1
|
Nathan SD, Kim HC, King CS, Aryal S, Thomas C, Kattih Z, Shlobin OA, Khangoora V, Chandel A. Serial Pulmonary Hemodynamics in Patients with Idiopathic Pulmonary Fibrosis Listed for Lung Transplant. Am J Respir Crit Care Med 2025; 211:984-991. [PMID: 39928362 DOI: 10.1164/rccm.202411-2157oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025] Open
Abstract
Rationale: Pulmonary hypertension (PH) commonly complicates idiopathic pulmonary fibrosis (IPF). However, the rate of change in pulmonary hemodynamics in IPF remains poorly defined. Objectives: To examine the rate of change in pulmonary hemodynamics among patients with IPF. Methods: The rate of change in mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) was examined in patients with IPF listed for lung transplantation. The fifth and seventh World Symposium on Pulmonary Hypertension definitions for precapillary PH were used in this analysis. Measurements and Main Results: There were 496 patients with IPF who had at least two right heart catheterizations (RHCs) while listed for lung transplantation. The median time between repeated RHCs was 9 months (interquartile range [IQR], 6 to 14 mo). PH was present in 25.8% and 46.8% at the first RHC, whereas 42.9% and 64.3% had PH by the two definitions, respectively, at the time of the final RHC. The median rate of change in the mPAP and PVR were 3.8 mm Hg/yr (IQR, -0.9 to 11.8) and 0.8 Wood units/yr (IQR, -0.2 to 2.4), respectively. The rate of PVR change was slower for those with established PH than those without PH. A total of 28.6% of the patients had accelerated progression of their hemodynamics, arbitrarily defined as an increase in PVR of ⩾2 Wood units/yr. Conclusions: PH associated with IPF tends to progress in an unpredictable fashion, with some patients demonstrating an accelerated phenotype. Among patients with RHC hemodynamics below the threshold for therapy, close vigilance is warranted, with consideration for an early repeat RHC.
Collapse
Affiliation(s)
- Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Ho Cheol Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Christopher S King
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Shambhu Aryal
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Christopher Thomas
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Zein Kattih
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Vikramjit Khangoora
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, Virginia
| | - Abhimanyu Chandel
- Department of Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland
| |
Collapse
|
2
|
Rieder F, Nagy LE, Maher TM, Distler JHW, Kramann R, Hinz B, Prunotto M. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov 2025:10.1038/s41573-025-01158-9. [PMID: 40102636 DOI: 10.1038/s41573-025-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Fibrosis is a pathophysiological mechanism involved in chronic and progressive diseases that results in excessive tissue scarring. Diseases associated with fibrosis include metabolic dysfunction-associated steatohepatitis (MASH), inflammatory bowel diseases (IBDs), chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), which are collectively responsible for substantial morbidity and mortality. Although a few drugs with direct antifibrotic activity are approved for pulmonary fibrosis and considerable progress has been made in the understanding of mechanisms of fibrosis, translation of this knowledge into effective therapies continues to be limited and challenging. With the aim of assisting developers of novel antifibrotic drugs, this Review integrates viewpoints of biologists and physician-scientists on core pathways involved in fibrosis across organs, as well as on specific characteristics and approaches to assess therapeutic interventions for fibrotic diseases of the lung, gut, kidney, skin and liver. This discussion is used as a basis to propose strategies to improve the translation of potential antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA.
- Program for Global Translational Inflammatory Bowel Diseases (GRID), Chicago, IL, USA.
| | - Laura E Nagy
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen; Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Cambria E, Blazeski A, Ko EC, Thai T, Dantes S, Barbie DA, Shelton SE, Kamm RD. Myofibroblasts reduce angiogenesis and vasculogenesis in a vascularized microphysiological model of lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632378. [PMID: 39868191 PMCID: PMC11760796 DOI: 10.1101/2025.01.10.632378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lung fibrosis, characterized by chronic and progressive scarring, has no cure. Hallmarks are the accumulation of myofibroblasts and extracellular matrix, as well as vascular remodeling. The crosstalk between myofibroblasts and vasculature is poorly understood, with conflicting reports on whether angiogenesis and vessel density are increased or decreased in lung fibrosis. We developed a microphysiological system that recapitulates the pathophysiology of lung fibrosis and disentangles myofibroblast-vascular interactions. Lung myofibroblasts maintained their phenotype in 3D without exogenous TGF-β and displayed anti-angiogenic and anti-vasculogenic activities when cultured with endothelial cells in a microfluidic device. These effects, including decreased endothelial sprouting, altered vascular morphology, and increased vascular permeability, were mediated by increased TGF-β1 and reduced VEGF secretion. Pharmacological interventions targeting these cytokines restored vascular morphology and permeability, demonstrating the potential of this model to screen anti-fibrotic drugs. This system provides insights into myofibroblast-vascular crosstalk in lung fibrosis and offers a platform for therapeutic development.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adriana Blazeski
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Eunkyung Clare Ko
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shania Dantes
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Lu W, Teoh A, Waters M, Haug G, Shakeel I, Hassan I, Shahzad AM, Callerfelt AKL, Piccari L, Sohal SS. Pathology of idiopathic pulmonary fibrosis with particular focus on vascular endothelium and epithelial injury and their therapeutic potential. Pharmacol Ther 2025; 265:108757. [PMID: 39586361 DOI: 10.1016/j.pharmthera.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a challenging disease with no drugs available to change the trajectory. It is a condition associated with excessive and highly progressive scarring of the lungs with remodelling and extracellular matrix deposition. It is a highly "destructive" disease of the lungs. The diagnosis of IPF is challenging due to continuous evolution of the disease, which also makes early interventions very difficult. The role of vascular endothelial cells has not been explored in IPF in great detail. We do not know much about their contribution to arterial or vascular remodelling, extracellular matrix changes and contribution to pulmonary hypertension and lung fibrosis in general. Endothelial to mesenchymal transition appears to be central to such changes in IPF. Similarly, for epithelial changes, the process of epithelial to mesenchymal transition seem to be the key both for airway epithelial cells and type-2 pneumocytes. We focus here on endothelial and epithelial cell changes and its contributions to IPF. In this review we revisit the pathology of IPF, mechanistic signalling pathways, clinical definition, update on diagnosis and new advances made in treatment of this disease. We discuss ongoing clinical trials with mode of action. A multidisciplinary collaborative approach is needed to understand this treacherous disease for new therapeutic targets.
Collapse
Affiliation(s)
- Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Alan Teoh
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Maddison Waters
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Ilma Shakeel
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Imtaiyaz Hassan
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Medical School, Oceania University of Medicine, Apia, Samoa
| | | | - Lucilla Piccari
- Department of Pulmonology, Hospital del Mar, Barcelona, Spain
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
5
|
Mondoni M, Rinaldo R, Ryerson CJ, Albrici C, Baccelli A, Tirelli C, Marchetti F, Cefalo J, Nalesso G, Ferranti G, Alfano F, Sotgiu G, Guazzi M, Centanni S. Vascular involvement in idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00550-2024. [PMID: 39588083 PMCID: PMC11587140 DOI: 10.1183/23120541.00550-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 11/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, fibrosing and progressive interstitial lung disease of unknown aetiology with a pathogenesis still partly unknown. Several microvascular and macrovascular abnormalities have been demonstrated in the pathogenesis of IPF and related pulmonary hypertension (PH), a complication of the disease. Methods We carried out a non-systematic, narrative literature review aimed at describing the role of the vasculature in the natural history of IPF. Results The main molecular pathogenetic mechanisms involving vasculature (i.e. endothelial-to-mesenchymal transition, vascular remodelling, endothelial permeability, occult alveolar haemorrhage, vasoconstriction and hypoxia) and the genetic basis of vascular remodelling are described. The prevalence and clinical relevance of associated PH are highlighted with focus on the vasculature as a prognostic marker. The vascular effects of current antifibrotic therapies, the role of pulmonary vasodilators in the treatment of disease, and new pharmacological options with vascular-targeted activity are described. Conclusions The vasculature plays a key role in the natural history of IPF from the early phases of disease until development of PH in a subgroup of patients, a complication related to a worse prognosis. Pulmonary vascular volume has emerged as a novel computed tomography finding and a predictor of mortality, independent of PH. New pharmacological options with concomitant vascular-directed activity might be promising in the treatment of IPF.
Collapse
Affiliation(s)
- Michele Mondoni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Rocco Rinaldo
- Department of Medical Sciences, Respiratory Diseases Unit, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, University of Turin, Turin, Italy
| | - Christopher J. Ryerson
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Cristina Albrici
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Andrea Baccelli
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Claudio Tirelli
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Francesca Marchetti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Jacopo Cefalo
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Nalesso
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Ferranti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Fausta Alfano
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Sotgiu
- Dept of Medical, Clinical Epidemiology and Medical Statistics Unit, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marco Guazzi
- Department of Cardiology, University of Milano School of Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Stefano Centanni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Li Y, Du X, Hu Y, Wang D, Duan L, Zhang H, Zhang R, Xu Y, Zhou R, Zhang X, Zhang M, Liu J, Lv Z, Chen Y, Wang W, Sun Y, Cui Y. Iron-laden macrophage-mediated paracrine profibrotic signaling induces lung fibroblast activation. Am J Physiol Cell Physiol 2024; 327:C979-C993. [PMID: 39183565 DOI: 10.1152/ajpcell.00675.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating condition characterized by progressive lung scarring and uncontrolled fibroblast proliferation, inevitably leading to organ dysfunction and mortality. Although elevated iron levels have been observed in patients and animal models of lung fibrosis, the mechanisms linking iron dysregulation to lung fibrosis pathogenesis, particularly the role of macrophages in orchestrating this process, remain poorly elucidated. Here we evaluate iron metabolism in macrophages during pulmonary fibrosis using both in vivo and in vitro approaches. In murine bleomycin- and amiodarone-induced pulmonary fibrosis models, we observed significant iron deposition and lipid peroxidation in pulmonary macrophages. Intriguingly, the ferroptosis regulator glutathione peroxidase 4 (GPX4) was upregulated in pulmonary macrophages following bleomycin instillation, a finding corroborated by single-cell RNA sequencing analysis. Moreover, macrophages isolated from fibrotic mouse lungs exhibited increased transforming growth factor (TGF)-β1 expression that correlated with lipid peroxidation. In vitro, iron overload in bone marrow-derived macrophages triggered lipid peroxidation and TGF-β1 upregulation, which was effectively suppressed by ferroptosis inhibitors. When cocultured with iron-overloaded macrophages, lung fibroblasts exhibited heightened activation, evidenced by increased α-smooth muscle actin and fibronectin expression. Importantly, this profibrotic effect was attenuated by treating macrophages with a ferroptosis inhibitor or blocking TGF-β receptor signaling in fibroblasts. Collectively, our study elucidates a novel mechanistic paradigm in which the accumulation of iron within macrophages initiates lipid peroxidation, thereby amplifying TGF-β1 production, subsequently instigating fibroblast activation through paracrine signaling. Thus, inhibiting iron overload and lipid peroxidation warrants further exploration as a strategy to suppress fibrotic stimulation by disease-associated macrophages. NEW & NOTEWORTHY This study investigates the role of iron in pulmonary fibrosis, specifically focusing on macrophage-mediated mechanisms. Iron accumulation in fibrotic lung macrophages triggers lipid peroxidation and an upregulation of transforming growth factor (TGF)-β1 expression. Coculturing iron-laden macrophages activates lung fibroblasts in a TGF-β1-dependent manner, which can be mitigated by ferroptosis inhibitors. These findings underscore the potential of targeting iron overload and lipid peroxidation as a promising strategy to alleviate fibrotic stimulation provoked by disease-associated macrophages.
