Y. Overexpression of Heme Oxygenase 1 Enhances the Neuroprotective Effects of Exosomes in Subarachnoid Hemorrhage by Suppressing Oxidative Stress and Endoplasmic Reticulum Stress. Mol Neurobiol 2025; 62:6088-6101. [PMID: 39710823 DOI: 10.1007/s12035-024-04651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
AIMS This study aims to elucidate the therapeutic effects and underlying mechanisms of exosomes derived from Heme oxygenase 1 (HO-1)-overexpressing human umbilical cord mesenchymal stem cells (ExoHO-1) in a subarachnoid hemorrhage (SAH) mouse model. METHODS In this study, exosomes were identified using Western blotting, particle analysis, and transmission electron microscopy. The effect of ExoHO-1 and ExoCtrl on the neurological function of SAH mice was assessed using the Garcia scoring system, Beam balance, Rotarod test, and Morris water maze test. Neuronal apoptosis and survival were evaluated through TUNEL and Nissl staining. Levels of oxidative and endoplasmic reticulum stress were measured via immunofluorescence, Western blotting, DHE staining, enzyme-linked immunosorbent assay, and commercial kits. RESULTS HO-1-overexpressing human umbilical cord mesenchymal stem cells encapsulated HO-1 into their exosomes. ExoHO-1 significantly enhanced both short-term and long-term neurological function protection. By reducing the activation of the PERK/CHOP/Caspase12 pathway and decreasing oxidative stress levels, ExoHO-1 effectively inhibited neuronal apoptosis in the ipsilateral temporal cortex. CONCLUSION ExoHO-1 enhances the therapeutic efficacy of exosomes in SAH mice by countering neuronal apoptosis, primarily through the suppression of oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Zhumin Su
- Department of neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiangxiong Pang
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China
| | - Jinshuo Chen
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ruixiang Luo
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiaoyang Li
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chi Zhang
- Central Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Yun Zhao
- Department of neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Wei C, Chen C, Li S, Ding Y, Zhou Y, Mai F, Hong S, Wu J, Yang Y, Zhu Z, Xue D, Ning X, Sheng L, Lu B, Cai W, Yuan M, Liang H, Lin S, Yan G, Chen Y, Huang Y, Hu C, Yin W. TRIOL attenuates intracerebral hemorrhage injury by bidirectionally modulating microglia- and neuron-mediated hematoma clearance. Redox Biol 2025; 80:103487. [PMID: 39756315 PMCID: PMC11758845 DOI: 10.1016/j.redox.2024.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
Intracerebral hemorrhage (ICH) represents the most severe subtype of stroke, and the lack of effective clinical pharmacotherapies poses a substantial threat to human health. Hematoma plays a crucial role in determining the prognosis of ICH patients by causing primary mechanical extrusion, followed by secondary brain injuries, such as cerebral edema, iron-mediated oxidative stress, and inflammation resulting from its degradation products. 5α-androst-3β,5α,6β-triol (TRIOL) is a neuroprotective steroid currently undergoing phase II clinical trial for acute ischemic stroke with anti-oxidative and anti-inflammatory properties. However, whether TRIOL can protect brain against ICH injury remains unclear. In this study, we found that TRIOL significantly improved neurological function while reducing hematoma volume, cerebral edema, and tissue damage after ICH. Moreover, TRIOL enhanced microglial hematoma clearance through promoting CD36-mediated erythrophagocytosis and CD163-associated hemoglobin scavenging, while simultaneously reducing the release of microglial inflammatory factors and activating the antioxidative transcription factor Nrf2. Additionally, TRIOL inhibited neuron mediated hematoma absorption by suppressing heme oxygenase 2 (HO-2) and protected neurons against ICH-induced damage in vitro and in vivo. TRIOL also mitigated neuronal iron-dependent oxidative damage by increasing ferritin levels but decreasing divalent metal transporter 1 (DMT1) expression. Overall, these findings highlight the promising potential of TRIOL as a drug candidate for treating ICH.
Collapse
Affiliation(s)
- CaiLv Wei
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - ShengLong Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - YuXuan Ding
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - YuWei Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - FangYing Mai
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - ShiRan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - JiaXin Wu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yang Yang
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - DongDong Xue
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - XinPeng Ning
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - LongXiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - BingZheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - Wei Cai
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - MingJun Yuan
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - HuaFeng Liang
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - GuangMei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - YuPin Chen
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663, China
| | - YiJun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Wei Yin
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Liu Y, Yang G, Liu M, Zhang Y, Xu H, Mazhar M. Cinnamaldehyde and its combination with deferoxamine ameliorate inflammation, ferroptosis and hematoma expansion after intracerebral hemorrhage in mice. J Neuroinflammation 2025; 22:45. [PMID: 39985048 PMCID: PMC11846400 DOI: 10.1186/s12974-025-03373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a most serious type of hemorrhagic stroke with a continuously rising incidence globally, without effective cure available. The underlying mechanisms driving brain injury are complex and include inflammation, oxidative stress, glutamate excitotoxicity, membrane damage, lipid peroxidation, ferroptosis and other cellular death modes. Hematoma clearance is the key to limit brain damage and foster the recovery process. The quest for effective ICH remedies is continuing and strategically evolving with the expansion of knowledge and understanding of target mechanisms and novel lead compounds. In this study, we have investigated the effects of cinnamaldehyde after ICH as an individual treatment as well as in combination with deferoxamine. The autologous blood injection model was employed using C57BL/6 mice. Following 2 h of ICH induction, animals received IP injection once per day for three days; normal saline in ICH model group, cinnamaldehyde, deferoxamine, and combined cinnamaldehyde and deferoxamine in respective groups. Measurement of neurobehavioral scoring, markers of inflammation NFкB, TNFα, IL-1, IL6, iNOS; oxidative stress and ferroptosis GSH, TBARS, glutamate, choline containing phospholipids, GPX4, SLC7A11, SLC40A1, ACSL4; and hematoma clearance hemoglobin, haptoglobin, hemopexin, zonulin, CD163, LRP1, HO1, CD36, CD206, were investigated using ELISA, PCR, and western blot. Immunofluorescence for NeuN/SLC40A1, GFAP/GPX4, NeuN/HO1, Iba1/HO1 was also performed. We have found that cinnamaldehyde possess anti-inflammatory, antioxidant, anti-ferroptotic and hematoma limiting properties that were comparable to those obtained with deferoxamine. However, combination of cinnamaldehyde and deferoxamine demonstrated remarkable effectiveness in restoration of these parameters indicating their synergistic effect in ICH model.
Collapse
Affiliation(s)
- Yulin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- National Traditional Chinese Medicine Service Export Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Mengnan Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yuwei Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Houping Xu
- Department of Geriatrics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
- National Traditional Chinese Medicine Service Export Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Hu L, Chen Z, Lu J, Jiang S, Lin H, Zhou J, Wang N, Ding C, Ni W, Peng H, Li Y, He X, Li J, Jing C, Cao Y, Zhou H, Yan F, Chen G. Extracellular Vesicles From Bone Marrow-Derived Macrophages Enriched in ARG1 Enhance Microglial Phagocytosis and Haematoma Clearance Following Intracerebral Haemorrhage. J Extracell Vesicles 2025; 14:e70041. [PMID: 39868438 PMCID: PMC11770371 DOI: 10.1002/jev2.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Microglial phagocytosis of haematomas is crucial for neural functional recovery following intracerebral haemorrhage (ICH), a process regulated by various factors from within and outside the central nervous system (CNS). Extracellular vesicles (EVs), significant mediators of intercellular communication, have been demonstrated to play a pivotal role in the pathogenesis and progression of CNS diseases. However, the regulatory role of endogenous EVs on the phagocytic capacity of microglia post-ICH remains elusive. Utilising multi-omics analysis of brain tissue-derived EVs proteomics and single-cell RNA sequencing, this study identified that bone marrow-derived macrophages (BMDMs) potentially enhance microglial phagocytosis via EVs following ICH. By blocking BMDMs and reducing ARG1 in BMDM-derived EVs, we demonstrated that BMDMs facilitate erythrophagocytosis by delivering ARG1 to microglia via EVs post-ICH. EVs-carried ARG1 was found to augment phagocytosis by promoting RAC1-dependent cytoskeletal remodelling in microglia. Collectively, this research uncovers an intercellular communication pathway from BMDMs to microglia mediated by EVs post-ICH. This provides a novel paradigm for EV-mediated intercellular communication mechanisms and suggests a promising therapeutic potential for BMDM-derived EVs in the treatment of ICH.
Collapse
Affiliation(s)
- Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Jianglong Lu
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Shandong Jiang
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Haopu Lin
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Jiayin Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Ning Wang
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Chao Ding
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Weifang Ni
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Haitao Peng
- Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Yin Li
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Xuchao He
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
| | - Chaohui Jing
- Department of NeurosurgeryXinHua Hospital affiliated to Shanghai JiaoTong University School of MedicineShanghaiChina
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical DiseasesHangzhouChina
- State Key Laboratory of Transvascular Implantation DevicesHangzhouChina
| |
Collapse
|
5
|
Hymøller SH, Kaaber IA, Lesbo M, Borris LC, Brink O, Møller HJ, Hviid CVB. Circulating soluble CD163 is associated with reduced Glasgow Coma Scale Score and 1-year all-cause mortality in traumatized patients. Scand J Clin Lab Invest 2024; 84:336-344. [PMID: 39177068 DOI: 10.1080/00365513.2024.2392246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Soluble CD163 (sCD163) is a biomarker of macrophage activation, not previously investigated in the circulation of traumatized patients. A biobank of 398 adult trauma patients was analyzed. Patients with an Injury Severity Score (ISS) >8 served as trauma patients (n = 195) and those with ISS ≤ 8 as trauma controls (n = 203). Serum samples obtained upon admission, 15h and 72h after were analyzed for sCD163 using an in-house ELISA. Multiple linear regression was used to analyze the association between admission levels of sCD163 with, 1: overall trauma severity (ISS), and 2: severity of injury to specified organs using Abbreviated Injury Score (AIS) and Glasgow Coma Scale (GCS). The association between the peak level of sCD163 with 1-year all-cause mortality was analyzed by logistic regression analysis. Median admission levels of sCD163 were higher in trauma patients than trauma controls [2.32 (IQR 1.73 to 2.86) vs. 1.92 (IQR 1.41 to 2.51) mg/L, p < 0.01]. Worsening GCS score was associated with a 10.3% (95% CI: 17.0 to 3.1, p < 0.01) increase in sCD163. Increasing Head-AIS score was associated with a 5.1% (95% CI: -0.5 to 11.0, p = 0.07) increase in sCD163. The remaining AIS scores and ISS were not consistently associated with sCD163 admission levels. Each mg/L increase in sCD163 peak level had an odds ratio 1.34 (95%CI: 0.98 to 1.83), p = 0.06) after adjustment for age, sex, and GCS. Circulating sCD163 is increased in traumatized patients and associated with worsening GCS. Our findings suggest an association between circulating sCD163 levels with 1-year all-cause mortality.
