1
|
Thermo and pH-Responsive Poly(DEGMA-co-OEGMA)-b-Poly(DEAEM) Synthesized by RAFT Polymerization and Its Self-Assembly Study. Macromol Res 2022. [DOI: 10.1007/s13233-022-0093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
3
|
Bononi I, Tedeschi P, Mantovani V, Maietti A, Mazzoni E, Pancaldi C, Brandolini V, Tognon M. Antioxidant Activity of Resveratrol Diastereomeric Forms Assayed in Fluorescent-Engineered Human Keratinocytes. Antioxidants (Basel) 2022; 11:antiox11020196. [PMID: 35204079 PMCID: PMC8868414 DOI: 10.3390/antiox11020196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022] Open
Abstract
Resveratrol is a powerful antioxidant molecule. In the human diet, its most important source is in Vitis vinifera grape peel and leaves. Resveratrol exists in two isoforms, cis- and trans. The diastereomeric forms of many drugs have been reported as affecting their activity. The aim of this study was to set up a cellular model to investigate how far resveratrol could counteract cytotoxicity in an oxidant agent. For this purpose, a keratinocyte cell line, which was genetically engineered with jelly fish green fluorescent protein, was treated with the free radical promoter Cumene hydroperoxide. The antioxidant activity of the trans-resveratrol and its diastereomeric mixture was evaluated indirectly in these treated fluorescent-engineered keratinocytes by analyzing the cell number and cell proliferation index. Our results demonstrate that cells, which were pre-incubated with resveratrol, reverted the oxidative damage progression induced by this free radical agent. In conclusion, fluorescent-engineered human keratinocytes represent a rapid and low-cost cellular model to determine cell numbers by studying emitted fluorescence. Comparative studies carried out with fluorescent keratinocytes indicate that trans-resveratrol is more efficient than diastereomeric mixtures in protecting cells from the oxidative stress.
Collapse
Affiliation(s)
- Ilaria Bononi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Vanessa Mantovani
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.M.); (C.P.)
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Cecilia Pancaldi
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.M.); (C.P.)
| | - Vincenzo Brandolini
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121 Ferrara, Italy; (P.T.); (A.M.); (E.M.); (V.B.)
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.M.); (C.P.)
- Correspondence: ; Tel.: +39-0532-455538
| |
Collapse
|
4
|
Quiñonez-Angulo P, Ruiz-Villegas J, Licea-Claveríe Á, Ramirez-Jiménez A, Miranda-Soto V, Zapata-González I. A kinetic study, thermal analysis and kinetic modeling on homo and copolymerization of 2-(N,N-diethylamino)ethyl methacrylate and PEGMA. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Xue Y, Wei D, Zheng A, Guan Y, Xiao H. Study of Stimuli-Sensitivities of Amphiphilic Modified Star Poly[N,N-(Dimethylamino)ethyl Methacrylate] and Its Ability of DNA Complexation. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.953374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Marcélis L, Van Overstraeten-Schlögel N, Lambermont J, Bontems S, Spinelli N, Defrancq E, Moucheron C, Kirsch-De Mesmaeker A, Raes M. Light-Triggered Green Fluorescent Protein Silencing in Human Keratinocytes in Culture Using Antisense Oligonucleotides Coupled to a Photoreactive Ruthenium(II) Complex. Chempluschem 2014. [DOI: 10.1002/cplu.201402212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|