Collapse
Affiliation(s)
- Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Luo Duan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Hanxiao Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ruoyang Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People's Republic of China
- National Center for Respiratory Medicine, Beijing, People's Republic of China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ruonan Zhou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Muzhi Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
7
|
Lawrence A, Myall KJ, Mukherjee B, Marino P. Converging Pathways: A Review of Pulmonary Hypertension in Interstitial Lung Disease. Life (Basel) 2024; 14:1203. [PMID: 39337985 PMCID: PMC11433497 DOI: 10.3390/life14091203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Pulmonary hypertension (PH) in interstitial lung disease (ILD) is relatively common, affecting up to 50% of patients with idiopathic pulmonary fibrosis (IPF). It occurs more frequently in advanced fibrotic ILD, although it may also complicate milder disease and carries significant clinical implications in terms of morbidity and mortality. Key pathological processes driving ILD-PH include hypoxic pulmonary vasoconstriction and pulmonary vascular remodelling. While current understanding of the complex cell signalling pathways and molecular mechanisms underlying ILD-PH remains incomplete, there is evidence for an interplay between the disease pathogenesis of fibrotic ILD and PH, with interest in the role of the pulmonary endothelium in driving pulmonary fibrogenesis more recently. This review examines key clinical trials in ILD-PH therapeutics, including recent research showing promise for the treatment of both ILD-PH and the underlying pulmonary fibrotic process, further supporting the hypothesis of interrelated pathogenesis. Other important management considerations are discussed, including the value of accurate phenotyping in ILD-PH and the success of the "pulmonary vascular" phenotype. This article highlights the close and interconnected nature of fibrotic ILD and PH disease pathogenesis, a perspective likely to improve our understanding and therapeutic approach to this complex condition in the future.
Collapse
Affiliation(s)
| | - Katherine Jane Myall
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
- King's College Hospital, London SE5 9RS, UK
| | - Bhashkar Mukherjee
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London SW3 6NP, UK
| | - Philip Marino
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| |
Collapse
|
8
|
Fließer E, Jandl K, Lins T, Birnhuber A, Valzano F, Kolb D, Foris V, Heinemann A, Olschewski H, Evermann M, Hoetzenecker K, Kreuter M, Voelkel NF, Marsh LM, Wygrecka M, Kwapiszewska G. Lung Fibrosis Is Linked to Increased Endothelial Cell Activation and Dysfunctional Vascular Barrier Integrity. Am J Respir Cell Mol Biol 2024; 71:318-331. [PMID: 38843440 DOI: 10.1165/rcmb.2024-0046oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 08/31/2024] Open
Abstract
Pulmonary fibrosis (PF) can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analyzed using transmission electron microscopy, immunohistochemistry, and single-cell RNA sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells (ECs) in fibrotic lungs compared with donors. A more intense CD31 and von Willebrand Factor (vWF) and patchy vascular endothelial (VE)-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin, and VEGFR-2 (vascular endothelial growth factor receptor-2) and activation marker vWF gene expression was increased in different endothelial subpopulations (e.g., arterial, venous, general capillary, aerocytes) in PF. This was associated with a heightened sensitivity of fibrotic ECs to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in ECs from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, whereas VE-Cadherin, Thrombomodulin, and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of patients with PF 6 months after the initial diagnosis. Our data demonstrate highly abnormal ECs in PF. The vascular compartment is characterized by hyperactivation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Reestablishing EC homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology and
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructural Analysis
- Gottfried Schatz Research Center, Cell Biology, Histology, and Embryology, and
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Evermann
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Kreuter
- Mainz Center for Pulmonary Medicine, Department of Pneumology, Mainz University Medical Center, Mainz, Germany
- Department of Pulmonary, Critical Care, and Sleep Medicine, Marienhaus Clinic Mainz, Mainz, Germany
| | - Norbert F Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, the Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany; and
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Lung Group, Otto Loewi Research Center
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
9
|
Vo Q, Benam KH. Advancements in preclinical human-relevant modeling of pulmonary vasculature on-chip. Eur J Pharm Sci 2024; 195:106709. [PMID: 38246431 PMCID: PMC10939731 DOI: 10.1016/j.ejps.2024.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Lung vasculature is particularly important due to its involvement in genesis and progression of rare, debilitating disorders as well as common chronic pathologies. Here, we provide an overview of the latest advances in the development of pulmonary vascular (PV) models using emerging microfluidic tissue engineering technology Organs-on-Chips (so-called PV-Chips). We first review the currently reported PV-Chip systems and their key features, and then critically discuss their major limitations in reproducing in vivo-seen and disease-relevant cellularity, localization, and microstructure. We conclude by presenting latest efforts to overcome such technical and biological limitations and future directions.
Collapse
Affiliation(s)
- Quoc Vo
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Wu Y, Zhang J, Wang X, Xu Y, Zheng J. Saikosaponin-d regulates angiogenesis in idiopathic pulmonary fibrosis through angiopoietin/Tie-2 pathway. Acta Histochem 2023; 125:152100. [PMID: 37837833 DOI: 10.1016/j.acthis.2023.152100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is considered as a chronic interstitial lung disease with underlying mechanism of IPF remaining unclear, while there are no definitive treatment options. In recent years, scientists have gradually paid attention to the influence of angiogenesis on IPF. Because IPF is a progressive with microvascular remodeling disorder, scientists have postulated that angiogenesis may also be one of the initiating and contributing factors of the disease. Bupleurum is a common natural Chinese herbal medicine with antibacterial, anti-inflammatory, anti-tumor and other pharmacological effects. As the most important active monomer of Bupleurum, Saikosaponin-d (SSd) is a new discovery with anti-pulmonary fibrosis (PF) activity. This study attempts to investigate the role of SSd in the interference of PF through regulation of angiogenesis in IPF through Angiopoietin (Angpt) /Tie receptor 2 (Tie2) pathway. METHODS Randomly, we allocated C57BL/6 mice into four groups (n = 20 in each group). Afterwards, establishment of IPF model was accomplished via intratracheal administration of bleomycin (BLM, 5 mg/kg), while corresponding drug intervention was given accordingly. On 3rd, 7th, 14th and 28th days after modeling, we performed histopathological examination through staining. Meanwhile, immunohistochemistry (IHC) of PF and the expression of related factors were observed, while Ang/Tie2 pathway was assessed by ELISA with the effect of SSd on angiogenesis related proteins in IPF being explored with IHC and Western Blot technique. RESULTS Our results showed that SSd could reduce inflammation and PF levels in lung tissue of experimental mice, while levels of angiogenesis-related factors, namely Tie-2, Ang-1 and ANGPT2 (Ang-2), fibrosis- associated factors like Alpha-smooth muscle actin (α-SMA), collagen-I and hydroxyproline in SSd and dexamethasone (DXM) mice were significantly reduced at each time point compared to BLM (p < 0.01). Additionally, we discovered substantial decreased expressions of Ang-1, Ang-2, Tie-2, α-SMA and collagen-I at protein level in SSd and DXM mice at each time point compared to BLM (p < 0.05). Besides, insignificant differences were observed between SSd and DXM groups (p > 0.05). CONCLUSION This study has demonstrated that SSd could down-regulate the expression of ANG-1, Ang-2 and Tie2 in the Ang/Tie2 pathway, and may reduce lung inflammation and PF in BLM-induced mice via inhibition of angiogenesis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, Wuxi City, Jiangsu 214122, China
| | - Jun Zhang
- Department of Respiratory and Critical Care Medicine, Aoyang Hospital Affiliated to Jiangsu University, 279 Jingang Dadao, Zhangjiagang City, Jiangsu 215631, China
| | - Xintian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou District, Zhenjiang City, Jiangsu 212000, China
| | - Yuncong Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou District, Zhenjiang City, Jiangsu 212000, China
| | - Jinxu Zheng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou District, Zhenjiang City, Jiangsu 212000, China.
| |
Collapse
|
11
|
Achaiah A, Fraser E, Saunders P, Hoyles RK, Benamore R, Ho LP. Neutrophil levels correlate with quantitative extent and progression of fibrosis in IPF: results of a single-centre cohort study. BMJ Open Respir Res 2023; 10:e001801. [PMID: 37816551 PMCID: PMC10565140 DOI: 10.1136/bmjresp-2023-001801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with poor prognosis. Clinical studies have demonstrated association between different blood leucocytes and mortality and forced vital capacity (FVC) decline. Here, we question which blood leucocyte levels are specifically associated with progression of fibrosis, measured by accumulation of fibrosis on CT scan using a standardised automated method. METHODS Using the Computer-Aided Lung Informatics for Pathology Evaluation and Rating CT algorithm, we determined the correlation between different blood leucocytes (<4 months from CT) and total lung fibrosis (TLF) scores, pulmonary vessel volume (PVV), FVC% and transfer factor of lung for carbon monoxide% at baseline (n=171) and with progression of fibrosis (n=71), the latter using multivariate Cox regression. RESULTS Neutrophils (but not monocyte or lymphocytes) correlated with extent of lung fibrosis (TLF/litre) (r=0.208, p=0.007), PVV (r=0.259, p=0.001), FVC% (r=-0.127, p=0.029) at baseline. For the 71 cases with repeat CT; median interval between CTs was 25.9 (16.8-39.9) months. Neutrophil but not monocyte levels are associated with increase in TLF/litre (HR 2.66, 95% CI 1.35 to 5.25, p=0.005). CONCLUSION Our study shows that neutrophil rather than monocyte levels correlated with quantifiable increase in fibrosis on imaging of the lungs in IPF, suggesting its relative greater contribution to progression of fibrosis in IPF.