Collapse
Affiliation(s)
- Signe H Hymøller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Ida A Kaaber
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Maj Lesbo
- Department of Orthopedic Surgery, Regional Hospital Viborg, Viborg, Denmark
| | - Lars C Borris
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Brink
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
6
|
Jin J, Chen M, Wang H, Li S, Ma L, Wang B. Schizandrin A attenuates early brain injury following subarachnoid hemorrhage through suppressing neuroinflammation. Mol Biol Rep 2024; 51:236. [PMID: 38285214 DOI: 10.1007/s11033-023-08956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Early brain injury (EBI) is the vital factor in determining the outcome of subarachnoid hemorrhage (SAH). Schizandrin A (Sch A), the bioactive ingredient extracted from Schisandra chinensis, has been proved to exert beneficial effects in multiple human diseases. However, the effect of Sch A on SAH remains unknown. The current study was designed to explored role and mechanism of Sch A in the pathophysiological process of EBI following SAH. METHOD A total of 74 male C57BL/6 J mice were subjected to endovascular perforation to establish the SAH model. Different dosages of Sch A were administrated post-modeling. The post-modeling assessments included neurological test, brain water content, RT-PCR, immunofluorescence, Nissl staining. Oxygenated hemoglobin was introduced into microglia to establish a SAH model in vitro. RESULT Sch A significantly alleviated SAH-induced brain edema and neurological impairment. Moreover, application of Sch A remarkably inhibited SAH-induced neuroinflammation, evidenced by the decreased microglial activation and downregulated TNF-α, IL-1β and IL-6 and expression. Additionally, Sch A, both in vivo and in vitro, protected neurons against SAH-induced inflammatory injury. Mechanismly, administration of Sch A inhibited miR-155/NF-κB axis and attenuated neuroinflammation, as well as alleviating neuronal injury. CONCLUSION Our data suggested that Sch A could attenuated EBI following SAH via modulating neuroinflammation. The anti-inflammatory effect was exerted, at least partly through the miR-155/NF-κB axis, which may shed light on a possible therapeutic target for SAH.
Collapse
Affiliation(s)
- Jianxiang Jin
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Maosong Chen
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Hongcai Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Shiwei Li
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Lei Ma
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Boding Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China.
| |
Collapse
|
7
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
8
|
Mohamed SK, Ahmed AAE, Elkhoely A. Sertraline Pre-Treatment Attenuates Hemorrhagic Transformation Induced in Rats after Cerebral Ischemia Reperfusion via Down Regulation of Neuronal CD163: Involvement of M1/M2 Polarization Interchange and Inhibiting Autophagy. J Neuroimmune Pharmacol 2023; 18:657-673. [PMID: 37955765 PMCID: PMC10770270 DOI: 10.1007/s11481-023-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Cerebral ischemia reperfusion (I/R) is one of the neurovascular diseases which leads to severe brain deterioration. Haemorrhagic transformation (HT) is the main complication of ischemic stroke. It exacerbates by reperfusion, causing a more deleterious effect on the brain and death. The current study explored the protective effect of sertraline (Sert) against cerebral I/R in rats by inhibiting HT, together with the molecular pathways involved in this effect. Forty-eight wister male rats were divided into 4 groups: Sham, Sert + Sham, I/R, and Sert + I/R. The ischemic model was induced by bilateral occlusion of the common carotid artery for 20 min, then reperfusion for 24 h. Sertraline (20 mg/kg, p.o.) was administrated for 14 days before exposure to ischemia. Pre-treatment with Sert led to a significant attenuation of oxidative stress and inflammation. In addition, Sert attenuated phosphorylation of extracellular regulated kinases and nuclear factor kappa-p65 expression, consequently modulating microglial polarisation to M2 phenotype. Moreover, Sert prevented the hemorrhagic transformation of ischemic stroke as indicated by the notable decrease in neuronal expression of CD163, activity of Heme oxygenase-2 and matrix metalloproteinase-2 and 9 levels. In the same context, Sert decreased levels of autophagy and apoptotic markers. Furthermore, histological examination, Toluidine blue, and Prussian blue stain aligned with the results. In conclusion, Sert protected against cerebral I/R damage by attenuating oxidative stress, inflammation, autophagy, and apoptotic process. It is worth mentioning that our study was the first to show that Sert inhibited hemorrhagic transformation. The protective effect of sertraline against injury induced by cerebral ischemia reperfusion via inhibiting Hemorrhagic transformation.
Collapse
Affiliation(s)
- Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Abeer Elkhoely
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
9
|
Wan Y, Holste KG, Ye F, Hua Y, Keep RF, Xi G. Minocycline attenuates hydrocephalus and inhibits iron accumulation, ependymal damage and epiplexus cell activation after intraventricular hemorrhage in aged rats. Exp Neurol 2023; 369:114523. [PMID: 37652293 PMCID: PMC10642526 DOI: 10.1016/j.expneurol.2023.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Intracerebral hemorrhage is primarily a disease of the elderly and it is frequently accompanied by intraventricular hemorrhage (IVH) which can lead to posthemorrhagic hydrocephalus and poor prognosis. Red blood cell iron has been implicated in brain injury after cerebral hemorrhage. The current study examined using T2* magnetic resonance imaging (MRI) to detect periventricular iron deposition after IVH and investigated the effects of minocycline on hydrocephalus in an aged rat IVH model. It had three parts. In part 1, male aged rats received a 200 μl injection of saline or autologous blood into the lateral ventricle and were euthanized at day 14. In parts 2 and 3, aged IVH rats were treated with vehicle or minocycline and euthanized at day 7 or 14. Rats underwent MRI to quantify hydrocephalus and iron deposition followed by brain histology and immunohistochemistry. Periventricular iron overload was found after IVH using T2* MRI and confirmed by histology. IVH also caused ventricular wall damage and increased the number of CD68(+) choroid plexus epiplexus cells. Minocycline administration reduced iron deposition and ventricular volume at days 7 and 14 after IVH, as well as ventricle wall damage and epiplexus cell activation. In summary, IVH-induced hydrocephalus is associated with periventricular iron deposition, ependymal damage and choroid plexus epiplexus cell activation in aged rats. Minocycline attenuated those effects and might be a potential treatment for posthemorrhagic hydrocephalus in the elderly.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Li Y, Tao C, An N, Liu H, Liu Z, Zhang H, Sun Y, Xing Y, Gao Y. Revisiting the role of the complement system in intracerebral hemorrhage and therapeutic prospects. Int Immunopharmacol 2023; 123:110744. [PMID: 37552908 DOI: 10.1016/j.intimp.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype characterized by non-traumatic rupture of blood vessels in the brain, resulting in blood pooling in the brain parenchyma. Despite its lower incidence than ischemic stroke, ICH remains a significant contributor to stroke-related mortality, and most survivors experience poor outcomes that significantly impact their quality of life. ICH has been accompanied by various complex pathological damage, including mechanical damage of brain tissue, hematoma mass effect, and then leads to inflammatory response, thrombin activation, erythrocyte lysis, excitatory amino acid toxicity, complement activation, and other pathological changes. Accumulating evidence has demonstrated that activation of complement cascade occurs in the early stage of brain injury, and the excessive complement activation after ICH will affect the occurrence of secondary brain injury (SBI) through multiple complex pathological processes, aggravating brain edema, and pathological brain injury. Therefore, the review summarized the pathological mechanisms of brain injury after ICH, specifically the complement role in ICH, and its related pathological mechanisms, to comprehensively understand the specific mechanism of different complements at different stages after ICH. Furthermore, we systematically reviewed the current state of complement-targeted therapies for ICH, providing a reference and basis for future clinical transformation of complement-targeted therapy for ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongrui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
11
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Patricia Paez-Gonzalez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | | | - Raquel Ceron-Funez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
| | - Antonio J. Jimenez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Luis Manuel Rodríguez-Perez
- Department of Cell Biology, Genetics and Physiology, University of Malaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Sports, University of Malaga, Málaga, Spain
| |
Collapse
|
12
|
Fu P, Zhang M, Wu M, Zhou W, Yin X, Chen Z, Dan C. Research progress of endogenous hematoma absorption after intracerebral hemorrhage. Front Neurol 2023; 14:1115726. [PMID: 36970539 PMCID: PMC10036389 DOI: 10.3389/fneur.2023.1115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Non-traumatic intraparenchymal brain hemorrhage is referred to as intracerebral hemorrhage (ICH). Although ICH is associated with a high rate of disability and case fatality, active intervention can significantly lower the rate of severe disability. Studies have shown that the speed of hematoma clearance after ICH determines the patient's prognosis. Following ICH, depending on the hematoma volume and mass effect, either surgical- or medication-only conservative treatment is chosen. The goal of promoting endogenous hematoma absorption is more relevant because surgery is only appropriate for a small percentage of patients, and open surgery can cause additional trauma to patients. The primary method of removing hematoma after ICH in the future will involve understanding how to produce and manage macrophage/microglial endogenous phagocytic hematomas. Therefore, it is necessary to elucidate the regulatory mechanisms and key targets for clinical purposes.
Collapse
Affiliation(s)
- Peijie Fu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, Jiangxi, China
| | - Moxin Wu
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weixin Zhou
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuanjun Dan
- Emergency Department, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
13
|
Li Y, Tian C, Wei Y, Liu H, An N, Song K, Sun Y, Gao Y, Gao Y. Exploring the pharmacological mechanism of Naoxueshu oral liquid in the treatment of intracerebral hemorrhage through weighted gene co-expression network analysis, network pharmacological and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154530. [PMID: 36356328 DOI: 10.1016/j.phymed.2022.154530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a life-threatening stroke subtype with high rates of disability and mortality. Naoxueshu oral liquid is a proprietary Chinese medicine that absorbs hematoma and exhibits neuroprotective effects in patients with ICH. However, the underlying mechanisms remain obscure. PURPOSE Exploring and elucidating the pharmacological mechanism of Naoxueshu oral liquid in the treatment of ICH. STUDY DESIGN AND METHODS The Gene Expression Omnibus (GEO) database was used to download the gene expression data on ICH. ICH-related hub modules were obtained by weighted gene co-expression network analysis (WGCNA) of differentially co-expressed genes (DEGs). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the obtained key modules to identify the ICH-related signaling pathways. Network pharmacology technology was applied to forecast the targets of Naoxueshu oral liquid and to establish a protein-protein interaction (PPI) network of overlapping targets between Naoxueshu oral liquid and ICH. Functional annotation and enrichment pathway analyses of the intersectional targets were performed using the omicsbean database. Finally, we verified the therapeutic role and mechanism of Naoxueshu oral liquid in ICH through molecular docking and experiments. RESULTS Through the WGCNA analysis, combined with network pharmacology, it was found that immune inflammation was closely related to the early pathological mechanism of ICH. Naoxueshu oral liquid suppressed the inflammatory response; hence, it could be a potential drug for ICH treatment. Molecular docking further confirmed that the effective components of Naoxueshu oral liquid docked well with CD163. Finally, the experimental results showed that Naoxueshu oral liquid treatment in the ICH rat model attenuated neurological deficits and neuronal injury, decreased hematoma volume, and promoted hematoma absorption. In addition, Naoxueshu oral liquid treatment also significantly increased the levels of Arg-1, CD163, Nrf2, and HO-1 around hematoma after ICH. CONCLUSION This study demonstrated that Naoxueshu oral liquid attenuated neurological deficits and accelerated hematoma absorption, possibly by suppressing inflammatory responses, which might be related to the regulation of Nrf2/CD163/HO-1 that interfered with the activation of M2 microglia, thus accelerating the clearance and decomposition of hemoglobin in the hematoma.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China; Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Tian
- Beijing University of Chinese Medicine, Beijing, 100029, China; China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi, 530000, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ke Song
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
14
|
Zheng Y, Tan X, Cao S. The Critical Role of Erythrolysis and Microglia/Macrophages in Clot Resolution After Intracerebral Hemorrhage: A Review of the Mechanisms and Potential Therapeutic Targets. Cell Mol Neurobiol 2023; 43:59-67. [PMID: 34981286 PMCID: PMC11415189 DOI: 10.1007/s10571-021-01175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 11/27/2021] [Indexed: 01/07/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disorder with high morbidity and mortality. Secondary brain injury after ICH, which is initiated by multiple hemolytic products during erythrolysis, has been identified as a critical factor accounting for the poor prognosis of ICH patients. Clot resolution and hematoma clearance occur immediately after ICH via erythrolysis and erythrophagocytosis. During this process, erythrolysis after ICH results in the release of hemoglobin and products of degradation along with rapid morphological changes in red blood cells (RBCs). Phagocytosis of deformed erythrocytes and products of degradation by microglia/macrophages accelerates hematoma clearance, which turns out to be neuroprotective. Thus, a better understanding of the mechanism of erythrolysis and the role of microglia/macrophages after ICH is urgently needed. In this review, the current research progresses on the underlying mechanism of erythrolysis and erythrophagocytosis, as well as several useful tools for the quantification of erythrolysis-induced brain injury, are summarized, providing potential intervention targets and possible treatment strategies for ICH patients.
