1
|
Zhang K, Wang T, Huang X, Wu P, Shen L, Yang Y, Wan W, Sun S, Zhang Z. Ultrasound-mediated nanomaterials for the treatment of inflammatory diseases. ULTRASONICS SONOCHEMISTRY 2025; 114:107270. [PMID: 39961217 PMCID: PMC11875835 DOI: 10.1016/j.ultsonch.2025.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Sterile and infection-associated inflammatory diseases are becoming increasingly prevalent worldwide. Conventional drug therapies often entail significant drawbacks, such as the risk of drug overdose, the development of drug resistance in pathogens, and systemic adverse reactions, all of which can undermine the effectiveness of treatments for these conditions. Nanomaterials (NMs) have emerged as a promising tool in the treatment of inflammatory diseases due to their precise targeting capabilities, tunable characteristics, and responsiveness to external stimuli. Ultrasound (US), a non-invasive and effective treatment method, has been explored in combination with NMs to achieve enhanced therapeutic outcomes. This review provides a comprehensive overview of the recent advances in the use of US-mediated NMs for treating inflammatory diseases. A comprehensive introduction to the application and classification of US was first presented, emphasizing the advantages of US-mediated NMs and the mechanisms through which US and NMs interact to enhance anti-inflammatory therapy. Subsequently, specific applications of US-mediated NMs in sterile and infection-associated inflammation were summarized. Finally, the challenges and prospects of US-mediated NMs in clinical translation were discussed, along with an outline of future research directions. This review aims to provide insights to guide the development and improvement of US-mediated NMs for more effective therapeutic interventions in inflammatory diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Xingyong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Peng Wu
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Lufan Shen
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Yuanyuan Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, PR China; Key Laboratory of Immunodermatology, National Health Commission of the People's Republic of China, The First Hospital of China Medical University, PR China; National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, PR China.
| | - Siyu Sun
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, PR China; Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, PR China.
| | - Zhan Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, PR China; Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
2
|
Yimthin T, Phunpang R, Wright SW, Thiansukhon E, Chaisuksant S, Chetchotisakd P, Tanwisaid K, Chuananont S, Morakot C, Sangsa N, Silakun W, Chayangsu S, Buasi N, Lertmemongkolchai G, Chantratita N, West TE. Lack of Association of TLR1 and TLR5 Coding Variants with Mortality in a Large Multicenter Cohort of Melioidosis Patients. Am J Trop Med Hyg 2024; 110:994-998. [PMID: 38507807 PMCID: PMC11066355 DOI: 10.4269/ajtmh.23-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/20/2023] [Indexed: 03/22/2024] Open
Abstract
Melioidosis, infection caused by Burkholderia pseudomallei, is characterized by robust innate immune responses. We have previously reported associations of TLR1 single nucleotide missense variant rs76600635 with mortality and of TLR5 nonsense variant rs5744168 with both bacteremia and mortality in single-center studies of patients with melioidosis in northeastern Thailand. The objective of this study was to externally validate the associations of rs76600635 and rs5744168 with bacteremia and mortality in a large multicenter cohort of melioidosis patients. We genotyped rs76600635 and rs5744168 in 1,338 melioidosis patients enrolled in a prospective parent cohort study conducted at nine hospitals in northeastern Thailand. The genotype frequencies of rs76600635 did not differ by bacteremia status (P = 0.27) or 28-day mortality (P = 0.84). The genotype frequencies of rs5744168 did not differ by either bacteremia status (P = 0.46) or 28-day mortality (P = 0.10). Assuming a dominant genetic model, there was no association of the rs76600635 variant with bacteremia (adjusted odds ratio [OR], 0.75; 95% CI, 0.54-1.04, P = 0.08) or 28-day mortality (adjusted OR, 0.96; 95% CI, 0.71-1.28, P = 0.77). There was no association of the rs5744168 variant with bacteremia (adjusted OR, 1.24; 95% CI, 0.76-2.03, P = 0.39) or 28-day mortality (adjusted OR, 1.22; 95% CI, 0.83-1.79, P = 0.21). There was also no association of either variant with 1-year mortality. We conclude that in a large multicenter cohort of patients hospitalized with melioidosis in northeastern Thailand, neither TLR1 missense variant rs76600635 nor TLR5 nonsense variant rs5744168 is associated with bacteremia or mortality.