Collapse
Affiliation(s)
- Andrew Achaiah
- Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Emily Fraser
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Saunders
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rachel K Hoyles
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rachel Benamore
- Thoracic Radiology Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ling-Pei Ho
- Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
12
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
13
|
Caporarello N, Ligresti G. Vascular Contribution to Lung Repair and Fibrosis. Am J Respir Cell Mol Biol 2023; 69:135-146. [PMID: 37126595 PMCID: PMC10399144 DOI: 10.1165/rcmb.2022-0431tr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/01/2023] [Indexed: 05/03/2023] Open
Abstract
Lungs are constantly exposed to environmental perturbations and therefore have remarkable capacity to regenerate in response to injury. Sustained lung injuries, aging, and increased genomic instability, however, make lungs particularly susceptible to disrepair and fibrosis. Pulmonary fibrosis constitutes a major cause of morbidity and is often relentlessly progressive, leading to death from respiratory failure. The pulmonary vasculature, which is critical for gas exchanges and plays a key role during lung development, repair, and regeneration, becomes aberrantly remodeled in patients with progressive pulmonary fibrosis. Although capillary rarefaction and increased vascular permeability are recognized as distinctive features of fibrotic lungs, the role of vasculature dysfunction in the pathogenesis of pulmonary fibrosis has only recently emerged as an important contributor to the progression of this disease. This review summarizes current findings related to lung vascular repair and regeneration and provides recent insights into the vascular abnormalities associated with the development of persistent lung fibrosis.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois; and
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
14
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
15
|
Ventura V, Viani M, Bianchi F, d'Alessandro M, Sestini P, Bargagli E. Effect of Ambulatory Oxygen on the Respiratory Pattern during the 6 Min Walking Test in Patients with Interstitial Lung Diseases. Biomedicines 2023; 11:1834. [PMID: 37509473 PMCID: PMC10376665 DOI: 10.3390/biomedicines11071834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Patients with pulmonary fibrosis experience early oxyhemoglobin desaturation under effort, which limits their ability to exercise and their quality of life. Recent studies have shown that in resting normoxaemic patients who become hypoxemic under exertion, administration of outpatient oxygen significantly improves stress dyspnoea and quality of life. It is unclear how this happens, since oxygen administration does not act directly on dyspnoea, and does not appear to have much effect on the heart rate and pulmonary artery pressure. We tested the hypothesis that correcting the hypoxaemia could reduce the increase in respiratory effort during the 6 min walking test, recording the breathing pattern during administration of oxygen or placebo. METHODS We evaluated 20 patients with fibrotic interstitial lung diseases (17 males and 3 females; mean age 72 ± 2 years; M ± SE) with a resting SpO2 ≥92 that fell to ≤88% during the 6 min walk test (6MWT). After first establishing the oxygen flow necessary to prevent desaturation, the patients underwent two further 6MWT, 15-20 min apart, one with administration of medical air and one with oxygen at the same flow, in randomized double-blind order. During the test, SpO2, heart rate, respiratory rate, tidal volume and minute ventilation (VE) were recorded, using a Spiropalm spirometer (Cosmed, Rome, Italy). RESULTS Oxygen saturation during the 6MWT decreased to a minimum value of 82.3% (95% CI 80.1-84.5%) during placebo and to 92% (90.3-93.7%) during oxygen with an average difference of 9.7% (7.8-11.6%, p < 0.0001). On the contrary, heart rate showed an increasing trend with walking time reaching a significantly higher maximum rate during placebo, with a difference of 5.4 bpm (2.9-8.7, p < 0.005) compared to oxygen. The distance walked was slightly but significantly greater after oxygen by 28 m (2-53, p < 0.05) and end of test dyspnoea after placebo by 0.6 points (0.1-1.1, p < 0.05). Respiratory rate increased over time, without differences between oxygen and placebo in the first minute of walking, then increasing significantly more during placebo (p < 0.0005). With placebo, tidal volume increased rapidly reaching a plateau at about 48% of FVC after 3 min, while with oxygen, the increase was slower, reaching a maximum of about 45% of FVC at the end of the test. Nevertheless, the difference was highly significant (p < 0.0005) at all the time points. Minute ventilation also increased significantly with walking time but remained at a highly significant lower level during oxygen than placebo at all the time points. Mean reduction in VE during the test with oxygen compared to placebo was 4.4 L/min (3.9-4.9, p < 0.0005). CONCLUSION In our ILD patients, administration of outpatient oxygen during walking was related to a reduced increase in heart rate, respiratory rate, tidal volume and minute ventilation necessary to meet increased oxygen requirements, resulting in a lower workload on the cardiovascular system and on respiratory muscles and a consequent reduction in dyspnoea.
Collapse
Affiliation(s)
- Vittoria Ventura
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Magda Viani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesco Bianchi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Miriana d'Alessandro
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Piersante Sestini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences & Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
16
|
Flakus MJ, Wuschner AE, Wallat EM, Graham M, Shao W, Shanmuganayagam D, Christensen GE, Reinhardt JM, Bayouth JE. Validation of CT-based ventilation and perfusion biomarkers with histopathology confirms radiation-induced pulmonary changes in a porcine model. Sci Rep 2023; 13:9377. [PMID: 37296169 PMCID: PMC10256800 DOI: 10.1038/s41598-023-36292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Imaging biomarkers can assess disease progression or prognoses and are valuable tools to help guide interventions. Particularly in lung imaging, biomarkers present an opportunity to extract regional information that is more robust to the patient's condition prior to intervention than current gold standard pulmonary function tests (PFTs). This regional aspect has particular use in functional avoidance radiation therapy (RT) in which treatment planning is optimized to avoid regions of high function with the goal of sparing functional lung and improving patient quality of life post-RT. To execute functional avoidance, detailed dose-response models need to be developed to identify regions which should be protected. Previous studies have begun to do this, but for these models to be clinically translated, they need to be validated. This work validates two metrics that encompass the main components of lung function (ventilation and perfusion) through post-mortem histopathology performed in a novel porcine model. With these methods validated, we can use them to study the nuanced radiation-induced changes in lung function and develop more advanced models.
Collapse
Affiliation(s)
- Mattison J Flakus
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA.
| | - Antonia E Wuschner
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Eric M Wallat
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, University of Wisconsin - Madison, Madison, WI, USA
| | - Wei Shao
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Dhanansayan Shanmuganayagam
- Department of Surgery, University of Wisconsin - Madison, Madison, WI, USA
- Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - John E Bayouth
- Department of Radiation Medicine, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
17
|
Piccari L, Allwood B, Antoniou K, Chung JH, Hassoun PM, Nikkho SM, Saggar R, Shlobin OA, Vitulo P, Nathan SD, Wort SJ. Pathogenesis, clinical features, and phenotypes of pulmonary hypertension associated with interstitial lung disease: A consensus statement from the Pulmonary Vascular Research Institute's Innovative Drug Development Initiative - Group 3 Pulmonary Hypertension. Pulm Circ 2023; 13:e12213. [PMID: 37025209 PMCID: PMC10071306 DOI: 10.1002/pul2.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a frequent complication of interstitial lung disease (ILD). Although PH has mostly been described in idiopathic pulmonary fibrosis, it can manifest in association with many other forms of ILD. Associated pathogenetic mechanisms are complex and incompletely understood but there is evidence of disruption of molecular and genetic pathways, with panvascular histopathologic changes, multiple pathophysiologic sequelae, and profound clinical ramifications. While there are some recognized clinical phenotypes such as combined pulmonary fibrosis and emphysema and some possible phenotypes such as connective tissue disease associated with ILD and PH, the identification of further phenotypes of PH in ILD has thus far proven elusive. This statement reviews the current evidence on the pathogenesis, recognized patterns, and useful diagnostic tools to detect phenotypes of PH in ILD. Distinct phenotypes warrant recognition if they are characterized through either a distinct presentation, clinical course, or treatment response. Furthermore, we propose a set of recommendations for future studies that might enable the recognition of new phenotypes.