Collapse
Affiliation(s)
- Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Paiva WS, Zippo E, Miranda C, Brasil S, Godoy DA, De Andrade AF, Neville I, Patriota GC, Domingues R, Teixeira MJ. Animal models for the study of intracranial hematomas (Review). Exp Ther Med 2022; 25:20. [PMID: 36561628 PMCID: PMC9748783 DOI: 10.3892/etm.2022.11719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intracranial hematomas (ICH) are a frequent condition in neurosurgical and neurological practices, with several mechanisms of primary and secondary injury. Experimental research has been fundamental for the understanding of the pathophysiology implicated with ICH and the development of therapeutic interventions. To date, a variety of different animal approaches have been described that consider, for example, the ICH evolutive phase, molecular implications and hemodynamic changes. Therefore, choosing a test protocol should consider the scope of each particular study. The present review summarized investigational protocols in experimental research on the subject of ICH. With this subject, injection of autologous blood or bacterial collagenase, inflation of intracranial balloon and avulsion of cerebral vessels were the models identified. Rodents (mice) and swine were the most frequent species used. These different models allowed improvements on the understanding of intracranial hypertension establishment, neuroinflammation, immunology, brain hemodynamics and served to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Wellingson Silva Paiva
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Emanuele Zippo
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Carolina Miranda
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Sérgio Brasil
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Correspondence to: Dr Sérgio Brasil, Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, 05403 São Paulo, Brazil
| | - Daniel Augustin Godoy
- Department of Intensive Care, Neurointensive Care Unit, Pasteur Hospital, 4700 Catamarca, Argentina
| | - Almir Ferreira De Andrade
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Iuri Neville
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | | | - Renan Domingues
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| |
Collapse
|
16
|
Zheng Y, Fan L, Xia S, Yang Q, Zhang Z, Chen H, Zeng H, Fu X, Peng Y, Xu C, Yu K, Liu F, Cao S. Role of complement C1q/C3-CR3 signaling in brain injury after experimental intracerebral hemorrhage and the effect of minocycline treatment. Front Immunol 2022; 13:919444. [PMID: 36189326 PMCID: PMC9520460 DOI: 10.3389/fimmu.2022.919444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
AimThe complement cascade is activated and may play an important pathophysiologic role in brain injury after experimental intracerebral hemorrhage (ICH). However, the exact mechanism of specific complement components has not been well studied. This study determined the role of complement C1q/C3-CR3 signaling in brain injury after ICH in mice. The effect of minocycline on C1q/C3-CR3 signaling-induced brain damage was also examined.MethodsThere were three parts to the study. First, the natural time course of C1q and CR3 expression was determined within 7 days after ICH. Second, mice had an ICH with CR3 agonists, LA-1 or vehicle. Behavioral score, neuronal cell death, hematoma volume, and oxidative stress response were assessed at 7 days after ICH. Third, the effect of minocycline on C1q/C3-CR3 signaling and brain damage was examined.ResultsThere were increased numbers of C1q-positive and CR3-positive cells after ICH. Almost all perihematomal C1q-positive and CR3-positive cells were microglia/macrophages. CR3 agonist LA-1 aggravated neurological dysfunction, neuronal cell death, and oxidative stress response on day 7 after ICH, as well as enhancing the expression of the CD163/HO-1 pathway and accelerating hematoma resolution. Minocycline treatment exerted neuroprotective effects on brain injury following ICH, partly due to the inhibition of C1q/C3-CR3 signaling, and that could be reversed by LA-1.ConclusionsThe complement C1q/C3-CR3 signaling is upregulated after ICH. The activation of C1q/C3-CR3 signaling by LA-1 aggravates brain injury following ICH. The neuroprotection of minocycline, at least partly, is involved with the repression of the C1q/C3-CR3 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fuyi Liu
- *Correspondence: Fuyi Liu, ; Shenglong Cao,
| | | |
Collapse
|
17
|
Li Z, Liu Y, Wei R, Khan S, Zhang R, Zhang Y, Yong VW, Xue M. Iron Neurotoxicity and Protection by Deferoxamine in Intracerebral Hemorrhage. Front Mol Neurosci 2022; 15:927334. [PMID: 35782383 PMCID: PMC9245523 DOI: 10.3389/fnmol.2022.927334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke that is characterized by high morbidity and mortality, for which clinical outcome remains poor. An extensive literature indicates that the release of ferrous iron from ruptured erythrocytes in the hematoma is a key pathogenic factor in ICH-induced brain injury. Deferoxamine is an FDA-approved iron chelator that has the capacity to penetrate the blood-brain barrier after systemic administration and binds to iron. Previous animal studies have shown that deferoxamine attenuates ICH-induced brain edema, neuronal death, and neurological deficits. This review summarizes recent progress of the mechanisms by which deferoxamine may alleviate ICH and discusses further studies on its clinical utility.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Voon Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Voon Wee Yong,
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- Mengzhou Xue,
| |
Collapse
|
18
|
Tamakoshi K, Maeda M, Murohashi N, Saito A. Effect of exercise from a very early stage after intracerebral hemorrhage on microglial and macrophage reactivity states in rats. Neuroreport 2022; 33:304-311. [PMID: 35594443 DOI: 10.1097/wnr.0000000000001782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study investigated the effects of exercise, starting very early after intracerebral hemorrhage (ICH), on microglia and macrophages in a rat model. Collagenase solution was injected into the left striatum to induce ICH. METHODS Rats were randomly assigned to receive placebo surgery without exercise (sham surgery), ICH without exercise (ICH), or ICH with very early exercise (ICH + VET). The ICH + VET group was subjected to treadmill running 6 h, 24 h, and days 2-6 after ICH. Motor function assessment was performed using the ladder test and rotarod test 3 h, 25 h, and 7 days after ICH. Postexercise brain tissue was collected on day 8 after surgery to investigate the lesion volume. Very early exercise temporarily worsened motor dysfunction. The protein expression levels of the macrophage and microglial markers CD80, CD163, and TMEM119 were analyzed 6 h, 24 h, and 8 days after ICH. Protein analysis of NeuN, GFAP, and PSD95 was also performed on day 8 after ICH. RESULTS There was no significant difference in lesion volume between the ICH and ICH + VET groups on day 8 after ICH. Exercise from very early stage prevented elevated CD163 protein expression. CONCLUSION Very early exercise may inhibit the activation of anti-inflammatory-associated macrophages/microglia.
Collapse
Affiliation(s)
- Keigo Tamakoshi
- Department of Physical Therapy, Niigata University of Health and Welfare
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare
| | | | - Nae Murohashi
- Niigata Seiro Hospital, Rehabilitation, Seiro, Japan
| | - Ami Saito
- Department of Physical Therapy, Niigata University of Health and Welfare
| |
Collapse
|
19
|
Puy L, Perbet R, Figeac M, Duchêne B, Deramecourt V, Cordonnier C, Bérézowski V. Brain Peri-Hematomal Area, a Strategic Interface for Blood Clearance: A Human Neuropathological and Transcriptomic Study. Stroke 2022; 53:2026-2035. [DOI: 10.1161/strokeaha.121.037751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Enhancing the blood clearance process is a promising therapeutic strategy for intracerebral hemorrhage (ICH). We aimed to investigate the kinetic of this process after ICH in human brain tissue through the monocyte-macrophage scavenger receptor (CD163)/HO-1 (hemoxygenase-1) pathway.
Methods:
We led a cross-sectional post-mortem study including 22 consecutive ICH cases (2005–2019) from the Lille Neurobank. Cases were grouped according to the time of death: ≤72 hours, 4 to 7 days, 8 to 15 days, 16 to 90 days, and >90 days after ICH onset. Paraffin-embedded tissue was extracted from 4 strategic areas, including hematoma core and peri-hematomal area to perform histological investigations. Additionally, we extracted RNA from the peri-hematomal area of 6 cases to perform transcriptomic analysis.
Results:
We included 19 ICH cases (median age: 79 [71–89] years; median delay ICH-death: 13 [5–41] days). The peri-hematomal area concentrated most of reactive microglia, CD163/HO-1 and iron deposits as compared with other brain areas. We found a surge in the blood clearance process from day 8 to day 15 after ICH onset. Transcriptomic analysis showed that HO-1 was the most upregulated gene (2.81±0.39, adjusted
P
=1.11×10
–10
) and CD163 the sixth (1.49±0.29, adjusted
P
=1.68×10
–
5
). We also identified several upregulated genes that exert a beneficial role in terminating inflammation and enhancing tissue repair.
Conclusions:
We provide histological and transcriptomic-based evidence in humans for the key role of peri-hematomal area in endogenous blood clearance process through the CD163/HO-1 pathway, especially from day 8 after ICH and favored by an anti-inflammatory environment. Our findings contribute to identify innovative therapeutic strategies for ICH.
Collapse
Affiliation(s)
- Laurent Puy
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| | - Romain Perbet
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown (R.P.)
- Harvard Medical School, Boston, MA (R.P.)
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, France (M.F.)
| | - Bélinda Duchêne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France (B.D.)
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
- Université d’Artois, Lens, France (V.B.)