Collapse
Affiliation(s)
- Thatcha Yimthin
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shelton W. Wright
- Department of Pediatrics, University of Washington, Seattle, Washington
| | | | - Seksan Chaisuksant
- Department of Medicine, Khon Kaen Regional Hospital, Khon Kaen, Thailand
| | | | | | | | - Chumpol Morakot
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | | | | | | | - Noppol Buasi
- Department of Medicine, Sisaket Hospital, Sisaket, Thailand
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Science, Chiang Mai University, Chiang Mai, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories, Khon Kaen University, Khon Kaen, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, University of Washington, Seattle, Washington
- Department Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Tuckey AN, Brandon A, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Sutherland E, Williams V, Spadafora D, Barrington RA, Alvarez DF, Mulekar MS, Simmons JD, Fouty BW, Audia JP. Amyloid-β and caspase-1 are indicators of sepsis and organ injury. ERJ Open Res 2024; 10:00572-2023. [PMID: 38410714 PMCID: PMC10895426 DOI: 10.1183/23120541.00572-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 02/28/2024] Open
Abstract
Background Sepsis is a life-threatening condition that results from a dysregulated host response to infection, leading to organ dysfunction. Despite the prevalence and associated socioeconomic costs, treatment of sepsis remains limited to antibiotics and supportive care, and a majority of intensive care unit (ICU) survivors develop long-term cognitive complications post-discharge. The present study identifies a novel regulatory relationship between amyloid-β (Aβ) and the inflammasome-caspase-1 axis as key innate immune mediators that define sepsis outcomes. Methods Medical ICU patients and healthy individuals were consented for blood and clinical data collection. Plasma cytokine, caspase-1 and Aβ levels were measured. Data were compared against indices of multiorgan injury and other clinical parameters. Additionally, recombinant proteins were tested in vitro to examine the effect of caspase-1 on a functional hallmark of Aβ, namely aggregation. Results Plasma caspase-1 levels displayed the best predictive value in discriminating ICU patients with sepsis from non-infected ICU patients (area under the receiver operating characteristic curve=0.7080). Plasma caspase-1 and the Aβ isoform Aβx-40 showed a significant positive correlation and Aβx-40 associated with organ injury. Additionally, Aβ plasma levels continued to rise from time of ICU admission to 7 days post-admission. In silico, Aβ harbours a predicted caspase-1 cleavage site, and in vitro studies demonstrated that caspase-1 cleaved Aβ to inhibit its auto-aggregation, suggesting a novel regulatory relationship. Conclusions Aβx-40 and caspase-1 are potentially useful early indicators of sepsis and its attendant organ injury. Additionally, Aβx-40 has emerged as a potential culprit in the ensuing development of post-ICU syndrome.
Collapse
Affiliation(s)
- Amanda N. Tuckey
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Arcole Brandon
- Center for Lung Biology, University of South Alabama College of Medicine
| | - Yasaman Eslaamizaad
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Waqar Siddiqui
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Talha Nawaz
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Christopher Clarke
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
| | - Erica Sutherland
- Department of Internal Medicine, University of South Alabama College of Medicine
| | - Veronica Williams
- Department of Laboratory Medicine, University of South Alabama University Hospital
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Robert A. Barrington
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
- Flow Cytometry Shared Resources Laboratory, University of South Alabama College of Medicine
| | - Diego F. Alvarez
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Madhuri S. Mulekar
- Department of Mathematics and Statistics, University of South Alabama College of Arts and Sciences
| | - Jon D. Simmons
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
- Department of Surgery, University of South Alabama College of Medicine
| | - Brian W. Fouty
- Center for Lung Biology, University of South Alabama College of Medicine
- Department of Internal Medicine, University of South Alabama College of Medicine
- Division of Pulmonary and Critical Care Medicine, University of South Alabama College of Medicine
- Department of Pharmacology College of Medicine, University of South Alabama College of Medicine
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine
- Center for Lung Biology, University of South Alabama College of Medicine
| |
Collapse
|
4
|