Collapse
Affiliation(s)
- Lucilla Piccari
- Department of Pulmonary Medicine Hospital del Mar Barcelona Spain
| | - Brian Allwood
- Department of Medicine, Division of Pulmonology Stellenbosch University & Tygerberg Hospital Cape Town South Africa
| | - Katerina Antoniou
- Department of Thoracic Medicine University of Crete School of Medicine Heraklion Crete Greece
| | - Jonathan H Chung
- Department of Radiology The University of Chicago Medicine Chicago Illinois USA
| | - Paul M Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care Medicine Johns Hopkins University Baltimore Maryland USA
| | | | - Rajan Saggar
- Lung & Heart-Lung Transplant and Pulmonary Hypertension Programs University of California Los Angeles David Geffen School of Medicine Los Angeles California USA
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Health System Falls Church Virginia USA
| | - Patrizio Vitulo
- Department of Pulmonary Medicine IRCCS Mediterranean Institute for Transplantation and Advanced Specialized Therapies Palermo Sicilia Italy
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Health System Falls Church Virginia USA
| | - Stephen John Wort
- National Pulmonary Hypertension Service at the Royal Brompton Hospital London UK
- National Heart and Lung Institute, Imperial College London UK
| |
Collapse
|
18
|
Sun X, Nakajima E, Norbrun C, Sorkhdini P, Yang AX, Yang D, Ventetuolo CE, Braza J, Vang A, Aliotta J, Banerjee D, Pereira M, Baird G, Lu Q, Harrington EO, Rounds S, Lee CG, Yao H, Choudhary G, Klinger JR, Zhou Y. Chitinase 3-like-1 contributes to the development of pulmonary vascular remodeling in pulmonary hypertension. JCI Insight 2022; 7:159578. [PMID: 35951428 DOI: 10.1172/jci.insight.159578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Chitinase 3-like 1 (CHI3L1) is the prototypic chitinase-like protein mediating inflammation, cell proliferation, and tissue remodeling. Limited data suggests CHI3L1 is elevated in human pulmonary arterial hypertension (PAH) and is associated with disease severity. Despite its importance as a regulator of injury/repair responses, the relationship between CHI3L1 and pulmonary vascular remodeling is not well understood. We hypothesize that CHI3L1 and its signaling pathways contribute to the vascular remodeling responses that occur in pulmonary hypertension (PH). We examined the relationship of plasma CHI3L1 levels and severity of PH in patients with various forms of PH, including Group 1 PAH and Group 3 PH, and found that circulating levels of serum CHI3L1 were associated with worse hemodynamics and correlated directly with mean pulmonary artery pressure and pulmonary vascular resistance. We also used transgenic mice with constitutive knockout and inducible overexpression of CHI3L1 to examine its role in hypoxia-, monocrotaline-, and bleomycin-induced models of pulmonary vascular disease. In all 3 mouse models of pulmonary vascular disease, pulmonary hypertensive responses were mitigated in CHI3L1 null mice and accentuated in transgenic mice that overexpress CHI3L1. Finally, CHI3L1 alone was sufficient to induce pulmonary arterial smooth muscle cell proliferation, inhibit pulmonary vascular endothelial cell apoptosis, induce the loss of endothelial barrier function, and induce endothelial-to-mesenchymal transition. These findings demonstrate that CHI3L1 and its receptors play an integral role in pulmonary vascular disease pathobiology and may offer a novel target for the treatment PAH and PH associated with fibrotic lung disease.
Collapse
Affiliation(s)
- Xiuna Sun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| | - Erika Nakajima
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| | - Carmelissa Norbrun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| | - Alina Xiaoyu Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, United States of America
| | - Julie Braza
- Providence VA Medical Center, Providence, United States of America
| | - Alexander Vang
- Research, Providence VA Medical Center, Providence, United States of America
| | - Jason Aliotta
- Department of Medicine, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, United States of America
| | - Debasree Banerjee
- Department of Internal Medicine, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, United States of America
| | - Mandy Pereira
- Department of Hematology/Oncology, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, United States of America
| | - Grayson Baird
- Department of DIagnostic Imaging, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, United States of America
| | - Qing Lu
- Department of Medicine, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, United States of America
| | | | - Sharon Rounds
- Providence VA Medical Center, Providence, United States of America
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology, and Biochemistry,, Brown University, Providence, United States of America
| | - Gaurav Choudhary
- Providence VA Medical Center, Providence, United States of America
| | - James R Klinger
- Department of Pulmonary, Sleep, and Critical Care Medicine, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, United States of America
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, United States of America
| |
Collapse
|
19
|
Sun H, Liu M, Kang H, Yang X, Zhang P, Zhang R, Dai H, Wang C. Quantitative analysis of high-resolution computed tomography features of idiopathic pulmonary fibrosis: a structure-function correlation study. Quant Imaging Med Surg 2022; 12:3655-3665. [PMID: 35782232 PMCID: PMC9246749 DOI: 10.21037/qims-21-1232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/23/2022] [Indexed: 09/22/2023]
Abstract
BACKGROUND The quantitative analysis of high-resolution computed tomography (HRCT) is increasingly being used to quantify the severity and evaluate the prognosis of disease. Our aim was to quantify the HRCT features of idiopathic pulmonary fibrosis (IPF) and identify their association with pulmonary function tests. METHODS This was a retrospective, single-center, clinical research study. Patients with IPF were retrospectively included. Pulmonary segmentation was performed using the deep learning-based method. Radiologists manually segmented 4 findings of IPF, including honeycombing (HC), reticular pattern (RE), traction bronchiectasis (TRBR), and ground glass opacity (GGO). Pulmonary vessels were segmented with the automatic integration segmentation method. All segmentation results were quantified by the corresponding segmentation software. Correlations between the volume of the 4 findings on HRCT, volume of the lesions at different sites, pulmonary vascular-related parameters, and pulmonary function tests were analyzed. RESULTS A total of 101 IPF patients (93 males) with a median age of 63 years [interquartile range (IQR), 58 to 68 years] were included in this study. Total lesion extent demonstrated a stronger negative correlation with diffusion capacity for carbon monoxide (DLco) compared to HC, RE, and TRBR [total lesion ratio, correlation coefficient (r) =-0.67, P<0.001; HC, r=-0.45, P<0.001; RE, r=-0.41, P<0.001; TRBR, r=-0.25, P<0.05, respectively]. Correlations with lung function were similar among various lesion sites with r from -0.38 to -0.61 (P<0.001). Pulmonary artery volume (PAV) displayed a slightly increased positive association with the DLco compared to total pulmonary vascular volume (PVV); for PAV, r=0.41 and P<0.001 and for total PVV, r=0.36 and P<0.001. Additionally, total lesion extent, HC, and RE indicated a negative relationship with vascular-related parameters, and the strength of the correlations was independent of lesion site. CONCLUSIONS Quantitative analysis of HRCT features of IPF indicated a decline in function and an aggravation of vascular destruction with increasing lesion extent. Furthermore, a positive correlation between vascular-related parameters and pulmonary function was confirmed. This co-linearity indicated the potential of vascular-related parameters as new objective markers for evaluating the severity of IPF.
Collapse
Affiliation(s)
- Haishuang Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Han Kang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, China
| | - Xiaoyan Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Peiyao Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Rongguo Zhang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
21
|
Jung O, Tung YT, Sim E, Chen YC, Lee E, Ferrer M, Song MJ. Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform. Biofabrication 2022; 14. [PMID: 35166694 PMCID: PMC10053540 DOI: 10.1088/1758-5090/ac32a5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
The COVID-19 pandemic has highlighted the need for human respiratory tract-based assay platforms for efficient discovery and development of antivirals and disease-modulating therapeutics. Physiologically relevant tissue models of the lower respiratory tract (LRT), including the respiratory bronchioles and the alveolar sacs, are of high interest because they are the primary site of severe SARS-CoV-2 infection and are most affected during the terminal stage of COVID-19. Current epithelial lung models used to study respiratory viral infections include lung epithelial cells at the air-liquid interface (ALI) with fibroblasts and endothelial cells, but such models do not have a perfusable microvascular network to investigate both viral infectivity and viral infection-induced thrombotic events. Using a high throughput, 64-chip microfluidic plate-based platform, we have developed two novel vascularized, LRT multi-chip models for the alveoli and the small airway. Both models include a perfusable microvascular network consisting of human primary microvascular endothelial cells, fibroblasts and pericytes. The established biofabrication protocols also enable the formation of differentiated lung epithelial layers at the ALI on top of the vascularized tissue bed. We validated the physiologically relevant cellular composition, architecture and perfusion of the vascularized lung tissue models using fluorescence microscopy, flow cytometry, and electrical resistance measurements. These vascularized, perfusable microfluidic lung tissue on high throughput assay platforms will enable the development of respiratory viral infection and disease models for research investigation and drug discovery.
Collapse
Affiliation(s)
- Olive Jung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America.,Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yen-Ting Tung
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Esther Sim
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Yu-Chi Chen
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Emily Lee
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
22
|
Miura Y, Lam M, Bourke JE, Kanazawa S. Bimodal fibrosis in a novel mouse model of bleomycin-induced usual interstitial pneumonia. Life Sci Alliance 2022; 5:e202101059. [PMID: 34728556 PMCID: PMC8572746 DOI: 10.26508/lsa.202101059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is pathologically represented by usual interstitial pneumonia (UIP). Conventional bleomycin models used to study pathogenic mechanisms of pulmonary fibrosis display transient inflammation and fibrosis, so their relevance to UIP is limited. We developed a novel chronic induced-UIP (iUIP) model, inducing fibrosis in D1CC×D1BC transgenic mice by intra-tracheal instillation of bleomycin mixed with microbubbles followed by sonoporation (BMS). A bimodal fibrotic lung disease was observed over 14 wk, with an acute phase similar to nonspecific interstitial pneumonia (NSIP), followed by partial remission and a chronic fibrotic phase with honeycombing similar to UIP. In this secondary phase, we observed poor vascularization despite elevated PDGFRβ expression. γ2PF- and MMP7-positive epithelial cells, consistent with an invasive phenotype, were predominantly adjacent to fibrotic areas. Most invasive cells were Scgb1a1 and/or Krt5 positive. This iUIP mouse model displays key features of idiopathic pulmonary fibrosis and has identified potential mechanisms contributing to the onset of NSIP and progression to UIP. The model will provide a useful tool for the assessment of therapeutic interventions to oppose acute and chronic fibrosis.