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition research Center UMR-S1172, Degenerative and Vascular Cognitive Disorders, France (L.P., R.P., V.D., C.C., V.B.)
| |
Collapse
|
20
|
You M, Long C, Wan Y, Guo H, Shen J, Li M, He Q, Hu B. Neuron derived fractalkine promotes microglia to absorb hematoma via CD163/HO-1 after intracerebral hemorrhage. Cell Mol Life Sci 2022; 79:224. [PMID: 35389112 PMCID: PMC11072118 DOI: 10.1007/s00018-022-04212-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hematoma leads to progressive neurological deficits and poor outcomes after intracerebral hemorrhage (ICH). Early clearance of hematoma is widely recognized as an essential treatment to limit the damage and improve the clinical prognosis. CD163, alias hemoglobin (Hb) scavenger receptor on microglia, plays a pivotal role in hematoma absorption, but CD163 on neurons permits Hb uptake and results in neurotoxicity. In this study, we focus on how to specially promote microglial but not neuronal CD163 mediated-Hb uptake and hematoma absorption. METHODS RNA sequencing was used to explore the potential molecules involved in ICH progression, and hematoma was detected by magnetic resonance imaging (MRI). Western blot and immunofluorescence were used to evaluate the expression and location of fractalkine (FKN) after ICH. Erythrophagocytosis assay was performed to study the specific mechanism of action of FKN in hematoma clearance. Small interfering RNA (siRNA) transfection was used to explore the effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on hematoma absorption. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum FKN concentration in ICH patients. RESULTS FKN was found to be significantly increased around the hematoma in a mouse model after ICH. With its unique receptor CX3CR1 in microglia, FKN significantly decreased the hematoma size and Hb content, and improved neurological deficits in vivo. Further, FKN could enhance erythrophagocytosis of microglia in vitro via the CD163/ hemeoxygenase-1 (HO-1) axis, while AZD8797 (a specific CX3CR1 inhibitor) reversed this effect. Moreover, PPAR-γ was found to mediate the increase in the CD163/HO-1 axis expression and erythrophagocytosis induced by FKN in microglia. Of note, a higher serum FKN level was found to be associated with better hematoma resolution in ICH patients. CONCLUSIONS We systematically identified that FKN may be a potential therapeutic target to improve hematoma absorption and we shed light on ICH treatment.
Collapse
Affiliation(s)
- Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunnan Long
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Holste KG, Xia F, Ye F, Keep RF, Xi G. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review. Fluids Barriers CNS 2022; 19:28. [PMID: 35365172 PMCID: PMC8973639 DOI: 10.1186/s12987-022-00324-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a significant cause of morbidity and mortality in both neonatal and adult populations. IVH not only causes immediate damage to surrounding structures by way of mass effect and elevated intracranial pressure; the subsequent inflammation causes additional brain injury and edema. Of those neonates who experience severe IVH, 25-30% will go on to develop post-hemorrhagic hydrocephalus (PHH). PHH places neonates and adults at risk for white matter injury, seizures, and death. Unfortunately, the molecular determinants of PHH are not well understood. Within the past decade an emphasis has been placed on neuroinflammation in IVH and PHH. More information has come to light regarding inflammation-induced fibrosis and cerebrospinal fluid hypersecretion in response to IVH. The aim of this review is to discuss the role of neuroinflammation involving clot-derived neuroinflammatory factors including hemoglobin/iron, peroxiredoxin-2 and thrombin, as well as macrophages/microglia, cytokines and complement in the development of PHH. Understanding the mechanisms of neuroinflammation after IVH may highlight potential novel therapeutic targets for PHH.
Collapse
Affiliation(s)
- Katherine G Holste
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 3470 Taubman Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109-5338, USA.
- , 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
22
|
Qu W, Cheng Y, Peng W, Wu Y, Rui T, Luo C, Zhang J. Targeting iNOS Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation. Mol Neurobiol 2022; 59:3124-3139. [PMID: 35262869 DOI: 10.1007/s12035-022-02788-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 01/01/2023]
Abstract
Numerous studies have demonstrated the role of neuroinflammation in mediating acute pathophysiological events of early brain injury after subarachnoid hemorrhage (SAH). However, it is not clear how to target this inflammatory cascade after SAH. M1 activation of microglia is an important pathological mechanism driving neuroinflammation in SAH, which is considered aggressive, leading to cytotoxicity and robust inflammation related to the release of proinflammatory cytokines and chemokines after SAH. Thus, reducing the number of M1 microglia represents a potential target for therapies to improve outcomes after SAH. Previous studies have found that inducible nitric oxide synthase (iNOS/NO•) plays an essential role in promoting the survival of M1 microglia by blocking ferroptosis. Ferroptosis is a new type of iron-dependent cellular procedural death associated with pathological cell death related to mammalian degenerative diseases, cerebral hemorrhage, and traumatic brain injury. Here, we investigated the effect of L-NIL, an inhibitor of iNOS, on M1 microglia, neuroinflammation, neuronal cell death, brain edema, and neurological function in an experimental SAH model in vivo and in vitro. We found that L-NIL reduced the number of M1 microglia and alleviated neuroinflammation following SAH. Notably, treatment with L-NIL relieves brain edema and neuronal injury and improves outcomes of neurological function after SAH in rats. Mechanistically, we found that L-NIL inhibited the expression of iNOS and promoted ferroptosis of M1 microglia by increasing the expression of ferroptosis-related proteins and lipid peroxidation in an in vitro model of SAH, which was reversed by a ferroptosis inhibitor, liproxstatin-1. In addition, inhibiting iNOS had no significant effect on ferroptosis of neurons after oxyhemoglobin stimulation in vitro. Thus, our research demonstrated that inhibition of iNOS might represent a potential therapeutic strategy to improve outcomes after SAH by promoting ferroptosis of M1 microglia and reducing neuroinflammation.
Collapse
Affiliation(s)
- Wenhao Qu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Ying Cheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Wei Peng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Yan Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu Province, China.
| |
Collapse
|
23
|
Galea I, Durnford A, Glazier J, Mitchell S, Kohli S, Foulkes L, Norman J, Darekar A, Love S, Bulters DO, Nicoll JAR, Boche D. Iron Deposition in the Brain After Aneurysmal Subarachnoid Hemorrhage. Stroke 2022; 53:1633-1642. [PMID: 35196874 DOI: 10.1161/strokeaha.121.036645] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND After aneurysmal subarachnoid hemorrhage (SAH), thrombus forms over the cerebral cortex and releases hemoglobin. When extracellular, hemoglobin is toxic to neurones. High local hemoglobin concentration overwhelms the clearance capacity of macrophages expressing the hemoglobin-haptoglobin scavenger receptor CD163. We hypothesized that iron is deposited in the cortex after SAH and would associate with outcome. METHODS Two complementary cross-sectional studies were conducted. Postmortem brain tissue from 39 SAH (mean postictal interval of 9 days) and 22 control cases was studied with Perls' staining for iron and immunolabeling for CD163, ADAM17 (a disintegrin and metallopeptidase domain 17), CD68, and Iba1 (ionized calcium binding adaptor molecule 1). In parallel, to study the persistence of cortical iron and its relationship to clinical outcome, we conducted a susceptibility-weighted imaging study of 21 SAH patients 6 months postictus and 10 control individuals. RESULTS In brain tissue from patients dying soon after SAH, the distribution of iron deposition followed a gradient that diminished with distance from the brain surface. Iron was located intracellularly (mainly in macrophages, and occasionally in microglia, neurones, and glial cells) and extracellularly. Microglial activation and motility markers were increased after SAH, with a similar inward diminishing gradient. In controls, there was a positive correlation between CD163 and iron, which was lost after SAH. In SAH survivors, iron-sensitive imaging 6 months post-SAH confirmed persistence of cortical iron, related to the size and location of the blood clot immediately after SAH, and associated with cognitive outcome. CONCLUSIONS After SAH, iron deposits in the cortical gray matter in a pattern that reflects proximity to the brain surface and thrombus and is related to cognitive outcome. These observations support therapeutic manoeuvres which prevent the permeation of hemoglobin into the cortex after SAH.
Collapse
Affiliation(s)
- Ian Galea
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Andrew Durnford
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.).,Wessex Neurological Centre (A. Durnford, D.O.B.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - James Glazier
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Sophie Mitchell
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Suraj Kohli
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | | | - Jeanette Norman
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| | - Angela Darekar
- Medical Physics (A. Darekar), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, United Kingdom (S.L.)
| | - Diederik O Bulters
- Wessex Neurological Centre (A. Durnford, D.O.B.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - James A R Nicoll
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.).,Department of Cellular Pathology (J.A.R.N.), University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Delphine Boche
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom (I.G., A. Durnford, J.G., S.M., S.K., J.N., J.A.R.N., D.B.)
| |
Collapse
|
24
|
Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine 2022; 76:103880. [PMID: 35158309 PMCID: PMC8850756 DOI: 10.1016/j.ebiom.2022.103880] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Intracerebral haemorrhage (ICH) is the second most common type of stroke and a major cause of mortality and disability worldwide. Despite advances in surgical interventions and acute ICH management, there is currently no effective therapy to improve functional outcomes in patients. Recently, there has been tremendous progress uncovering new pathophysiological mechanisms underlying ICH that may pave the way for the development of therapeutic interventions. Here, we highlight emerging targets, but also existing gaps in preclinical animal modelling that prevent their exploitation. We particularly focus on (1) ICH aetiology, (2) the haematoma, (3) inflammation, and (4) post-ICH pathology. It is important to recognize that beyond neurons and the brain, other cell types and organs are crucially involved in ICH pathophysiology and successful interventions likely will need to address the entire organism. This review will spur the development of successful therapeutic interventions for ICH and advanced animal models that better reflect its aetiology and pathophysiology.
Collapse
|
25
|
Wei Y, Song X, Gao Y, Gao Y, Li Y, Gu L. Iron toxicity in intracerebral hemorrhage: Physiopathological and therapeutic implications. Brain Res Bull 2021; 178:144-154. [PMID: 34838852 DOI: 10.1016/j.brainresbull.2021.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023]
Abstract
Intracerebral hemorrhage (ICH)-induced brain injury is a continuous pathological process that involves the deterioration of neurological functions, such as sensory, cognitive or motor functions. Cytotoxic byproducts of red blood cell lysis, especially free iron, appear to be a significant pathophysiologic mechanism leading to ICH-induced injury. Free iron has a crucial role in secondary brain injury after ICH. Chelating iron may attenuate iron-induced neurotoxicity and may be developed as a therapeutic candidate for ICH treatment. In this review, we focused on the potential role of iron toxicity in ICH-induced injury and iron chelation therapy in the management of ICH. It will hopefully advance our understanding of the pathogenesis of ICH and lead to new approaches for treatment.