Chen D, Wang H, Cai X. Curcumin interferes with sepsis-induced cardiomyocyte apoptosis via TLR1 inhibition. Rev Port Cardiol 2023; 42:209-221. [PMID: 36702348 DOI: 10.1016/j.repc.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Sepsis-induced cardiomyopathy is the leading cause of death in sepsis and is characterized by reversible myocardial depression. However, the specific mechanisms responsible for myocardial injury in sepsis are not known. The present study used bioinformatic analysis to explore the possible mechanisms of sepsis-induced myocardial injury and the therapeutic potential of curcumin. METHODS The GSE125042 microarray gene expression matrix was obtained from the Gene Expression Omnibus database, which includes 10 septic cardiomyocyte samples from cecum ligation perforation constructs and 10 sham-operated groups cardiomyocyte samples. Background correction and matrix data normalization were performed using the robust multiarray average algorithm. Differentially expressed genes (DEGs) screening was performed using the Limma R package expression matrix, and whole gene analysis was performed using the weighted gene co-expression network analysis R package to construct gene networks and identify modules. Enrichment analysis and gene set enrichment analysis was performed on the genes to be selected. Construct cellular and animal models of myocardial injury in sepsis were assessed and the effects of curcumin on a rat or cardiac myocytes were observed. RESULTS A total of 2876 DEGs were screened based on the GSE125042 chip, of which 1424 genes were upregulated and 1452 genes were down regulated. WGCNA analysis of the whole genes was also performed and a total of 20 gene modules were generated. Among them, the selected TLR1 gene was present in the most strongly correlated Brown module. Enrichment analysis of the upregulated DEGs with the Brown module showed that they were significantly enriched in biological processes related to ribosomal protein complex generation, cellular components related to phagocytic vesicles and molecular functions related to Toll-like receptor binding, affecting cardiomyocyte survival as a target for molecular intervention in septic cardiomyopathy. Animal experiments showed that curcumin reduced inflammation levels, improved cardiac function and increased survival in rats with septic myocardial injury. Cellular experiments showed that curcumin increased the survival rate of lipopolysaccharide-treated cardiomyocytes and down regulated TLR1 expression and inhibited NF-κB phosphorylation in cells in a dose-dependent manner. Molecular docking analysis revealed that curcumin interacted with TLR1 by hydrogen bonding and could be stably bound to inhibit the biological function of TLR1. CONCLUSION Our study shows that curcumin attenuates myocardial injury in sepsis by inhibiting TLR1 expression, which provides a molecular theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, China
| | - Hongwu Wang
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, China
| | - Xingjun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, China.
| |
Collapse
|
5
|
TLRs Gene Polymorphisms Associated with Pneumonia before and during COVID-19 Pandemic. Diagnostics (Basel) 2022; 13:diagnostics13010121. [PMID: 36611413 PMCID: PMC9818199 DOI: 10.3390/diagnostics13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The progression of infectious diseases depends on the characteristics of a patient's innate immunity, and the efficiency of an immune system depends on the patient's genetic factors, including SNPs in the TLR genes. In this pilot study, we determined the frequency of alleles in these SNPs in a subset of patients with pneumonia. METHODS This study assessed six SNPs from TLR genes: rs5743551 (TLR1), rs5743708, rs3804100 (TLR2), rs4986790 (TLR4), rs5743810 (TLR6), and rs3764880 (TLR8). Three groups of patients participated in this study: patients with pneumonia in 2019 (76 samples), patients with pneumonia caused by SARS-CoV-2 in 2021 (85 samples), and the control group (99 samples). RESULTS The allele and genotype frequencies obtained for each group were examined using four genetic models. Significant results were obtained when comparing the samples obtained from individuals with pneumonia before the spread of SARS-CoV-2 and from the controls for rs5743551 (TLR1) and rs3764880 (TLR8). Additionally, the comparison of COVID-19-related pneumonia cases and the control group revealed a significant result for rs3804100-G (TLR2). CONCLUSIONS Determining SNP allele frequencies and searching for their associations with the course of pneumonia are important for personalized patient management. However, our results need to be comprehensively assessed in consideration of other clinical parameters.
Collapse
|
6
|
Abstract
Since the identification of sickle cell trait as a heritable form of resistance to malaria, candidate gene studies, linkage analysis paired with sequencing, and genome-wide association (GWA) studies have revealed many examples of genetic resistance and susceptibility to infectious diseases. GWA studies enabled the identification of many common variants associated with small shifts in susceptibility to infectious diseases. This is exemplified by multiple loci associated with leprosy, malaria, HIV, tuberculosis, and coronavirus disease 2019 (COVID-19), which illuminate genetic architecture and implicate pathways underlying pathophysiology. Despite these successes, most of the heritability of infectious diseases remains to be explained. As the field advances, current limitations may be overcome by applying methodological innovations such as cellular GWA studies and phenome-wide association (PheWA) studies as well as by improving methodological rigor with more precise case definitions, deeper phenotyping, increased cohort diversity, and functional validation of candidate loci in the laboratory or human challenge studies.