Collapse
Affiliation(s)
- Yoko Miura
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Maggie Lam
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Satoshi Kanazawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
23
|
Derseh HB, Perera KUE, Dewage SNV, Stent A, Koumoundouros E, Organ L, Pagel CN, Snibson KJ. Tetrathiomolybdate Treatment Attenuates Bleomycin-Induced Angiogenesis and Lung Pathology in a Sheep Model of Pulmonary Fibrosis. Front Pharmacol 2021; 12:700902. [PMID: 34744706 PMCID: PMC8570673 DOI: 10.3389/fphar.2021.700902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive chronic lung disease characterized by excessive extracellular matrix (ECM) deposition in the parenchyma of the lung. Accompanying the fibrotic remodeling, dysregulated angiogenesis has been observed and implicated in the development and progression of pulmonary fibrosis. Copper is known to be required for key processes involved in fibrosis and angiogenesis. We therefore hypothesized that lowering bioavailable serum copper with tetrathiomolybdate could be of therapeutic value for treating pulmonary fibrosis. This study aimed to investigate the effect of tetrathiomolybdate on angiogenesis and fibrosis induced in sheep lung segments infused with bleomycin. Twenty sheep received two fortnightly infusions of either bleomycin (3U), or saline (control) into two spatially separate lung segments. A week after the final bleomycin/saline infusions, sheep were randomly assigned into two groups (n = 10 per group) and received twice-weekly intravenous administrations of either 50 mg tetrathiomolybdate, or sterile saline (vehicle control), for 6 weeks. Vascular density, expressed as the percentage of capillary area to the total area of parenchyma, was determined in lung tissue sections immuno-stained with antibodies against CD34 and collagen type IV. The degree of fibrosis was assessed by histopathology scoring of H&E stained sections and collagen content using Masson's trichrome staining. Lung compliance was measured via a wedged bronchoscope procedure prior to and 7 weeks following final bleomycin infusion. In this large animal model, we show that copper lowering by tetrathiomolybdate chelation attenuates both bleomycin-induced angiogenesis and pulmonary fibrosis. Moreover, tetrathiomolybdate treatment downregulates vascular endothelial growth factor (VEGF) expression, and improved lung function in bleomycin-induced pulmonary fibrosis. Tetrathiomolybdate also suppressed the accumulation of inflammatory cells in bronchoalveolar lavage fluid 2 weeks after bleomycin injury. The molecular mechanism(s) underpinning copper modulation of fibrotic pathways is an important area for future investigation, and it represents a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Habtamu B Derseh
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Sasika N Vithana Dewage
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Andrew Stent
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC, Australia
| | - Emmanuel Koumoundouros
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Louise Organ
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ken J Snibson
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Venous Thromboembolic Disease in Chronic Inflammatory Lung Diseases: Knowns and Unknowns. J Clin Med 2021; 10:jcm10102061. [PMID: 34064992 PMCID: PMC8151562 DOI: 10.3390/jcm10102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Persistent inflammation within the respiratory tract underlies the pathogenesis of numerous chronic pulmonary diseases. There is evidence supporting that chronic lung diseases are associated with a higher risk of venous thromboembolism (VTE). However, the relationship between lung diseases and/or lung function with VTE is unclear. Understanding the role of chronic lung inflammation as a predisposing factor for VTE may help determine the optimal management and aid in the development of future preventative strategies. We aimed to provide an overview of the relationship between the most common chronic inflammatory lung diseases and VTE. Asthma, chronic obstructive pulmonary disease, interstitial lung diseases, or tuberculosis increase the VTE risk, especially pulmonary embolism (PE), compared to the general population. However, high suspicion is needed to diagnose a thrombotic event early as the clinical presentation inevitably overlaps with respiratory disorders. PE risk increases with disease severity and exacerbations. Hence, hospitalized patients should be considered for thromboprophylaxis administration. Conversely, all VTE patients should be asked for lung comorbidities before determining anticoagulant therapy duration, as those patients are at increased risk of recurrent PE episodes rather than DVT. Further research is needed to understand the underlying pathophysiology of in-situ thrombosis in those patients.
Collapse
|
25
|
Pulmonary hypertension in fibrosing idiopathic interstitial pneumonia: Uncertainties, challenges and opportunities. J Heart Lung Transplant 2021; 40:872-881. [PMID: 33832831 DOI: 10.1016/j.healun.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/14/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
Pulmonary hypertension is a serious complication of chronic fibrosing idiopathic interstitial pneumonia (PH-fIIP) leading to greater morbidity and mortality. The pathophysiologic basis for PH in fIIP is not completely understood, but microvascular rarefaction may play a key role. Severe hypoxemia and reduced diffusion capacity are characteristic. Doppler echocardiography has limited diagnostic utility and right heart catheterization is required to confirm the diagnosis. Lung volumes can be minimally affected, and radiographic findings can be subtle, making the distinction from pulmonary arterial hypertension challenging. Several randomized controlled trials of pulmonary arterial hypertension targeted therapies have recently been completed. Endothelin-receptor antagonists have shown either no benefit or harm. Sildenafil may have some favorable short-term effects but does not appear to impact long-term outcomes. Riociguat treatment increased hospitalizations and mortality. A recent trial of inhaled treprostinil demonstrated improved exercise capacity, but the impact on long-term morbidity and mortality are unknown. Currently, the only viable option for improved survival is lung transplantation. Early referral is imperative to optimize post-transplant outcomes.
Collapse
|
26
|
Weatherley ND, Eaden JA, Hughes PJC, Austin M, Smith L, Bray J, Marshall H, Renshaw S, Bianchi SM, Wild JM. Quantification of pulmonary perfusion in idiopathic pulmonary fibrosis with first pass dynamic contrast-enhanced perfusion MRI. Thorax 2020; 76:144-151. [PMID: 33273022 PMCID: PMC7815896 DOI: 10.1136/thoraxjnl-2019-214375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/07/2023]
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a fatal disease of lung scarring. Many patients later develop raised pulmonary vascular pressures, sometimes disproportionate to the interstitial disease. Previous therapeutic approaches that have targeted pulmonary vascular changes have not demonstrated clinical efficacy, and quantitative assessment of regional pulmonary vascular involvement using perfusion imaging may provide a biomarker for further therapeutic insights. Methods We studied 23 participants with IPF, using dynamic contrast-enhanced MRI (DCE-MRI) and pulmonary function tests, including forced vital capacity (FVC), transfer factor (TLCO) and coefficient (KCO) of the lungs for carbon monoxide. DCE-MRI parametric maps were generated including the full width at half maximum (FWHM) of the bolus transit time through the lungs. Key metrics used were mean (FWHMmean) and heterogeneity (FWHMIQR). Nineteen participants returned at 6 months for repeat assessment. Results Spearman correlation coefficients were identified between TLCO and FWHMIQR (r=−0.46; p=0.026), KCO and FWHMmean (r=−0.42; p=0.047) and KCO and FWHMIQR (r=−0.51; p=0.013) at baseline. No statistically significant correlations were seen between FVC and DCE-MRI metrics. Follow-up at 6 months demonstrated statistically significant decline in FVC (p=0.040) and KCO (p=0.014), with an increase in FWHMmean (p=0.040), but no significant changes in TLCO (p=0.090) nor FWHMIQR (p=0.821). Conclusions DCE-MRI first pass perfusion demonstrates correlations with existing physiological gas exchange metrics, suggesting that capillary perfusion deficit (as well as impaired interstitial diffusion) may contribute to gas exchange limitation in IPF. FWHMmean showed a significant increase over a 6-month period and has potential as a quantitative biomarker of pulmonary vascular disease progression in IPF.
Collapse
Affiliation(s)
- Nicholas D Weatherley
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK.,Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - James A Eaden
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Paul J C Hughes
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Matthew Austin
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Laurie Smith
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Jody Bray
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Helen Marshall
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Stephen Renshaw
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - Stephen M Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - Jim M Wild
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| |
Collapse
|
27
|
Occhipinti M, Bruni C, Camiciottoli G, Bartolucci M, Bellando-Randone S, Bassetto A, Cuomo G, Giuggioli D, Ciardi G, Fabbrizzi A, Tomassetti S, Lavorini F, Pistolesi M, Colagrande S, Matucci-Cerinic M. Quantitative analysis of pulmonary vasculature in systemic sclerosis at spirometry-gated chest CT. Ann Rheum Dis 2020; 79:1210-1217. [PMID: 32606043 DOI: 10.1136/annrheumdis-2020-217359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To prospectively investigate whether differences in pulmonary vasculature exist in systemic sclerosis (SSc) and how they are distributed in patients with different pulmonary function. METHODS Seventy-four patients with SSc undergoing chest CT scan for interstitial lung disease (ILD) screening or follow-up were prospectively enrolled. A thorough clinical, laboratory and functional evaluation was performed the same day. Chest CT was spirometry gated at total lung capacity and images were analysed by two automated software programs to quantify emphysema, ILD patterns (ground-glass, reticular, honeycombing), and pulmonary vascular volume (PVV). Patients were divided in restricted (FVC% <80, DLco%<80), isolated DLco% reduction (iDLco- FVC%≥80, DLco%<80) and normals (FVC%≥80, DLco%≥80). Spearman ρ, Mann-Whitney tests and logistic regressions were used to assess for correlations, differences among groups and relationships between continuous variables. RESULTS Absolute and lung volume normalised PVV (PVV/LV) correlated inversely with functional parameters and positively with all ILD patterns (ρ=0.75 with ground glass, ρ=0.68 with reticular). PVV/LV was the only predictor of DLco at multivariate analysis (p=0.007). Meanwhile, the reticular pattern prevailed in peripheral regions and lower lung thirds, PVV/LV prevailed in central regions and middle lung thirds. iDLco group had a significantly higher PVV/LV (2.2%) than normal (1.6%), but lower than restricted ones (3.8%). CONCLUSIONS Chest CT in SSc detects a progressive increase in PVV/LV as DLco decreases. Redistribution of perfusion to less affected lung regions rather than angiogenesis nearby fibrotic lung may explain the results. Further studies to ascertain whether the increase in PVV/LV reflects a real increase in blood volume are needed.
Collapse
Affiliation(s)
- Mariaelena Occhipinti
- Dept Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Biomedicine, Division of Rheumatology, University of Florence, Florence, Italy
- Dept Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianna Camiciottoli
- Dept Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
- Dept CardioThoracoVascular, AOUC, Florence, Italy
| | | | - Silvia Bellando-Randone
- Biomedicine, Division of Rheumatology, University of Florence, Florence, Italy
- Dept Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Bassetto
- Dept Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanna Cuomo
- Precision Medicine, Universita degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, Policlinico di Modena, Universita degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | | | - Sara Tomassetti
- Dept Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Dept CardioThoracoVascular, AOUC, Florence, Italy
| | - Federico Lavorini
- Dept Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Dept CardioThoracoVascular, AOUC, Florence, Italy
| | - Massimo Pistolesi
- Dept Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Colagrande
- Dept Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
- Radiology Unit, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Dept Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Dept Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J 2020; 56:13993003.00100-2019. [PMID: 32265308 PMCID: PMC9977144 DOI: 10.1183/13993003.00100-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to result from aberrant tissue repair processes in response to chronic or repetitive lung injury. The origin and nature of the injury, as well as its cellular and molecular targets, are likely heterogeneous, which complicates accurate pre-clinical modelling of the disease and makes therapeutic targeting a challenge. Efforts are underway to identify central pathways in fibrogenesis which may allow targeting of aberrant repair processes regardless of the initial injury stimulus. Dysregulated endothelial permeability and vascular leak have long been studied for their role in acute lung injury and repair. Evidence that these processes are of importance to the pathogenesis of fibrotic lung disease is growing. Endothelial permeability is increased in non-fibrosing lung diseases, but it resolves in a self-limited fashion in conditions such as bacterial pneumonia and acute respiratory distress syndrome. In progressive fibrosing diseases such as IPF, permeability appears to persist, however, and may also predict mortality. In this hypothesis-generating review, we summarise available data on the role of endothelial permeability in IPF and focus on the deleterious consequences of sustained endothelial hyperpermeability in response to and during pulmonary inflammation and fibrosis. We propose that persistent permeability and vascular leak in the lung have the potential to establish and amplify the pro-fibrotic environment. Therapeutic interventions aimed at recognising and "plugging" the leak may therefore be of significant benefit for preventing the transition from lung injury to fibrosis and should be areas for future research.