Collapse
Affiliation(s)
- Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Xiaoxiao Song
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100010, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100010, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100010, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China.
| |
Collapse
|
26
|
Shtaya A, Bridges LR, Williams R, Trippier S, Zhang L, Pereira AC, Nicoll JAR, Boche D, Hainsworth AH. Innate Immune Anti-Inflammatory Response in Human Spontaneous Intracerebral Hemorrhage. Stroke 2021; 52:3613-3623. [PMID: 34281379 PMCID: PMC7611898 DOI: 10.1161/strokeaha.121.034673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Background and Purpose Spontaneous intracerebral hemorrhage (sICH) is a common form of hemorrhagic stroke, with high mortality and morbidity. Pathophysiological mechanisms in sICH are poorly understood and treatments limited. Neuroinflammation driven by microglial-macrophage activation contributes to brain damage post-sICH. We aim to test the hypothesis that an anti-inflammatory (repair) process occurs in parallel with neuroinflammation in clinical sICH. Methods We performed quantitative analysis of immunohistochemical markers for microglia and macrophages (Iba1, CD68, TMEM119, CD163, and CD206) in brain tissue biospecimens 1 to 12 days post-sICH and matched control cases. In a parallel, prospective group of patients, we assayed circulating inflammatory markers (CRP [C-reactive protein], total white cell, and monocyte count) over 1 to 12 days following sICH. Results In 27 supratentorial sICH cases (n=27, median [interquartile range] age: 59 [52–80.5], 14F/13M) all microglia-macrophage markers increased post-sICH, relative to control brains. Anti-inflammatory markers (CD163 and CD206) were elevated alongside proinflammatory markers (CD68 and TMEM119). CD163 increased progressively post-sICH (15.0-fold increase at 7–12 days, P<0.001). CD206 increased at 3 to 5 days (5.2-fold, P<0.001) then returned to control levels at 7 to 12 days. The parenchymal immune response combined brain-derived microglia (TMEM119 positive) and invading monocyte-derived macrophages (CD206 positive). In a prospective sICH patient cohort (n=26, age 74 [66–79], National Institutes of Health Stroke Scale on admission: 8 [4–17]; 14F/12M) blood CRP concentration and monocyte density (but not white blood cell) increased post-sICH. CRP increased from 0 to 2 to 3 to 5 days (8.3-fold, P=0.020) then declined at 7 to 12 days. Monocytes increased from 0 to 2 to 3 to 5 days (1.8-fold, P<0.001) then declined at 7 to 12 days. Conclusions An anti-inflammatory pathway, enlisting native microglia and blood monocytes, occurs alongside neuroinflammation post-sICH. This novel pathway offers therapeutic targets and a window of opportunity (3–5 days post-sICH) for delivery of therapeutics via invading monocytes.
Collapse
Affiliation(s)
- Anan Shtaya
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, UK
- Wessex Spinal Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Leslie R Bridges
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, UK
- Department of Cellular Pathology, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Rebecca Williams
- Neurology Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Sarah Trippier
- Neurology Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Liqun Zhang
- Neurology Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Anthony C Pereira
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, UK
- Neurology Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - James AR Nicoll
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, UK
- Neurology Department, St George’s University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Akeret K, Buzzi RM, Schaer CA, Thomson BR, Vallelian F, Wang S, Willms J, Sebök M, Held U, Deuel JW, Humar R, Regli L, Keller E, Hugelshofer M, Schaer DJ. Cerebrospinal fluid hemoglobin drives subarachnoid hemorrhage-related secondary brain injury. J Cereb Blood Flow Metab 2021; 41:3000-3015. [PMID: 34102922 PMCID: PMC8545037 DOI: 10.1177/0271678x211020629] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Secondary brain injury after aneurysmal subarachnoid hemorrhage (SAH-SBI) contributes to poor outcomes in patients after rupture of an intracranial aneurysm. The lack of diagnostic biomarkers and novel drug targets represent an unmet need. The aim of this study was to investigate the clinical and pathophysiological association between cerebrospinal fluid hemoglobin (CSF-Hb) and SAH-SBI. In a cohort of 47 patients, we collected daily CSF-samples within 14 days after aneurysm rupture. There was very strong evidence for a positive association between spectrophotometrically determined CSF-Hb and SAH-SBI. The accuracy of CSF-Hb to monitor for SAH-SBI markedly exceeded that of established methods (AUC: 0.89 [0.85-0.92]). Temporal proteome analysis revealed erythrolysis accompanied by an adaptive macrophage response as the two dominant biological processes in the CSF-space after aneurysm rupture. Ex-vivo experiments on the vasoconstrictive and oxidative potential of Hb revealed critical inflection points overlapping CSF-Hb thresholds in patients with SAH-SBI. Selective depletion and in-solution neutralization by haptoglobin or hemopexin efficiently attenuated the vasoconstrictive and lipid peroxidation activities of CSF-Hb. Collectively, the clinical association between high CSF-Hb levels and SAH-SBI, the underlying pathophysiological rationale, and the favorable effects of haptoglobin and hemopexin in ex-vivo experiments position CSF-Hb as a highly attractive biomarker and potential drug target.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich; Zurich, Switzerland
| | - Raphael M Buzzi
- Division of Internal Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Christian A Schaer
- Department of Anesthesiology, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Bart R Thomson
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich; Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Sophie Wang
- Neurointensive Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Jan Willms
- Neurointensive Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Martina Sebök
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich; Zurich, Switzerland
| | - Ulrike Held
- Epidemiology, Biostatistics and Prevention Institute, Department of Biostatistics, University of Zurich; Zurich, Switzerland
| | - Jeremy W Deuel
- Division of Internal Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich; Zurich, Switzerland
| | - Emanuela Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich; Zurich, Switzerland.,Neurointensive Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| | - Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital und University of Zurich; Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, Universitätsspital and University of Zurich; Zurich, Switzerland
| |
Collapse
|
28
|
Wang M, Xia F, Wan S, Hua Y, Keep RF, Xi G. Role of Complement Component 3 in Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Stroke 2021; 52:2649-2660. [PMID: 34176310 DOI: 10.1161/strokeaha.121.034372] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., F.X., S.W., Y.H., R.F.K., G.X.).,Brain Center, Zhejiang Hospital, Zhejiang University Medical School, Hangzhou, China (M.W., S.W.)
| | - Fan Xia
- Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., F.X., S.W., Y.H., R.F.K., G.X.)
| | - Shu Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., F.X., S.W., Y.H., R.F.K., G.X.).,Brain Center, Zhejiang Hospital, Zhejiang University Medical School, Hangzhou, China (M.W., S.W.)
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., F.X., S.W., Y.H., R.F.K., G.X.)
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., F.X., S.W., Y.H., R.F.K., G.X.)
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor (M.W., F.X., S.W., Y.H., R.F.K., G.X.)
| |
Collapse
|
29
|
Toyota Y, Shishido H, Ye F, Koch LG, Britton SL, Garton HJL, Keep RF, Xi G, Hua Y. Hydrocephalus Following Experimental Subarachnoid Hemorrhage in Rats with Different Aerobic Capacity. Int J Mol Sci 2021; 22:4489. [PMID: 33925787 PMCID: PMC8123480 DOI: 10.3390/ijms22094489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Low aerobic capacity is considered to be a risk factor for stroke, while the mechanisms underlying the phenomenon are still unclear. The current study looked into the impacts of different aerobic capacities on early brain injury in a subarachnoid hemorrhage (SAH) model using rats bred for high and low aerobic capacity (high-capacity runners, HCR; low-capacity runners, LCR). SAH was modeled with endovascular perforation in HCR and LCR rats. Twenty-four hours after SAH, the rats underwent behavioral testing and MRI, and were then euthanized. The brains were used to investigate ventricular wall damage, blood-brain barrier breakdown, oxidative stress, and hemoglobin scavenging. The LCR rats had worse SAH grades (p < 0.01), ventricular dilatation (p < 0.01), ventricular wall damage (p < 0.01), and behavioral scores (p < 0.01). The periventricular expression of HO-1 and CD163 was significantly increased in LCR rats (p < 0.01 each). CD163-positive cells were co-localized with HO-1-positive cells. The LCR rats had greater early brain injuries than HCR rats. The LCR rats had more serious SAH and extensive ventricular wall damage that evolved more frequently into hydrocephalus. This may reflect changes in iron handling and neuroinflammation.
Collapse
Affiliation(s)
- Yasunori Toyota
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (H.S.); (F.Y.); (H.J.L.G.); (R.F.K.); (G.X.)
| | - Hajime Shishido
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (H.S.); (F.Y.); (H.J.L.G.); (R.F.K.); (G.X.)
| | - Fenghui Ye
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (H.S.); (F.Y.); (H.J.L.G.); (R.F.K.); (G.X.)
| | - Lauren G. Koch
- Department of Physiology & Pharmacology, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA;
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Hugh J. L. Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (H.S.); (F.Y.); (H.J.L.G.); (R.F.K.); (G.X.)
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (H.S.); (F.Y.); (H.J.L.G.); (R.F.K.); (G.X.)
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (H.S.); (F.Y.); (H.J.L.G.); (R.F.K.); (G.X.)
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (Y.T.); (H.S.); (F.Y.); (H.J.L.G.); (R.F.K.); (G.X.)
| |
Collapse
|
30
|
Bianchi L, Sframeli M, Vantaggiato L, Vita GL, Ciranni A, Polito F, Oteri R, Gitto E, Di Giuseppe F, Angelucci S, Versaci A, Messina S, Vita G, Bini L, Aguennouz M. Nusinersen Modulates Proteomics Profiles of Cerebrospinal Fluid in Spinal Muscular Atrophy Type 1 Patients. Int J Mol Sci 2021; 22:ijms22094329. [PMID: 33919289 PMCID: PMC8122268 DOI: 10.3390/ijms22094329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) type 1 is a severe infantile autosomal-recessive neuromuscular disorder caused by a survival motor neuron 1 gene (SMN1) mutation and characterized by progressive muscle weakness. Without supportive care, SMA type 1 is rapidly fatal. The antisense oligonucleotide nusinersen has recently improved the natural course of this disease. Here, we investigated, with a functional proteomic approach, cerebrospinal fluid (CSF) protein profiles from SMA type 1 patients who underwent nusinersen administration to clarify the biochemical response to the treatment and to monitor disease progression based on therapy. Six months after starting treatment (12 mg/5 mL × four doses of loading regimen administered at days 0, 14, 28, and 63), we observed a generalized reversion trend of the CSF protein pattern from our patient cohort to that of control donors. Notably, a marked up-regulation of apolipoprotein A1 and apolipoprotein E and a consistent variation in transthyretin proteoform occurrence were detected. Since these multifunctional proteins are critically active in biomolecular processes aberrant in SMA, i.e., synaptogenesis and neurite growth, neuronal survival and plasticity, inflammation, and oxidative stress control, their nusinersen induced modulation may support SMN improved-expression effects. Hence, these lipoproteins and transthyretin could represent valuable biomarkers to assess patient responsiveness and disease progression.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Maria Sframeli
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - Gian Luca Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
| | - Annamaria Ciranni
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Francesca Polito
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age, University of Messina, 98125 Messina, Italy;
| | - Fabrizio Di Giuseppe
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Stefania Angelucci
- Dentistry and Biotechnology, and Proteomics Unit, Centre of Advanced Studies and Technoloy, Department Medical, Oral & Biotechnological Sciences, “G. d’Annunzio”, University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.G.); (S.A.)
| | - Antonio Versaci
- Intensive Care Unit, AOU Policlinico “G. Martino”, 98125 Messina, Italy;
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| | - Giuseppe Vita
- Nemo Sud Clinical Centre, 98125 Messina, Italy; (M.S.); (G.L.V.)