Collapse
Affiliation(s)
- Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA;
| | - Benjamin H Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
Battaglini D, Al-Husinat L, Normando AG, Leme AP, Franchini K, Morales M, Pelosi P, Rocco PR. Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res 2022; 23:318. [PMID: 36403043 PMCID: PMC9675217 DOI: 10.1186/s12931-022-02233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
In the last decade, research on acute respiratory distress syndrome (ARDS) has made considerable progress. However, ARDS remains a leading cause of mortality in the intensive care unit. ARDS presents distinct subphenotypes with different clinical and biological features. The pathophysiologic mechanisms of ARDS may contribute to the biological variability and partially explain why some pharmacologic therapies for ARDS have failed to improve patient outcomes. Therefore, identifying ARDS variability and heterogeneity might be a key strategy for finding effective treatments. Research involving studies on biomarkers and genomic, metabolomic, and proteomic technologies is increasing. These new approaches, which are dedicated to the identification and quantitative analysis of components from biological matrixes, may help differentiate between different types of damage and predict clinical outcome and risk. Omics technologies offer a new opportunity for the development of diagnostic tools and personalized therapy in ARDS. This narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in ARDS research.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Ana Gabriela Normando
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Adriana Paes Leme
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Kleber Franchini
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Marcelo Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Brinkworth JF, Shaw JG. On race, human variation, and who gets and dies of sepsis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9544695 DOI: 10.1002/ajpa.24527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica F. Brinkworth
- Department of Anthropology University of Illinois Urbana‐Champaign Urbana Illinois USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Evolution, Ecology and Behavior University of Illinois Urbana‐Champaign Urbana Illinois USA
| | - J. Grace Shaw
- Department of Anthropology University of Illinois Urbana‐Champaign Urbana Illinois USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
9
|
Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond) 2022; 136:747-769. [PMID: 35621124 DOI: 10.1042/cs20210879] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain. Improving our mechanistic understanding of acute lung injury and its most common cause, infectious pneumonia, can advance our approach to precision targeted clinical interventions. Here, we review the pathogenesis of pneumonia and acute lung injury, including how respiratory infections and lung injury disrupt lung homoeostasis, and provide an overview of respiratory microbial pathogenesis, the lung microbiome, and interventions that have been demonstrated to improve outcomes-or not-in human clinical trials.
Collapse
|
10
|
Lam SY, Mommersteeg MC, Yu B, Broer L, Spaander MCW, Frost F, Weiss S, Völzke H, Lerch MM, Schöttker B, Zhang Y, Stocker H, Brenner H, Levy D, Hwang SJ, Wood AC, Rich SS, Rotter JI, Taylor KD, Tracy RP, Kabagambe EK, Leja M, Klovins J, Peculis R, Rudzite D, Nikitina-Zake L, Skenders G, Rovite V, Uitterlinden A, Kuipers EJ, Fuhler GM, Homuth G, Peppelenbosch MP. Toll-Like Receptor 1 Locus Re-examined in a Genome-Wide Association Study Update on Anti-Helicobacter pylori IgG Titers. Gastroenterology 2022; 162:1705-1715. [PMID: 35031300 PMCID: PMC11734630 DOI: 10.1053/j.gastro.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS A genome-wide significant association between anti-Helicobacter pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated for individuals of European ancestry, but not uniformly replicated. We re-investigated this association in an updated genome-wide association study (GWAS) meta-analysis for populations with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore functional implications of genetic variation at the TLR1/6/10 locus. METHODS The dichotomous GWAS (25% individuals exhibiting highest anti-H pylori IgG titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 and n = 9676, all of European ancestry. Longitudinal analysis of serologic data was performed on H pylori-eradicated subjects (n = 132) and patients under surveillance for premalignant gastric lesions (n = 107). TLR1/6/10 surface expression, TLR1 mRNA, and cytokine levels were measured in leukocyte subsets of healthy subjects (n = 26) genotyped for TLR1/6/10 variants. RESULTS The association of the TLR1/6/10 locus with anti-H pylori IgG titers (rs12233670; β = -0.267 ± SE 0.034; P = 4.42 × 10-15) presented with high heterogeneity and failed replication. Anti-H pylori IgG titers declined within 2-4 years after eradication treatment (P = 0.004), and decreased over time in patients with premalignant gastric lesions (P < 0.001). Variation at the TLR1/6/10 locus affected TLR1-mediated cytokine production and TLR1 surface expression on monocytes (P = 0.016) and neutrophils (P = 0.030), but not mRNA levels. CONCLUSIONS The association between anti-H pylori IgG titers and TLR1/6/10 locus was not replicated across cohorts, possibly owing to dependency of anti-H pylori IgG titers on therapy, clearance, and antibody decay. H pylori-mediated immune cell activation is partly mediated via TLR1 signaling, which in turn is affected by genetic variation.