Collapse
Affiliation(s)
- Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Ackermann M, Stark H, Neubert L, Schubert S, Borchert P, Linz F, Wagner WL, Stiller W, Wielpütz M, Hoefer A, Haverich A, Mentzer SJ, Shah HR, Welte T, Kuehnel M, Jonigk D. Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J 2020; 55:13993003.00933-2019. [PMID: 31806721 DOI: 10.1183/13993003.00933-2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
The pathogenetic role of angiogenesis in interstitial lung diseases (ILDs) is controversial. This study represents the first investigation of the spatial complexity and molecular motifs of microvascular architecture in important subsets of human ILD. The aim of our study was to identify specific variants of neoangiogenesis in three common pulmonary injury patterns in human ILD.We performed comprehensive and compartment-specific analysis of 24 human lung explants with usual intersitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) and alveolar fibroelastosis (AFE) using histopathology, microvascular corrosion casting, micro-comupted tomography based volumetry and gene expression analysis using Nanostring as well as immunohistochemistry to assess remodelling-associated angiogenesis.Morphometrical assessment of vessel diameters and intervascular distances showed significant differences in neoangiogenesis in characteristically remodelled areas of UIP, NSIP and AFE lungs. Likewise, gene expression analysis revealed distinct and specific angiogenic profiles in UIP, NSIP and AFE lungs.Whereas UIP lungs showed a higher density of upstream vascularity and lower density in perifocal blood vessels, NSIP and AFE lungs revealed densely packed alveolar septal blood vessels. Vascular remodelling in NSIP and AFE is characterised by a prominent intussusceptive neoangiogenesis, in contrast to UIP, in which sprouting of new vessels into the fibrotic areas is characteristic. The molecular analyses of the gene expression provide a foundation for understanding these fundamental differences between AFE and UIP and give insight into the cellular functions involved.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany .,Institute of Pathology, Medical Faculty, Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany.,These authors contributed equally and share first and the last authorship, respectively
| | - Helge Stark
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,These authors contributed equally and share first and the last authorship, respectively
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | | | - Paul Borchert
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Friedemann Linz
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Willi L Wagner
- Dept of Diagnostic and Interventional Radiology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Member of German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Wolfram Stiller
- Dept of Diagnostic and Interventional Radiology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Member of German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Mark Wielpütz
- Dept of Diagnostic and Interventional Radiology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Member of German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Anne Hoefer
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,Dept of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Harshit R Shah
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,These authors contributed equally and share first and the last authorship, respectively
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.,These authors contributed equally and share first and the last authorship, respectively
| |
Collapse
|
30
|
Molgat-Seon Y, Schaeffer MR, Ryerson CJ, Guenette JA. Exercise Pathophysiology in Interstitial Lung Disease. Clin Chest Med 2020; 40:405-420. [PMID: 31078218 DOI: 10.1016/j.ccm.2019.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interstitial lung disease (ILD) is a heterogeneous group of disorders that primarily affect the lung parenchyma. Patients with ILD have reduced lung volumes, impaired pulmonary gas exchange, and decreased cardiovascular function. These pathologic features of ILD become exacerbated during physical exertion, leading to exercise intolerance and abnormally high levels of exertional dyspnea. In this review, the authors summarize the primary pathophysiologic features of patients with ILD and their effect on the integrative response to exercise.
Collapse
Affiliation(s)
- Yannick Molgat-Seon
- Centre for Heart Lung Innovation, St. Paul's Hospital, 166-1081 Burrard Street, Vancouver, British Columbia V6T 1Y6, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212 Friedman Building, 2177 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michele R Schaeffer
- Centre for Heart Lung Innovation, St. Paul's Hospital, 166-1081 Burrard Street, Vancouver, British Columbia V6T 1Y6, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212 Friedman Building, 2177 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher J Ryerson
- Centre for Heart Lung Innovation, St. Paul's Hospital, 166-1081 Burrard Street, Vancouver, British Columbia V6T 1Y6, Canada; Division of Respiratory Medicine, Faculty of Medicine, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, 7th Floor, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jordan A Guenette
- Centre for Heart Lung Innovation, St. Paul's Hospital, 166-1081 Burrard Street, Vancouver, British Columbia V6T 1Y6, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212 Friedman Building, 2177 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada; Division of Respiratory Medicine, Faculty of Medicine, University of British Columbia, Gordon and Leslie Diamond Health Care Centre, 7th Floor, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada.
| |
Collapse
|
31
|
Chen Y, Yu Y, Qiao J, Zhu L, Xiao Z. Mineralocorticoid receptor excessive activation involved in glucocorticoid-related brain injury. Biomed Pharmacother 2019; 122:109695. [PMID: 31812016 DOI: 10.1016/j.biopha.2019.109695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 02/05/2023] Open
Abstract
The mechanisms involved in brain damage during chronic glucocorticoid exposure are poorly understood. Since mineralocorticoid receptor (MR) activation has been proven to be important in the pathophysiology of vascular damage and MRs are highly expressed in many brain regions, we hypothesized that the cerebral injury observed in subjects with Cushing syndrome is in part associated with the overactivation of MR. The aim of this study was to determine whether the cerebral injury observed in chronic hyperglucocorticoidemia animal models is related to excessive MR activation. Male SD rats were divided into five groups: vehicle, hydrocortisone (HC, 5 mg/kg/day, i.g.), HC + spironolactone (SL, 20 mg/kg/d in chow), dexamethasone (DXM, 0.25 mg/kg/day, i.g.), and DXM + SL (20 mg/kg/d in chow). Compared to the vehicle-treated group, HC-treated rats had higher blood pressure and higher levels of cerebral vascular fibrosis, cortical/hippocampal atrophy, reactive oxygen species (ROS) production and proinflammatory gene expression. However, in HC-treated animals, treatment with SL markedly alleviated ROS production, cerebral and cerebrovascular morphological changes and inflammation but failed to reduce blood pressure. In contrast, DXM induced no cerebral morphological changes except fibrosis in cerebral vessels, an effect that was not ameliorated by SL treatment. These findings demonstrate that the excessive MR activation observed following chronic hyperglucocorticoidemia exposure contributes to cerebrovascular fibrosis and remodeling and promotes neural apoptosis in the cerebral cortex/hippocampus.
Collapse
Affiliation(s)
- Yaxi Chen
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yerong Yu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingtao Qiao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Leilei Zhu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Xiao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Seki A, Anklesaria Z, Saggar R, Dodson MW, Schwab K, Liu MC, Charan Ashana D, Miller WD, Vangala S, DerHovanessian A, Channick R, Shaikh F, Belperio JA, Weigt SS, Lynch JP, Ross DJ, Sullivan L, Khanna D, Shapiro SS, Sager J, Gargani L, Stanziola A, Bossone E, Schraufnagel DE, Fishbein G, Xu H, Fishbein MC, Wallace WD, Saggar R. Capillary Proliferation in Systemic-Sclerosis-Related Pulmonary Fibrosis: Association with Pulmonary Hypertension. ACR Open Rheumatol 2019; 1:26-36. [PMID: 31777777 PMCID: PMC6858021 DOI: 10.1002/acr2.1003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective We sought to determine if any histopathologic component of the pulmonary microcirculation can distinguish systemic sclerosis (SSc)‐related pulmonary fibrosis (PF) with and without pulmonary hypertension (PH). Methods Two pulmonary pathologists blindly evaluated 360 histologic slides from lungs of 31 SSc‐PF explants or autopsies with (n = 22) and without (n = 9) PH. The presence of abnormal small arteries, veins, and capillaries (pulmonary microcirculation) was semiquantitatively assessed in areas of preserved lung architecture. Capillary proliferation (CP) within the alveolar walls was measured by its distribution, extent (CP % involvement), and maximum number of layers (maximum CP). These measures were then evaluated to determine the strength of their association with right heart catheterization–proven PH. Results Using consensus measures, all measures of CP were significantly associated with PH. Maximum CP had the strongest association with PH (P = 0.013; C statistic 0.869). Maximum CP 2 or more layers and CP % involvement 10% or greater were the optimal thresholds that predicted PH, both with a sensitivity of 56% and specificity of 91%. The CP was typically multifocal rather than focal or diffuse and was associated with a background pattern of usual interstitial pneumonia. There was a significant but weaker relationship between the presence of abnormal small arteries and veins and PH. Conclusion In the setting of advanced SSc‐PF, the histopathologic feature of the pulmonary microcirculation best associated with PH was capillary proliferation in architecturally preserved lung areas.