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
- Correspondence:
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (L.V.); (L.B.)
| | - M’hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.C.); (F.P.); (R.O.); (S.M.); (M.A.)
| |
Collapse
|
31
|
Ye L, Fang YS, Li XX, Gao Y, Liu SS, Chen Q, Wu Q, Cheng HW, Du WD. A simple lectin-based biochip might display the potential clinical value of glycomics in patients with spontaneous intracerebral hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:544. [PMID: 33987242 DOI: 10.21037/atm-20-7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Intracerebral hemorrhage (ICH) is a cerebrovascular disease with extremely high disability and mortality rates. Glycans play critical roles in biological processes. However, whether glycans can serve as potential biomarkers for determining clinical diagnosis and prognosis in ICH remains determined. Methods In this study, we established a lectin-biochip to measure serum glycans levels in ICH patients (n=48) and healthy controls (n=16). An enzyme-linked immunosorbent assay (ELISA) was carried out to determine serum levels of IL-10 and TNF-α in the patients. Correlation analyses of the serum glycan and cytokine levels and the clinicopathological parameters of patients were performed. Results The biochip-based data revealed that the serum levels of α-Man/α-Glc (ConA), Galβ3GalNAc (PNA), GalNAc (VVA), Fucα6GlcNAc (AAL), α-Fuc (LTL), and Galβ3GalNAc-Ser/Thr (AIL) significantly increased in the super-acute phase of ICH in comparison with healthy controls. Clinicopathological analysis indicated the serum levels of ConA, VVA, and LTL had significant associations with the National Institute of Health Stroke Scale (NIHSS), and serum VVA levels had a significant association with the Mini-Mental State Examination (MMSE) at day 90 after ICH. Correlation coefficient analysis revealed significant correlations between TNF-α and ConA (P<0.001) as well as between IL-10 and ConA (P<0.001), PNA (P=0.02), VVA (P<0.001), and MAL (P=0.04), respectively. Conclusions We established a proof-of-concept platform for detecting serum glycomics and highlighted their potential value in diagnosing and predicting ICH patients' outcomes.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Sheng Fang
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Xue Li
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Sheng-Sheng Liu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Chen
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Wu
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Wei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Dong Du
- Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
The role of complement in brain injury following intracerebral hemorrhage: A review. Exp Neurol 2021; 340:113654. [PMID: 33617886 DOI: 10.1016/j.expneurol.2021.113654] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a significant cause of death and disability and current treatment is limited to supportive measures to reduce brain edema and secondary hematoma expansion. Current evidence suggests that the complement cascade is activated early after hemorrhage and contributes to brain edema/injury in multiple ways. The aim of this review is to summarize the most recent literature about the role of the complement cascade after ICH. Primary literature demonstrating complement mediated brain edema and neurologic injury through the membrane attack complex (MAC) as well as C3a and C5a are reviewed. Further, attenuation of brain edema and improved functional outcomes are demonstrated after inhibition of specific components of the complement cascade. Conversely, complement also plays a significant role in neurologic recovery after ICH and in other neurologic disorders. We conclude that the role of complement after ICH is complex. Understanding the role of complement after ICH is essential and may elucidate possible interventions to reduce brain edema and injury.
Collapse
|
33
|
GDF11 alleviates secondary brain injury after intracerebral hemorrhage via attenuating mitochondrial dynamic abnormality and dysfunction. Sci Rep 2021; 11:3974. [PMID: 33597668 PMCID: PMC7889617 DOI: 10.1038/s41598-021-83545-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious public health problem with high rates of death and disability. The neuroprotective effect of Growth Differentiation Factor 11 (GDF11) in ICH has been initially proved by our previous study. Oxidative stress (OS) plays crucial roles in mediating subsequent damage of ICH. However, whether and how mitochondrial dynamic events and function participated in ICH pathophysiology, and how mitochondrial function and OS interreacted in the neuroprotective process of GDF11 in ICH remains unclarified. Based on the rat model of ICH and in vitro cell model, we demonstrated that GDF11 could alleviate ICH induced neurological deficits, brain edema, OS status, neuronal apoptosis and inflammatory reaction. In addition, mitochondrial functional and structural impairments were obviously restored by GDF11. Treatment with antioxidant protected against erythrocyte homogenate (EH) induced cell injury by restoring OS status and mitochondrial fusion fission imbalance, which was similar to the effect of GDF11 treatment. Further, inhibition of mitochondrial division with Mdivi-1 attenuated mitochondrial functional defects and neuronal damages. In conclusion, our results for the first time proposed that GDF11 protected the post-ICH secondary injury by suppressing the feedback loop between mitochondrial ROS production and mitochondrial dynamic alteration, resulting in attenuated mitochondrial function and amelioration of neural damage.
Collapse
|
34
|
Soluble Receptors Affecting Stroke Outcomes: Potential Biomarkers and Therapeutic Tools. Int J Mol Sci 2021; 22:ijms22031108. [PMID: 33498620 PMCID: PMC7865279 DOI: 10.3390/ijms22031108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble receptors are widely understood to be freestanding moieties formed via cleavage from their membrane-bound counterparts. They have unique structures, are found among various receptor families, and have intriguing mechanisms of generation and release. Soluble receptors’ ability to exhibit pleiotropic action by receptor modulation or by exhibiting a dual role in cytoprotection and neuroinflammation is concentration dependent and has continually mystified researchers. Here, we have compiled findings from preclinical and clinical studies to provide insights into the role of soluble/decoy receptors, focusing on the soluble cluster of differentiation 36, the soluble cluster of differentiation 163, and soluble lipoprotein-related protein 1 (sCD36, sCD163, and sLRP1, respectively) and the functions they could likely serve in the management of stroke, as they would notably regulate the bioavailability of the hemoglobin and heme after red blood cell lysis. The key roles that these soluble receptors play in inflammation, oxidative stress, and the related pharmacotherapeutic potential in improving stroke outcomes are described. The precise pleiotropic physiological functions of soluble receptors remain unclear, and further scientific investigation/validation is required to establish their respective role in diagnosis and therapy.
Collapse
|
35
|
Lv Y, Cao H, Chu L, Peng H, Shen X, Yang H. Effects of Gastrodin on BV2 cells under oxygen-glucose deprivation and its mechanism. Gene 2021; 766:145152. [PMID: 32979431 DOI: 10.1016/j.gene.2020.145152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/16/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Cerebrovascular disease is one of the major diseases that seriously harm human health currently. The purpose of this study is to find an effective treatment and clarify its mechanism of action to provide a new idea and drug target for the clinical treatment of ischemic cerebrovascular disease. METHODS The microglia cell line (BV2 cell line) was cultured in vitro. Prepare a hypoxia ischemia cell model by OGD and simulate the pathophysiological process of ischemic cerebrovascular disease in vivo. According to the techniques of LDH Cytotoxicity Assay Kit, flow cytometry of Annexin V-FITC Apoptosis Detection Kit, Laser Confocal Fluorescence Immunostaining (Double staining method), enzyme-linked immunosorbent assay (ELISA), and Western blotting, BV2 cells are observed through morphology and function changes induced by OGD. Moreover, these techniques were used to analyze changes in key proteins expression of signal transduction pathway in ischemic cerebrovascular disease, to explore the mechanism of gastrodin on ischemic cerebrovascular disease, and to elucidate the available ways for cell protection following ischemia and hypoxia. RESULTS Gastrodin has no obvious toxic effect on BV-2 cells under physiological conditions. The death rate of BV-2 cells increases as the time of hypoxia increase. In the absence of oxygen, Gastrodin has a protective effect on the survival of BV-2 cells. This protective effect is related to the reduction of apoptosis rate. It can also improve the hypoxic tolerance of BV-2 cells, and there is no obvious Gastrodin dose-dependence. Moreover, Gastrodin has dual effects on BV-2 cells. The dual role of Gastrodin is closely related to the expression of several proteins which can affect the MAPK signal transduction pathway. CONCLUSION Gastrodin has a dual effect on microglia with OGD. On the one hand, Gastrodin can inhibit the inflammatory cytokines secreted by microglia and aggravate the inflammatory response; on the other hand, Gastrodin can promote the secretion of protective cytokines from microglia to reduce the inflammatory response.
Collapse
Affiliation(s)
- Ying Lv
- Department of Pathology and Pathophysiology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China; Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Han Cao
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liangzhao Chu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Han Peng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiangchun Shen
- Department of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Pathology and Pathophysiology, Basic Medical College, Guizhou Medical University, Guiyang, Guizhou, China; Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
36
|
Derry PJ, Vo ATT, Gnanansekaran A, Mitra J, Liopo AV, Hegde ML, Tsai AL, Tour JM, Kent TA. The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Front Cell Neurosci 2020; 14:603043. [PMID: 33363457 PMCID: PMC7755086 DOI: 10.3389/fncel.2020.603043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Anh Tran Tram Vo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Aswini Gnanansekaran
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, United States.,Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Materials Science and NanoEngineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States.,Department of Chemistry, Rice University, Houston, TX, United States.,Stanley H. Appel Department of Neurology, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
37
|
Deng S, Sherchan P, Jin P, Huang L, Travis Z, Zhang JH, Gong Y, Tang J. Recombinant CCL17 Enhances Hematoma Resolution and Activation of CCR4/ERK/Nrf2/CD163 Signaling Pathway After Intracerebral Hemorrhage in Mice. Neurotherapeutics 2020; 17:1940-1953. [PMID: 32783091 PMCID: PMC7851239 DOI: 10.1007/s13311-020-00908-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hematoma is a crucial factor leading to poor prognosis after intracerebral hemorrhage (ICH). Promoting microglial phagocytosis to enhance hematoma resolution may be an important therapeutic target for recovery after ICH. C-C chemokine receptor 4 (CCR4) is important for regulating immune balance in the central nervous system. However, whether CCR4 activation can attenuate hematoma after ICH remains unknown. We aimed to evaluate whether CCL17 (a specific ligand of CCR4) treatment can promote hematoma resolution through CCR4/ERK/Nrf2/CD163 pathway after ICH. A total of 261 adult male CD1 mice were used. Mice were subjected to intrastriatal injection of autologous blood to induce ICH and randomly assigned to receive recombinant CCL17 (rCCL17) or vehicle which was administered intranasally at 1 h after ICH. To elucidate the underlying mechanism, C021, a selective inhibitor of CCR4 and ML385 and a selective inhibitor of Nrf2 were administered 1 h prior to ICH induction. Clustered regularly interspaced short palindromic repeats (CRISPR) knockout for CD163 was administered by intracerebroventricular injection at 48 h before ICH. Brain edema, short- and long-term neurobehavior evaluation, hematoma volume, hemoglobin content, western blot, and immunofluorescence staining were performed. Endogenous CCL17, CCR4, and CD163 expression increased and peaked at 72 h after ICH. CCR4 was expressed by microglia. CCR4 activation with rCCL17 significantly improved neurobehavioral scores and reduced hematoma volume and brain edema compared with vehicle. Moreover, rCCL17 treatment significantly promoted phosphorylation of ERK1/2, increased the expression Nrf2, and upregulated CD163 expression after ICH. The protective effects of rCCL17 were abolished by administration of C021, ML385, and CD163 CRISPR knockout. This study demonstrated that CCR4 activation with rCCL17 promoted hematoma resolution by increasing CD163 expression and CCR4/ERK/Nrf2 pathway activation after ICH, thereby reducing brain edema and improving neurological function. Overall, our study suggests that CCR4 activation may be a potential therapeutic strategy to attenuate hematoma in early brain injury after ICH.