Collapse
Affiliation(s)
- Suk Yee Lam
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bingting Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany; Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Russell P Tracy
- Laboratory for Clinical Biochemistry Research, University of Vermont College of Medicine, Colchester, Vermont, USA
| | | | - Marcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Dace Rudzite
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | - Girts Skenders
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Boahen CK, Temba GS, Kullaya VI, Matzaraki V, Joosten LAB, Kibiki G, Mmbaga BT, van der Ven A, de Mast Q, Netea MG, Kumar V. A functional genomics approach in Tanzanian population identifies distinct genetic regulators of cytokine production compared to European population. Am J Hum Genet 2022; 109:471-485. [PMID: 35167808 DOI: 10.1016/j.ajhg.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 12/23/2022] Open
Abstract
Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research.
Collapse
Affiliation(s)
- Collins K Boahen
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Godfrey S Temba
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania; Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania; Department of Paediatrics, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi 251, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi 251, Tanzania
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53115, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9700, the Netherlands; Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Medical Sciences Complex, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
12
|
Mikacenic C, Bhatraju P, Robinson-Cohen C, Kosamo S, Fohner AE, Dmyterko V, Long SA, Cerosaletti K, Calfee CS, Matthay MA, Walley KR, Russell JA, Christie JD, Meyer NJ, Christiani DC, Wurfel MM. Single Nucleotide Variant in FAS Associates With Organ Failure and Soluble Fas Cell Surface Death Receptor in Critical Illness. Crit Care Med 2022; 50:e284-e293. [PMID: 34593707 PMCID: PMC8863632 DOI: 10.1097/ccm.0000000000005333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Multiple organ failure in critically ill patients is associated with poor prognosis, but biomarkers contributory to pathogenesis are unknown. Previous studies support a role for Fas cell surface death receptor (Fas)-mediated apoptosis in organ dysfunction. Our objectives were to test for associations between soluble Fas and multiple organ failure, identify protein quantitative trait loci, and determine associations between genetic variants and multiple organ failure. DESIGN Retrospective observational cohort study. SETTING Four academic ICUs at U.S. hospitals. PATIENTS Genetic analyses were completed in a discovery (n = 1,589) and validation set (n = 863). Fas gene expression and flow cytometry studies were completed in outpatient research participants (n = 250). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS In discovery and validation sets of critically ill patients, we tested for associations between enrollment plasma soluble Fas concentrations and Sequential Organ Failure Assessment score on day 3. We conducted a genome-wide association study of plasma soluble Fas (discovery n = 1,042) and carried forward a single nucleotide variant in the FAS gene, rs982764, for validation (n = 863). We further tested whether the single nucleotide variant in FAS (rs982764) was associated with Sequential Organ Failure Assessment score, FAS transcriptional isoforms, and Fas cell surface expression. Higher plasma soluble Fas was associated with higher day 3 Sequential Organ Failure Assessment scores in both the discovery (β = 4.07; p < 0.001) and validation (β = 6.96; p < 0.001) sets. A single nucleotide variant in FAS (rs982764G) was associated with lower plasma soluble Fas concentrations and lower day 3 Sequential Organ Failure Assessment score in meta-analysis (-0.21; p = 0.02). Single nucleotide variant rs982764G was also associated with a lower relative expression of the transcript for soluble as opposed to transmembrane Fas and higher cell surface expression of Fas on CD4+ T cells. CONCLUSIONS We found that single nucleotide variant rs982764G was associated with lower plasma soluble Fas concentrations in a discovery and validation population, and single nucleotide variant rs982764G was also associated with lower organ dysfunction on day 3. These findings support further study of the Fas pathway as a potential mediator of organ dysfunction in critically ill patients.