Collapse
Affiliation(s)
| | | | - Rajeev Saggar
- Banner University Medical Center University of Arizona Phoenix
| | - Mark W Dodson
- Intermountain Medical Center, Murray, Utah and University of Utah School of Medicine Salt Lake City
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dinesh Khanna
- University of Michigan Scleroderma Program Ann Arbor
| | | | - Jeffrey Sager
- Santa Barbara Pulmonary Associates Santa Barbara California
| | - Luna Gargani
- Institution of Clinical Physiology National Research Council Pisa Italy
| | | | | | | | | | - Haodong Xu
- University of Washington School of Medicine Seattle
| | | | | | | |
Collapse
|
33
|
Sandbo N. Mechanisms of Fibrosis in IPF. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Bacha NC, Blandinieres A, Rossi E, Gendron N, Nevo N, Lecourt S, Guerin CL, Renard JM, Gaussem P, Angles-Cano E, Boulanger CM, Israel-Biet D, Smadja DM. Endothelial Microparticles are Associated to Pathogenesis of Idiopathic Pulmonary Fibrosis. Stem Cell Rev Rep 2018; 14:223-235. [PMID: 29101610 DOI: 10.1007/s12015-017-9778-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by obliteration of alveolar architecture, resulting in declining lung function and ultimately death. Pathogenic mechanisms remain unclear but involve a concomitant accumulation of scar tissue together with myofibroblasts activation. Microparticles (MPs) have been investigated in several human lung diseases as possible pathogenic elements, prognosis markers and therapeutic targets. We postulated that levels and cellular origins of circulating MPs might serve as biomarkers in IPF patients and/or as active players of fibrogenesis. Flow cytometry analysis showed a higher level of Annexin-V positive endothelial and platelet MPs in 41 IPF patients compared to 22 healthy volunteers. Moreover, in IPF patients with a low diffusing capacity of the lung for carbon monoxide (DLCO<40%), endothelial MPs (EMPs) were found significantly higher compared to those with DLCO>40% (p = 0.02). We then used EMPs isolated from endothelial progenitor cells (ECFCs) extracted from IPF patients or controls to modulate normal human lung fibroblast (NHLF) properties. We showed that EMPs did not modify proliferation, collagen deposition and myofibroblast transdifferentiation. However, EMPs from IPF patients stimulated migration capacity of NHLF. We hypothesized that this effect could result from EMPs fibrinolytic properties and found indeed higher plasminogen activation potential in total circulating MPs and ECFCs derived MPs issued from IPF patients compared to those isolated from healthy controls MPs. Our study showed that IPF is associated with an increased level of EMPs in the most severe patients, highlighting an active process of endothelial activation in the latter. Endothelial microparticles might contribute to the lung fibroblast invasion mediated, at least in part, by a fibrinolytic activity.
Collapse
Affiliation(s)
- Nour C Bacha
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France
| | - Adeline Blandinieres
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France.,Hematology Department and UMR-S1140, AP-HP, European Hospital Georges Pompidou, 20 rue Leblanc, 75015, Paris, France
| | - Elisa Rossi
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France
| | - Nicolas Gendron
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France.,Hematology Department and UMR-S1140, AP-HP, European Hospital Georges Pompidou, 20 rue Leblanc, 75015, Paris, France
| | - Nathalie Nevo
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France
| | | | - Coralie L Guerin
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg, France
| | - Jean Marie Renard
- Sorbonne Paris Cite, Université Paris Descartes, Paris, France.,Inserm UMR-S970, PARCC, Paris, France
| | - Pascale Gaussem
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France.,Hematology Department and UMR-S1140, AP-HP, European Hospital Georges Pompidou, 20 rue Leblanc, 75015, Paris, France
| | - Eduardo Angles-Cano
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France
| | - Chantal M Boulanger
- Sorbonne Paris Cite, Université Paris Descartes, Paris, France.,Inserm UMR-S970, PARCC, Paris, France
| | - Dominique Israel-Biet
- Inserm UMR-S1140, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France.,Pneumology Department, AP-HP, European Hospital Georges Pompidou, Paris, France
| | - David M Smadja
- Inserm UMR-S1140, Paris, France. .,Sorbonne Paris Cite, Université Paris Descartes, Paris, France. .,Hematology Department and UMR-S1140, AP-HP, European Hospital Georges Pompidou, 20 rue Leblanc, 75015, Paris, France.
| |
Collapse
|
35
|
Abstract
Pulmonary hypertension that develops in the setting of underlying lung diseases such as COPD or idiopathic pulmonary fibrosis (IPF) is associated with decreased functional status, worsening hypoxemia and quality of life, and increased mortality. This complication of lung disease is complex in its origin and carries a unique set of diagnostic and therapeutic issues. This review attempts to provide an overview of mechanisms associated with the onset of pulmonary hypertension in COPD and IPF, touches on appropriate evaluation, and reviews the state of knowledge on treating pulmonary hypertension related to underlying lung disease.
Collapse
Affiliation(s)
- Michael J Cuttica
- Northwestern Pulmonary Hypertension Program, 676 St Claire Suite 1400, Chicago, IL, 60611, USA.
| |
Collapse
|
36
|
Plantier L, Cazes A, Dinh-Xuan AT, Bancal C, Marchand-Adam S, Crestani B. Physiology of the lung in idiopathic pulmonary fibrosis. Eur Respir Rev 2018; 27:27/147/170062. [PMID: 29367408 PMCID: PMC9489199 DOI: 10.1183/16000617.0062-2017] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
The clinical expression of idiopathic pulmonary fibrosis (IPF) is directly related to multiple alterations in lung function. These alterations derive from a complex disease process affecting all compartments of the lower respiratory system, from the conducting airways to the lung vasculature. In this article we review the profound alterations in lung mechanics (reduced lung compliance and lung volumes), pulmonary gas exchange (reduced diffusing capacity, increased dead space ventilation, chronic arterial hypoxaemia) and airway physiology (increased cough reflex and increased airway volume), as well as pulmonary haemodynamics related to IPF. The relative contribution of these alterations to exertional limitation and dyspnoea in IPF is discussed. Physiological impairment in IPF is complex and involves all compartments of the respiratory systemhttp://ow.ly/gyao30hdHUb
Collapse
|
37
|
|
38
|
Mammoto T, Jiang A, Jiang E, Mammoto A. Role of Twist1 Phosphorylation in Angiogenesis and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 55:633-644. [PMID: 27281171 DOI: 10.1165/rcmb.2016-0012oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive lung disease in which microvessel remodeling is deregulated. However, the mechanism by which deregulated angiogenesis contributes to the pathogenesis of pulmonary fibrosis remains unclear. Here we show that a transcription factor, Twist1, controls angiogenesis through the angiopoietin-Tie2 pathway, and that deregulation of this mechanism mediates pathological angiogenesis and collagen deposition in a bleomycin-induced mouse pulmonary fibrosis model. Twist1 knockdown decreases Tie2 expression and attenuates endothelial cell sprouting in vitro. Angiogenesis is also inhibited in fibrin gel implanted on Tie2-specific Twist1 conditional knockout (Twist1fl/fl/Tie2-cre) mouse lung in vivo. Inhibition of Twist1 phosphorylation at the serine 42 (Ser42) residue by treating endothelial cells with a mutant construct (Twist1S42A) decreases Tie2 expression and attenuates angiogenesis compared with full-length Twist1 in vitro and in vivo. Bleomycin challenge up-regulates Twist1 Ser42 phosphorylation and Tie2 expression, increases blood vessel density, and induces collagen deposition in the mouse lung, whereas these effects are attenuated in Twist1fl/fl/Tie2-cre mice or in mice treated with Twist1S42A mutant construct. These results indicate that Twist1 Ser42 phosphorylation contributes to the pathogenesis of bleomycin-induced pulmonary fibrosis through angiopoietin-Tie2 signaling.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Jiang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
39
|
Jacob J, Nicholson AG, Wells AU, Hansell DM. Impact of pulmonary vascular volume on mortality in IPF: is it time to reconsider the role of vasculature in disease pathogenesis and progression? Eur Respir J 2017; 49:49/2/1602524. [DOI: 10.1183/13993003.02524-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
|
40
|
Fukihara J, Taniguchi H, Ando M, Kondoh Y, Kimura T, Kataoka K, Furukawa T, Johkoh T, Fukuoka J, Sakamoto K, Hasegawa Y. Hemosiderin-laden macrophages are an independent factor correlated with pulmonary vascular resistance in idiopathic pulmonary fibrosis: a case control study. BMC Pulm Med 2017; 17:30. [PMID: 28166761 PMCID: PMC5294720 DOI: 10.1186/s12890-017-0376-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/28/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Increases in hemosiderin-laden macrophages (HLM) are reported to be observed in idiopathic pulmonary fibrosis (IPF). According to a recent study, significant correlation between hemosiderin deposition in the lung tissue of IPF and pulmonary hypertension evaluated by echocardiography has been suspected. In this study, we aimed to evaluate whether HLM in bronchoalveolar lavage fluid (BALF) is a factor correlated with pulmonary hemodynamic parameters evaluated by right heart catheterization in patients with IPF. METHODS Initial data from 103 consecutive patients with IPF who underwent surgical lung biopsy between November 2007 and March 2014 were retrospectively analyzed. The "HLM score" of BALF was established by dividing the number of Perls' Prussian blue stain positive macrophages by the total number of macrophages counted. RESULTS BALF showed an elevated HLM score (38.2%). Right heart catheterization revealed mean pulmonary arterial pressure (mPAP) of 16.3 mmHg and pulmonary vascular resistance (PVR) of 1.55 Wood units. HLM score was positively correlated with mPAP (ρ = 0.204; p = 0.038) and PVR (ρ = 0.349, p < 0.001). In multivariate analysis, 6-min walk distance (standardized partial regression coefficient [β], -0.391; p < 0.001), minimum oxygen saturation during 6-min walk distance (β, -0.294; p = 0.001) and HLM score (β, 0.265; p = 0.002) were independently correlated with PVR. CONCLUSIONS HLM score in BALF is an independent factor correlated with PVR in patients with IPF.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto-shi, Aichi, 489-8642, Japan
| | - Hiroyuki Taniguchi
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto-shi, Aichi, 489-8642, Japan.