Collapse
Affiliation(s)
- Shuixiang Deng
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 Middle WuLuMuQi, Shanghai, 200040, China
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
| | - Peng Jin
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 Middle WuLuMuQi, Shanghai, 200040, China
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
| | - Zachary Travis
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA
| | - Ye Gong
- Department of Critical Care Medicine, HuaShan Hospital, Fudan University, 12 Middle WuLuMuQi, Shanghai, 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, California, 92350, USA.
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, California, 92354, USA.
| |
Collapse
|
38
|
Melià-Sorolla M, Castaño C, DeGregorio-Rocasolano N, Rodríguez-Esparragoza L, Dávalos A, Martí-Sistac O, Gasull T. Relevance of Porcine Stroke Models to Bridge the Gap from Pre-Clinical Findings to Clinical Implementation. Int J Mol Sci 2020; 21:ijms21186568. [PMID: 32911769 PMCID: PMC7555414 DOI: 10.3390/ijms21186568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed.
Collapse
Affiliation(s)
- Marc Melià-Sorolla
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Carlos Castaño
- Neurointerventional Radiology Unit, Department of Neurosciences, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain;
| | - Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Luis Rodríguez-Esparragoza
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Antoni Dávalos
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08916 Bellaterra, Catalonia, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| |
Collapse
|
39
|
Li L, Wang P, Zhao H, Luo Y. Noncoding RNAs and Intracerebral Hemorrhage. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:205-211. [PMID: 30714535 DOI: 10.2174/1871527318666190204102604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & OBJECTIVE Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke, for which there are few effective interventions. Computed tomography is accepted as the gold standard for diagnosis, whereas surgical evacuation is the main treatment for ICH. However, in emergency rooms, time is limited and information regarding a patient's clinical status or tolerance is typically not available. Many studies over the last decade have investigated the fundamental mechanisms of ICH and especially hematoma, which not only cause physical damage but also release toxins that have detrimental effects. However, there remain many gaps in our understanding of ICH. Compared to ischemic stroke, there is little known about the ICH pathogenesis and treatment options, and few specific biomarkers are available for monitoring disease progression, which include hematoma enlargement and perihematoma edema. Noncoding RNAs (ncRNAs) are involved in various biological processes and are potential biomarkers and therapeutic tools in central nervous system diseases. Recent studies have examined the role of ncRNAs including microRNAs, long noncoding RNAs, and circular RNAs-the three main subgroups associated with stroke-in ICH models. A deeper understanding of the functions of ncRNAs in different biological processes can provide a basis for developing more effective therapeutic strategies to prevent neuronal damage following ICH. In clinical settings, ncRNAs can serve as biomarkers for predicting the degree of injury resulting from ICH. CONCLUSION In this review, we discuss the current state of knowledge of the role of ncRNAs in ICH.
Collapse
Affiliation(s)
- Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Pingping Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
40
|
Guo X, Ma L, Li H, Qi X, Wei Y, Duan Z, Xu J, Wang C, You C, Tian M. Brainstem iron overload and injury in a rat model of brainstem hemorrhage. J Stroke Cerebrovasc Dis 2020; 29:104956. [PMID: 32689646 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Brainstem hemorrhage (BSH) is the most devastating subtype of intracerebral hemorrhage (ICH) with the highest mortality ranging from 56 % to 61.2 %. However, there is no effective medical or surgical therapy to improve its outcomes in clinic to date due to lack of understanding of its injury mechanisms. Herein, we explored the brainstem iron overload and injury in a rat model of BSH. METHODS Neurological scores were examined on day 1, 3, and 7 after modeling, and mortality of the rats was recorded to draft a survival curve. Rats were monitored by MRI using T2 and susceptibility weighted imaging (SWI) before sacrifice for examination of histology and immunofluorescence on day 1, 3, and 7. RESULTS BSH rats had a high mortality of 56 % and demonstrated the severe neurological deficits mimicking the clinical conditions. SWI showed that the same increasing tendency in change of hypointense area with that in iron deposition by Perls staining from day 1 to 7. Expression of heme oxygenase 1 (HO-1) and generation of reactive oxygen species (ROS) had similar tendency and both peaked on day 3. Neuronal degeneration occurred and stayed elevated from day 1 to 7, while myelin sheath injury was initially observed on day 1 but without significant difference within 7 days. CONCLUSIONS The time courses of erythrocyte lysis, HO-1 expression, iron deposition and ROS generation are related to each other after BSH. Besides, brainstem injury including neuronal degeneration and myelin damage were observed and discussed.
Collapse
Affiliation(s)
- Xi Guo
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lu Ma
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hao Li
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Qi
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yang Wei
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhongxin Duan
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiake Xu
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chengwei Wang
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Chao You
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
41
|
Peng Y, Zhuang J, Ying G, Zeng H, Zhou H, Cao Y, Chen H, Xu C, Fu X, Xu H, Li J, Cao S, Chen J, Gu C, Yan F, Chen G. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinflammation 2020; 17:165. [PMID: 32450897 PMCID: PMC7247752 DOI: 10.1186/s12974-020-01830-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is closely associated with the poor prognosis in subarachnoid hemorrhage (SAH) patients. This study was aimed to determine the role of stimulator of IFN genes (STING), an essential regulator to innate immunity, in the context of SAH. METHODS A total of 344 male C57BL/6 J mice were subjected to endovascular perforation to develop a model of SAH. Selective STING antagonist C-176 and STING agonist CMA were administered at 30 min or 1 h post-modeling separately. To investigate the underlying mechanism, the AMPK inhibitor compound C was administered intracerebroventricularly at 30 min before surgery. Post-SAH assessments included SAH grade, neurological test, brain water content, western blotting, RT-PCR, and immunofluorescence. Oxygenated hemoglobin was introduced into BV2 cells to establish a SAH model in vitro. RESULTS STING was mainly distributed in microglia, and microglial STING expression was significantly increased after SAH. Administration of C-176 substantially attenuated SAH-induced brain edema and neuronal injury. More importantly, C-176 significantly alleviated both short-term and persistent neurological dysfunction after SAH. Meanwhile, STING agonist CMA remarkably exacerbated neuronal injury and deteriorated neurological impairments. Mechanically, STING activation aggravated neuroinflammation via promoting microglial activation and polarizing into M1 phenotype, evidenced by microglial morphological changes, as well as the increased level of microglial M1 markers including IL-1β, iNOS, IL-6, TNF-α, MCP-1, and NLRP3 inflammasome, while C-176 conferred a robust anti-inflammatory effect. However, all the mentioned beneficial effects of C-176 including alleviated neuroinflammation, attenuated neuronal injury and the improved neurological function were reversed by AMPK inhibitor compound C. Meanwhile, the critical role of AMPK signal in C-176 mediated anti-inflammatory effect was also confirmed in vitro. CONCLUSION Microglial STING yielded neuroinflammation after SAH, while pharmacologic inhibition of STING could attenuate SAH-induced inflammatory injury at least partly by activating AMPK signal. These data supported the notion that STING might be a potential therapeutic target for SAH.
Collapse
Affiliation(s)
- Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Guangyu Ying
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Hangzhe Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China.
| |
Collapse
|
42
|
Pei L, Shen X, Yan Y, Tan C, Qu K, Zou J, Wang Y, Ping F. Virtual Screening of the Multi-pathway and Multi-gene Regulatory Molecular Mechanism of Dachengqi Decoction in the Treatment of Stroke Based on Network Pharmacology. Comb Chem High Throughput Screen 2020; 23:775-787. [PMID: 32160845 DOI: 10.2174/1386207323666200311113747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Stroke is ranked second among diseases that cause mortality worldwide. Owing to its complicated pathogenesis, no satisfactory treatment strategies for stroke are available. Dachengqi decoction (DCQD), a traditional Chinese herbal medicine, has been widely used in China for a long time, as it has a good effect on stroke. However, the molecular mechanism underlying this effect of DCQD is unclear. OBJECTIVE In the present study, we aimed to reveal and explore the multi-pathway and multi-gene regulatory molecular mechanism of Dachengqi decoction in the treatment of stroke. METHODS In this study, a network pharmacology method, in combination with oral bioavailability prediction and drug-likeness evaluation, was employed to predict the active ingredients of DCQD. The target genes of the active components and the traced pathways related to these target genes were predicted. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using clusterProfiler software package on the R platform and ClueGo+CluePedia plug-ins. Finally, the key DCQD targets were verified using the Gene Expression Omnibus (GEO) dataset. RESULTS AND DISCUSSION According to the ADME model, 52 active components were screened from 296 active components of DCQD. After prediction and screening, 215 stroke-related targets were obtained and analyzed via GO and KEGG analyses. GO analysis showed that DCQD targets were mainly involved in the regulation of oxidative stress, lipid metabolism, inflammation, and other biological processes. KEGG pathway analysis further revealed pathways involved in stroke, such as arachidonic acid metabolic, HIF-1 signaling pathway, estrogen signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, platelet activation pathway, VEGF signaling pathway, and cAMP signaling pathway. Network analysis revealed that DCQD might be involved in the regulation of lipid metabolism, blood pressure, inflammation, angiogenesis, neuroprotection, platelet aggregation, apoptosis, and oxidation in stroke treatment. GEO dataset analysis showed that DCQD's therapeutic effects might be exerted via the bidirectional regulation principle. CONCLUSION Based on the methods of network pharmacology and GEO analysis, it was found that, during stroke treatment, DCQD regulates and controls multiple genes and multiple pathways in a synergistic manner, providing a new strategy for stroke treatment.