Collapse
Affiliation(s)
| | - Pavan Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | | | - Susanna Kosamo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Alison E. Fohner
- Department of Epidemiology, Institute of Public Health Genetics, University of Washington, Seattle, WA
| | - Victoria Dmyterko
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | | | | | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, CA
| | - Michael A. Matthay
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, CA
| | - Keith R. Walley
- St. Paul’s Hospital, University of British Columbia, Vancouver, BC
| | - James A. Russell
- St. Paul’s Hospital, University of British Columbia, Vancouver, BC
| | - Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David C. Christiani
- Harvard University School of Public Health and Division of Pulmonary and Critical Care, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Barnes AB, Keener RM, Schott BH, Wang L, Valdivia RH, Ko DC. Human genetic diversity regulating the TLR10/TLR1/TLR6 locus confers increased cytokines in response to Chlamydia trachomatis. HGG ADVANCES 2022; 3:100071. [PMID: 35047856 PMCID: PMC8756536 DOI: 10.1016/j.xhgg.2021.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Human genetic diversity can have profound effects on health outcomes upon exposure to infectious agents. For infections with Chlamydia trachomatis (C. trachomatis), the wide range of genital and ocular disease manifestations are likely influenced by human genetic differences that regulate interactions between C. trachomatis and host cells. We leveraged this diversity in cellular responses to demonstrate the importance of variation at the Toll-like receptor 1 (TLR1), TLR6, and TLR10 locus to cytokine production in response to C. trachomatis. We determined that a single-nucleotide polymorphism (SNP) (rs1057807), located in a region that forms a loop with the TLR6 promoter, is associated with increased expression of TLR1, TLR6, and TLR10 and secreted levels of ten C. trachomatis-induced cytokines. Production of these C. trachomatis-induced cytokines is primarily dependent on MyD88 and TLR6 based on experiments using inhibitors, blocking antibodies, RNAi, and protein overexpression. Population genetic analyses further demonstrated that the mean IL-6 response of cells from two European populations were higher than the mean response of cells from three African populations and that this difference was partially attributable to variation in rs1057807 allele frequency. In contrast, a SNP associated with a different pro-inflammatory cytokine (rs2869462 associated with the chemokine CXCL10) exhibited an opposite response, underscoring the complexity of how different genetic variants contribute to an individual's immune response. This multidisciplinary study has identified a long-range chromatin interaction and genetic variation that regulates TLR6 to broaden our understanding of how human genetic variation affects the C. trachomatis-induced immune response.
Collapse
Affiliation(s)
- Alyson B. Barnes
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Rachel M. Keener
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Benjamin H. Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Raphael H. Valdivia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
14
|
Abstract
Toll-like receptors were discovered as proteins playing a crucial role in the dorsoventral patterning during embryonic development in the Drosophila melanogaster (D. melanogaster) almost 40 years ago. Subsequently, further research also showed a role of the Toll protein or Toll receptor in the recognition of Gram-positive bacterial and fungal pathogens infecting D. melanogaster. In 1997, the human homolog was reported and the receptor was named the Toll-like receptor 4 (TLR4) that recognizes lipopolysaccharide (LPS) of the Gram-negative bacteria as a pathogen-associated molecular pattern (PAMP). Identification of TLR4 in humans filled the long existing gap in the field of infection and immunity, addressing the mystery surrounding the recognition of foreign pathogens/microbes by the immune system. It is now known that mammals (mice and humans) express 13 different TLRs that are expressed on the outer cell membrane or intracellularly, and which recognize different PAMPs or microbe-associated molecular patterns (MAMPs) and death/damage-associated molecular patterns (DAMPs) to initiate the protective immune response. However, their dysregulation generates profound and prolonged pro-inflammatory immune responses responsible for different inflammatory and immune-mediated diseases. This chapter provides an overview of TLRs in the control of the immune response, their association with different diseases, including TLR single nucleotide polymorphisms (SNPs), interactions with microRNAs (miRs), use in drug development and vaccine design, and expansion in neurosciences to include pain, addiction, metabolism, reproduction, and wound healing.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - James E Barrett
- Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Neural Sciences, Centre for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Mabrey FL, Morrell ED, Wurfel MM. TLRs in COVID-19: How they drive immunopathology and the rationale for modulation. Innate Immun 2021; 27:503-513. [PMID: 34806446 PMCID: PMC8762091 DOI: 10.1177/17534259211051364] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is both a viral illness and a disease of immunopathology. Proximal events within the innate immune system drive the balance between deleterious inflammation and viral clearance. We hypothesize that a divergence between the generation of excessive inflammation through over activation of the TLR associated myeloid differentiation primary response (MyD88) pathway relative to the TIR-domain-containing adaptor-inducing IFN-β (TRIF) pathway plays a key role in COVID-19 severity. Both viral elements and damage associated host molecules act as TLR ligands in this process. In this review, we detail the mechanism for this imbalance in COVID-19 based on available evidence, and we discuss how modulation of critical elements may be important in reducing severity of disease.