| | - Masahiko Ando
- Center of Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi, 466-0065, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto-shi, Aichi, 489-8642, Japan
| | - Tomoki Kimura
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto-shi, Aichi, 489-8642, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto-shi, Aichi, 489-8642, Japan
| | - Taiki Furukawa
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, 160 Nishioiwake-cho, Seto-shi, Aichi, 489-8642, Japan
| | - Takeshi Johkoh
- Department of Radiology, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, 3-1 Kurumazuka, Itami-shi, Hyogo, 664-8533, Japan
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi, 466-0065, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi, 466-0065, Japan
| |
Collapse
|
41
|
Panagiotou M, Church AC, Johnson MK, Peacock AJ. Pulmonary vascular and cardiac impairment in interstitial lung disease. Eur Respir Rev 2017; 26:26/143/160053. [PMID: 28096284 PMCID: PMC9488566 DOI: 10.1183/16000617.0053-2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
Pulmonary vascular and cardiac impairment is increasingly appreciated as a major adverse factor in the natural history of interstitial lung disease. This clinically orientated review focuses on the current concepts in the pathogenesis, pathophysiology and implications of the detrimental sequence of increased pulmonary vascular resistance, pre-capillary pulmonary hypertension and right heart failure in interstitial lung disease, and provides guidance on its management. Development of pulmonary hypertension is a major adverse factor in the natural history of interstitial lung diseasehttp://ow.ly/nJB0302XAmD
Collapse
Affiliation(s)
- Marios Panagiotou
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Alistair C Church
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Martin K Johnson
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Andrew J Peacock
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| |
Collapse
|
42
|
Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Nair A, Karwoski R, Walsh SL, Wells AU, Hansell DM. Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur Respir J 2016; 49:13993003.01011-2016. [DOI: 10.1183/13993003.01011-2016] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/07/2016] [Indexed: 01/04/2023]
Abstract
Computer-based computed tomography (CT) analysis can provide objective quantitation of disease in idiopathic pulmonary fibrosis (IPF). A computer algorithm, CALIPER, was compared with conventional CT and pulmonary function measures of disease severity for mortality prediction.CT and pulmonary function variables (forced expiratory volume in 1 s, forced vital capacity, diffusion capacity of the lung for carbon monoxide, transfer coefficient of the lung for carbon monoxide and composite physiologic index (CPI)) of 283 consecutive patients with a multidisciplinary diagnosis of IPF were evaluated against mortality. Visual and CALIPER CT features included total extent of interstitial lung disease, honeycombing, reticular pattern, ground glass opacities and emphysema. In addition, CALIPER scored pulmonary vessel volume (PVV) while traction bronchiectasis and consolidation were only scored visually. A combination of mortality predictors was compared with the Gender, Age, Physiology model.On univariate analyses, all visual and CALIPER-derived interstitial features and functional indices were predictive of mortality to a 0.01 level of significance. On multivariate analysis, visual CT parameters were discarded. Independent predictors of mortality were CPI (hazard ratio (95% CI) 1.05 (1.02–1.07), p<0.001) and two CALIPER parameters: PVV (1.23 (1.08–1.40), p=0.001) and honeycombing (1.18 (1.06–1.32), p=0.002). A three-group staging system derived from this model was powerfully predictive of mortality (2.23 (1.85–2.69), p<0.0001).CALIPER-derived parameters, in particular PVV, are more accurate prognostically than traditional visual CT scores. Quantitative tools such as CALIPER have the potential to improve staging systems in IPF.
Collapse
|
43
|
Park SH. Pulmonary embolism is more prevalent than deep vein thrombosis in cases of chronic obstructive pulmonary disease and interstitial lung diseases. SPRINGERPLUS 2016; 5:1777. [PMID: 27795919 PMCID: PMC5061682 DOI: 10.1186/s40064-016-3475-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/05/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chronic lung diseases may have an influence on pulmonary vessel walls as well as on pulmonary haemodynamics. However, there is limited data on the occurrence of pulmonary embolism (PE) and deep vein thrombosis (DVT) in patients with chronic lung diseases, which have the potential to contribute to the development of pulmonary vascular abnormalities. We aimed to explore the prevalence of PE and DVT in patients with COPD and ILD. METHODS We evaluated the venous thromboembolism prevalence associated with COPD and ILD using Korean Health Insurance Review and Assessment Service (HIRA) data from January 2011 to December 2011. This database (HIRA-NPS-2011-0001) was created using random sampling of outpatients; 1,375,842 sample cases were collected, and 670,258 (age ≥40) cases were evaluated. Patients with COPD, ILDs, or CTD were identified using the International Classification of Disease-10 diagnostic codes. RESULTS The PE prevalence rates per 100,000 persons for the study population with COPD, ILD, CTD, and the general population were 1185, 1746, 412, and 113, respectively, while the DVT prevalence for each group was 637, 582, 563, and 138, respectively. CONCLUSIONS PE prevalence was significantly higher than that of DVT in patients with COPD or ILDs, while the prevalence of PE was lower than that for DVT in the general population or in patients with CTD.
Collapse
Affiliation(s)
- Sun Hyo Park
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, 56 Dalseong-ro, Jung-gu, Daegu, 41931 Republic of Korea
| |
Collapse
|
44
|
de Raaf MA, Herrmann FE, Schalij I, de Man FS, Vonk-Noordegraaf A, Guignabert C, Wollin L, Bogaard HJ. Tyrosine kinase inhibitor BIBF1000 does not hamper right ventricular pressure adaptation in rats. Am J Physiol Heart Circ Physiol 2016; 311:H604-12. [DOI: 10.1152/ajpheart.00656.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/20/2016] [Indexed: 01/05/2023]
Abstract
BIBF1000 is a small molecule tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), and platelet-derived growth factor receptor (PDGFR) and is a powerful inhibitor of fibrogenesis. BIBF1000 is very similar to BIBF1120 (nintedanib), a drug recently approved for the treatment of idiopathic pulmonary fibrosis (IPF). A safety concern pertaining to VEGFR, FGFR, and PDGFR inhibition is the possible interference with right ventricular (RV) responses to an increased afterload, which could adversely affect clinical outcome in patients with IPF who developed pulmonary hypertension. We tested the effect of BIBF1000 on the adaptation of the RV in rats subjected to mechanical pressure overload. BIBF1000 was administered for 35 days in pulmonary artery-banded (PAB) rats. RV adaptation was assessed by echocardiography, pressure volume loop analysis, histology, and determination of atrial natriuretic peptide (ANP) expression. BIBF1000 treatment resulted in growth attenuation but had no effects on RV function after PAB, given absence of changes in cardiac index, end-systolic elastance, connective tissue disposition, and capillary density. We conclude that, in this experimental model of increased afterload, combined VEGFR, FGFR, and PDGFR inhibition does not hamper RV adaptation to pressure overload.
Collapse
Affiliation(s)
- Michiel Alexander de Raaf
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, School of Medicine, Kremlin-Bicêtre, France
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | | | - Ingrid Schalij
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Frances S. de Man
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| | - Christophe Guignabert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Sud and Université Paris-Saclay, School of Medicine, Kremlin-Bicêtre, France
| | - Lutz Wollin
- Boehringer Ingelheim Pharma, Dept. Respiratory Diseases Research, Biberach, Germany
| | - Harm Jan Bogaard
- Department of Pulmonology, VU University Medical Center, Institute for Cardiovascular Research, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Iyer AKV, Ramesh V, Castro CA, Kaushik V, Kulkarni YM, Wright CA, Venkatadri R, Rojanasakul Y, Azad N. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF. J Cell Biochem 2016; 116:2484-93. [PMID: 25919965 DOI: 10.1002/jcb.25192] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Anand Krishnan V Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Vani Ramesh
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Carlos A Castro
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Yogesh M Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Clayton A Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Rajkumar Venkatadri
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, Virginia
| |
Collapse
|
46
|
Yamashita M. Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2016; 9:111-21. [PMID: 26823655 PMCID: PMC4725607 DOI: 10.4137/ccrpm.s33856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/03/2015] [Accepted: 11/23/2015] [Indexed: 01/26/2023]
Abstract
The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
47
|
Heise RL, Link PA, Farkas L. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Front Pediatr 2016; 4:80. [PMID: 27583245 PMCID: PMC4988064 DOI: 10.3389/fped.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Patrick A Link
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University , Richmond, VA , USA
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, School of Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
48
|
Barnes JC, Lumsden RV, Worrell J, Counihan IP, O'Beirne SL, Belperio JA, Fabre A, Donnelly SC, Boylan D, Kane R, Keane MP. CXCR3 Requirement for the Interleukin-13-Mediated Up-Regulation of Interleukin-13Rα2 in Pulmonary Fibroblasts. Am J Respir Cell Mol Biol 2015; 53:217-25. [PMID: 25514189 DOI: 10.1165/rcmb.2013-0433oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibrosis and abnormal vascularity. IL-13, a profibrotic cytokine that plays a role in IPF, functions through the Jak/STAT pathway after binding to the IL-13 receptor α1 (IL-13Rα1)/IL-4Rα complex. IL-13 also binds to IL-13Rα2, which has been thought to function as a nonsignaling decoy receptor, although possible signaling roles of this receptor have been proposed. CXCR3 and its IFN-inducible ligands-CXCL9, CXCL10, and CXCL11-have been implicated in vascular remodeling and fibroblast motility during the development of IPF. In this study, CXCR3 expression was demonstrated in cultured pulmonary fibroblasts from wild-type BALB/c mice and was found to be necessary for the IL-13-mediated gene and protein up-regulation of IL-13Rα2. In fibroblasts from CXCR3-deficient mice, STAT6 activation was prolonged. This study is the first to demonstrate the expression of CXCR3 in fibroblasts and its association with the expression of IL-13Rα2. Taken together, the results from this study point strongly to a requirement for CXCR3 for IL-13-mediated IL-13Rα2 gene expression. Understanding the function of CXCR3 in IL-13-mediated lung injury may lead to novel approaches to combat the development of pulmonary fibrosis, whether by limiting the effects of IL-13 or by manipulation of angiostatic pathways. The elucidation of the complex relationship between these antifibrotic receptors and manipulation of the CXCR3-mediated regulation of IL-13Rα2 may represent a novel therapeutic modality in cases of acute lung injury or chronic inflammation that may progress to fibrosis.
Collapse
Affiliation(s)
- Jennifer C Barnes
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Robert V Lumsden
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Julie Worrell
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Ian P Counihan
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sarah L O'Beirne
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - John A Belperio
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | | | - Seamas C Donnelly
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.,4 Respiratory Medicine, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Denise Boylan
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Rosemary Kane
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael P Keane
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.,4 Respiratory Medicine, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| |
Collapse
|
49
|
The Role of CXC Chemokines in Pulmonary Fibrosis of Systemic Lupus Erythematosus Patients. Arch Immunol Ther Exp (Warsz) 2015; 63:465-73. [DOI: 10.1007/s00005-015-0356-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
50
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrosing interstitial pneumonia of unknown aetiology that usually leads to respiratory failure and death within 5 years of diagnosis. Alveolar epithelial cell injury, disruption of alveolar capillary membrane integrity and abnormal vascular repair and remodelling have all been proposed as possible pathogenic mechanisms. This review summarizes our current knowledge of the abnormalities in vascular remodelling observed in IPF and highlights several of the cytokines thought to play a pathogenic role, which may ultimately prove to be future therapeutic targets.
Collapse
Affiliation(s)
- S Barratt
- From the Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Southmead BS10 5NB, UK
| | - A Millar
- From the Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Southmead BS10 5NB, UK
| |
Collapse
|