Collapse
Affiliation(s)
- Lishan Pei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xia Shen
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yonggang Yan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Conge Tan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Kai Qu
- Department of Nephrology, Shaanxi Hospital of Chinese Medicine, Xi'an 710003, China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanxia Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fan Ping
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
43
|
Garland P, Morton MJ, Haskins W, Zolnourian A, Durnford A, Gaastra B, Toombs J, Heslegrave AJ, More J, Okemefuna AI, Teeling JL, Graversen JH, Zetterberg H, Moestrup SK, Bulters DO, Galea I. Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin. Brain Commun 2020; 2:fcz053. [PMID: 32346673 PMCID: PMC7188517 DOI: 10.1093/braincomms/fcz053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After subarachnoid haemorrhage, prolonged exposure to toxic extracellular haemoglobin occurs in the brain. Here, we investigate the role of haemoglobin neurotoxicity in vivo and its prevention. In humans after subarachnoid haemorrhage, haemoglobin in cerebrospinal fluid was associated with neurofilament light chain, a marker of neuronal damage. Most haemoglobin was not complexed with haptoglobin, an endogenous haemoglobin scavenger present at very low concentration in the brain. Exogenously added haptoglobin bound most uncomplexed haemoglobin, in the first 2 weeks after human subarachnoid haemorrhage, indicating a wide therapeutic window. In mice, the behavioural, vascular, cellular and molecular changes seen after human subarachnoid haemorrhage were recapitulated by modelling a single aspect of subarachnoid haemorrhage: prolonged intrathecal exposure to haemoglobin. Haemoglobin-induced behavioural deficits and astrocytic, microglial and synaptic changes were attenuated by haptoglobin. Haptoglobin treatment did not attenuate large-vessel vasospasm, yet improved clinical outcome by restricting diffusion of haemoglobin into the parenchyma and reducing small-vessel vasospasm. In summary, haemoglobin toxicity is of clinical importance and preventable by haptoglobin, independent of large-vessel vasospasm.
Collapse
Affiliation(s)
- Patrick Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J Morton
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - William Haskins
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ardalan Zolnourian
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Andrew Durnford
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ben Gaastra
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Jamie Toombs
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - John More
- Research & Development Department, Bio Products Laboratory Limited, Elstree, Hertfordshire, WD6 3BX, UK
| | - Azubuike I Okemefuna
- Research & Development Department, Bio Products Laboratory Limited, Elstree, Hertfordshire, WD6 3BX, UK
| | - Jessica L Teeling
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Jonas H Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mo¨ lndal, S-431 80, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mo¨ lndal, S-431 80, Sweden
| | - Soren K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Diederik O Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| |
Collapse
|
44
|
Intracerebral Hemorrhage: Blood Components and Neurotoxicity. Brain Sci 2019; 9:brainsci9110316. [PMID: 31717522 PMCID: PMC6896063 DOI: 10.3390/brainsci9110316] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke which is associated with the highest mortality and morbidity rates of all strokes. Although it is a major public health problem, there is no effective treatment for ICH. As a consequence of ICH, various blood components accumulate in the brain parenchyma and are responsible for much of the secondary brain damage and ICH-induced neurological deficits. Therefore, the strategies that could attenuate the blood component-induced neurotoxicity and improve hematoma resolution are highly needed. The present article provides an overview of blood-induced brain injury after ICH and emphasizes the need to conduct further studies elucidating the mechanisms of hematoma resolution after ICH.
Collapse
|
45
|
RNF34 overexpression exacerbates neurological deficits and brain injury in a mouse model of intracerebral hemorrhage by potentiating mitochondrial dysfunction-mediated oxidative stress. Sci Rep 2019; 9:16296. [PMID: 31704983 PMCID: PMC6841714 DOI: 10.1038/s41598-019-52494-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a common neurological condition associated with high disability and mortality. Alterations in protein ubiquitination have emerged as a key mechanism in the pathogenesis of neurological diseases. Here, we investigated the effects of the E3 ubiquitin ligase ring finger protein 34 (RNF34) on neurological deficits and brain injury in ICH mice. An ICH model was established via intracerebral injection of autologous blood into wild-type and RNF34 transgenic mice. Brain injury, neurological function, neuronal activity, and oxidative stress levels were measured, respectively. The underlying mechanisms were explored by molecular and cellular approaches. Our results showed that RNF34 overexpression in mice significantly aggravated the ICH-induced memory impairment, brain edema, infarction, hematoma volume, and loss of neuronal activity. RNF34 and oxidative stress levels gradually increased from 6 to 48 h after the ICH challenge and were positively correlated. The ICH-induced increase in intracellular ROS, superoxide anion, and mROS generation and the decrease in adenosine triphosphate production were exacerbated in RNF34 transgenic mice, but NADPH oxidase activity was unaffected. Moreover, RNF34 upregulation potentiated the ICH-induced decrease in PGC-1α, UCP2, and MnSOD expressions. RNF34 interacted with PGC-1α and targeted it for ubiquitin-dependent degradation. This study reveals that RNF34 exacerbates neurological deficits and brain injury by facilitating PGC-1α protein degradation and promoting mitochondrial dysfunction-mediated oxidative stress.
Collapse
|
46
|
Gu C, Hao X, Li J, Hua Y, Keep RF, Xi G. Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. J Cereb Blood Flow Metab 2019; 39:1936-1948. [PMID: 30862302 PMCID: PMC6775580 DOI: 10.1177/0271678x19836117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 01/11/2023]
Abstract
Hydrocephalus has been reported to occur in spontaneous hypertensive rats (SHRs). The purposes of this study were (1) to use T2 magnetic resonance imaging to examine time of onset, (2) to elucidate potential underlying mechanisms and (3) to determine whether minocycline could prevent hydrocephalus development. Ventriculomegaly was evaluated by T2 imaging in SHRs and Wistar-Kyoto rats from weeks 4 to 7 after birth. Brain histology and transmission electron microscopy were used to assess the periventricular and choroid plexus damage. SHRs were also treated with either vehicle or minocycline. We found that hydrocephalus was observed in SHRs but not in Wistar-Kyoto rats. It occurred at seven weeks of age but was not present at four and five weeks. The hydrocephalus was associated with epiplexus cell (macrophage) activation, choroid plexus cell death and damage to the ventricle wall. Treatment with minocycline from week 5 attenuated hydrocephalus development and pathological changes in choroid plexus and ventricular wall at week 7. The current study found that spontaneous hydrocephalus arises at ∼7 weeks in male SHRs. The early development of hydrocephalus (persistent ventricular dilatation) may result from epiplexus cell activation, choroid plexus cell death and periventricular damage, which can be ameliorated by treatment with minocycline.
Collapse
Affiliation(s)
- Chi Gu
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, the 2 Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaodi Hao
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, the 2 Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, the 2 Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Jiang Y, Wei K, Zhang X, Feng H, Hu R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1113-1125. [PMID: 31578825 PMCID: PMC6823871 DOI: 10.1111/cns.13226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The predilection site of intracerebral hemorrhage (ICH) is in the basal ganglia, which is rich in white matter (WM) fiber bundles, such as cerebrospinal tract in the internal capsule. ICH induced damage to this area can easily lead to severe neurological dysfunction and affects the prognosis and quality of life of patients. At present, the pathophysiological mechanisms of white matter injury (WMI) after ICH have attracted researchers' attention, but studies on the repair and recovery mechanisms and therapy strategies remain rare. In this review, we mainly summarized the WM recovery and treatment strategies after ICH by updating the WMI-related content by reviewing the latest researches and proposing the bottleneck of the current research.
Collapse
Affiliation(s)
- Yi‐Bin Jiang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Kai‐Yan Wei
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Xu‐Yang Zhang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
48
|
Abstract
Haemoglobin is released into the CNS during the breakdown of red blood cells after intracranial bleeding. Extracellular free haemoglobin is directly neurotoxic. Haemoglobin scavenging mechanisms clear haemoglobin and reduce toxicity; these mechanisms include erythrophagocytosis, haptoglobin binding of haemoglobin, haemopexin binding of haem and haem oxygenase breakdown of haem. However, the capacity of these mechanisms is limited in the CNS, and they easily become overwhelmed. Targeting of haemoglobin toxicity and scavenging is, therefore, a rational therapeutic strategy. In this Review, we summarize the neurotoxic mechanisms of extracellular haemoglobin and the peculiarities of haemoglobin scavenging pathways in the brain. Evidence for a role of haemoglobin toxicity in neurological disorders is discussed, with a focus on subarachnoid haemorrhage and intracerebral haemorrhage, and emerging treatment strategies based on the molecular pathways involved are considered. By focusing on a fundamental biological commonality between diverse neurological conditions, we aim to encourage the application of knowledge of haemoglobin toxicity and scavenging across various conditions. We also hope that the principles highlighted will stimulate research to explore the potential of the pathways discussed. Finally, we present a consensus opinion on the research priorities that will help to bring about clinical benefits.
Collapse
|
49
|
Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G. Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther 2019; 25:1134-1141. [PMID: 31433571 PMCID: PMC6776740 DOI: 10.1111/cns.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023] Open
Abstract
Aims We have found that hydrocephalus development in spontaneously hypertensive rats was associated with activation of epiplexus cells. The current study examined whether epiplexus cell activation occurs in a rat subarachnoid hemorrhage (SAH), whether activation would be greater in a subset of rats that developed hydrocephalus and the potential role of thrombin in epiplexus cell activation. Methods There were two parts in this study. First, an endovascular perforation was performed in rats to induce SAH. Second, rats received an intraventricular infusion of either thrombin or saline. Magnetic resonance imaging was used to measure the ventricular volumes. Immunofluorescence and immunohistochemistry were used to study epiplexus cell activation. Results Iba‐1, OX‐6, and CD68 were expressed in the epiplexus cells of the choroid plexus in sham‐operated rats. SAH increased Iba‐1 and CD68 immunoreactivity in epiplexus cells in addition to an increase in Iba‐1‐positive cell soma size. Those effects were greater in rats that developed hydrocephalus. Intraventricular thrombin mimicked the effects of SAH on epiplexus cell activation and hydrocephalus. Conclusion This study supports the concept that epiplexus cell activation is associated with hydrocephalus development. Epiplexus cell activation may be in response to thrombin production after hemorrhage, and it may be a therapeutic target.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.,Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Hugh J L Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Nemanja Novakovic
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J Cell Mol Med 2019; 23:5846-5858. [PMID: 31273911 PMCID: PMC6714234 DOI: 10.1111/jcmm.14479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins (HSPs) are induced after haemorrhagic stroke, which includes subarachnoid haemorrhage (SAH) and intracerebral haemorrhage (ICH). Most of these proteins function as neuroprotective molecules to protect cerebral neurons from haemorrhagic stroke and as markers to indicate cellular stress or damage. The most widely studied HSPs in SAH are HSP70, haeme oxygenase-1 (HO-1), HSP20 and HSP27. The subsequent pathophysiological changes following SAH can be divided into two stages: early brain injury and delayed cerebral ischaemia, both of which determine the outcome for patients. Because the mechanisms of HSPs in SAH are being revealed and experimental models in animals are continually maturing, new agents targeting HSPs with limited side effects have been suggested to provide therapeutic potential. For instance, some pharmaceutical agents can block neuronal apoptosis signals or dilate cerebral vessels by modulating HSPs. HO-1 and HSP70 are also critical topics for ICH research, which can be attributed to their involvement in pathophysiological mechanisms and therapeutic potential. However, the process of HO-1 metabolism can be toxic owing to iron overload and the activation of succedent pathways, for example, the Fenton reaction and oxidative damage; the overall effect of HO-1 in SAH and ICH tends to be protective and harmful, respectively, given the different pathophysiological changes in these two types of haemorrhagic stroke. In the present study, we focus on the current understanding of the role and therapeutic potential of HSPs involved in haemorrhagic stroke. Therefore, HSPs may be potential therapeutic targets, and new agents targeting HSPs are warranted.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|