Collapse
Affiliation(s)
- F Linzee Mabrey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 7284University of Washington, USA
| | - Eric D Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 7284University of Washington, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, 7284University of Washington, USA
| |
Collapse
|
16
|
Onyishi CU, May RC. Human immune polymorphisms associated with the risk of cryptococcal disease. Immunology 2021; 165:143-157. [PMID: 34716931 PMCID: PMC9426616 DOI: 10.1111/imm.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause lethal cryptococcal meningitis in immunocompromised individuals such as those with HIV/AIDS. In addition, cryptococcal infections occasionally arise in immunocompetent individuals or those with previously undiagnosed immunodeficiencies. The course of cryptococcosis is highly variable in both patient groups, and there is rapidly growing evidence that genetic polymorphisms may have a significant impact on the trajectory of disease. Here, we review what is currently known about the nature of these polymorphisms and their impact on host response to C. neoformans infection. Thus far, polymorphisms in Fc gamma receptors, mannose‐binding lectin, Dectin‐2, Toll‐like receptors and macrophage colony‐stimulating factor have been associated with susceptibility to cryptococcal disease. Notably, however, in some cases the impact of these polymorphisms depends on the genetic background of the population; for example, the FCGR3A 158 F/V polymorphism was associated with an increased risk of cryptococcal disease in both HIV‐positive and HIV‐negative white populations, but not in Han Chinese patients. In most cases, the precise mechanism by which the identified polymorphisms influence disease progression remains unclear, although impaired fungal recognition and phagocytosis by innate immune cells appears to play a major role. Finally, we highlight outstanding questions in the field and emphasize the need for future research to include more diverse populations in their genetic association studies.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Karnaushkina MA, Guryev AS, Mironov KO, Dunaeva EA, Korchagin VI, Bobkova OY, Vasilyeva IS, Kassina DV, Litvinova MM. Associations of Toll-like Receptor Gene Polymorphisms with NETosis Activity as Prognostic Criteria for the Severity of Pneumonia. Sovrem Tekhnologii Med 2021; 13:47-53. [PMID: 34603755 PMCID: PMC8482823 DOI: 10.17691/stm2021.13.3.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to determine the molecular genetic prognostic criteria for the severity of the course pneumonia based on the analysis of the association of genetic polymorphism in toll-like receptors with the severity of NETosis.
Collapse
Affiliation(s)
- M A Karnaushkina
- Professor, Department of Internal Diseases with a Course of Cardiology and Functional Diagnostics named after Academician V.S. Moiseev; Peoples' Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - A S Guryev
- Senior Researcher, Research Laboratory; Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2-1 Schepkina St., Moscow, 129110, Russia
| | - K O Mironov
- Head of the Research Group for the Development of New Methods for Identifying Genetic Polymorphisms; Central Research Institute of Epidemiology of the Federal Service on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 3а Novogireevskaya St., Moscow, 111123, Russia
| | - E A Dunaeva
- Researcher, Research Group for the Development of New Methods for Identifying Genetic Polymorphisms; Central Research Institute of Epidemiology of the Federal Service on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 3а Novogireevskaya St., Moscow, 111123, Russia
| | - V I Korchagin
- Researcher, Research Group for the Development of New Methods for Identifying Genetic Polymorphisms; Central Research Institute of Epidemiology of the Federal Service on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 3а Novogireevskaya St., Moscow, 111123, Russia
| | - O Yu Bobkova
- PhD Student, Department of Hospital Therapy No.2; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - I S Vasilyeva
- Assistant, Department of Hospital Therapy No.2; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia
| | - D V Kassina
- Researcher, Research Laboratory; Moscow Regional Research Clinical Institute named after M.F. Vladimirsky, 61/2-1 Schepkina St., Moscow, 129110, Russia
| | - M M Litvinova
- Associate Professor, Department of Medical Genetics; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya St., Moscow, 119991, Russia; Geneticist, Center for Personalized Medicine; Moscow Clinical Scientific Center named after A.S. Loginov, Moscow Healthcare Department, 86 Shosse Entuziastov, Moscow, 111123, Russia
| |
Collapse
|
18
|
Kashani K, Forni LG. Extracorporeal Blood Purification Is Appropriate in Critically Ill Patients with COVID-19 and Multiorgan Failure: CON. KIDNEY360 2021; 3:419-422. [PMID: 35582178 PMCID: PMC9034827 DOI: 10.34067/kid.0007382020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/12/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Kianoush Kashani
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota,Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lui G. Forni
- Department of Clinical & Experimental Medicine, University of Surrey and Royal Surrey County Hospital NHS Foundation Trust, Guildford, United Kingdom
| |
Collapse
|
19
|
Hook JS, Patel PA, O'Malley A, Xie L, Kavanaugh JS, Horswill AR, Moreland JG. Lipoproteins from Staphylococcus aureus Drive Neutrophil Extracellular Trap Formation in a TLR2/1- and PAD-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 207:966-973. [PMID: 34290104 DOI: 10.4049/jimmunol.2100283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
Neutrophils, polymorphonuclear leukocytes (PMN), play a critical role in the innate immune response to Staphylococcus aureus, a pathogen that continues to be associated with significant morbidity and mortality. Neutrophil extracellular trap (NET) formation is involved in ensnaring and killing of S. aureus, but this host-pathogen interaction also leads to host tissue damage. Importantly, NET components including neutrophil proteases are under consideration as therapeutic targets in a variety of disease processes. Although S. aureus lipoproteins are recognized to activate cells via TLRs, specific mechanisms of interaction with neutrophils are poorly delineated. We hypothesized that a lipoprotein-containing cell membrane preparation from methicillin-resistant S. aureus (MRSA-CMP) would elicit PMN activation, including NET formation. We investigated MRSA-CMP-elicited NET formation, regulated elastase release, and IL-8 production in human neutrophils. We studied PMN from healthy donors with or without a common single-nucleotide polymorphism in TLR1, previously demonstrated to impact TLR2/1 signaling, and used cell membrane preparation from both wild-type methicillin-resistant S. aureus and a mutant lacking palmitoylated lipoproteins (lgt). MRSA-CMP elicited NET formation, elastase release, and IL-8 production in a lipoprotein-dependent manner. TLR2/1 signaling was involved in NET formation and IL-8 production, but not elastase release, suggesting that MRSA-CMP-elicited elastase release is not mediated by triacylated lipoproteins. MRSA-CMP also primed neutrophils for enhanced NET formation in response to a subsequent stimulus. MRSA-CMP-elicited NET formation did not require Nox2-derived reactive oxygen species and was partially dependent on the activity of peptidyl arginine deiminase (PAD). In conclusion, lipoproteins from S. aureus mediate NET formation via TLR2/1 with clear implications for patients with sepsis.
Collapse
Affiliation(s)
- Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Parth A Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aidan O'Malley
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lihua Xie
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO.,Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO; and
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
20
|
De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol 2021; 93:e13043. [PMID: 33783027 PMCID: PMC8250184 DOI: 10.1111/sji.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Alexis Hipólito García
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Dolores Moreno
- Chair of General Pathology and PathophysiologyFaculty of MedicineCentral University of VenezuelaCaracasVenezuela
| | - Marián Hajduch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| |
Collapse
|
21
|
Genome-Wide Linkage Analysis of the Risk of Contracting a Bloodstream Infection in 47 Pedigrees Followed for 23 Years Assembled From a Population-Based Cohort (the HUNT Study). Crit Care Med 2021; 48:1580-1586. [PMID: 32885941 DOI: 10.1097/ccm.0000000000004520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Bloodstream infection is an important cause of death worldwide. The main objective of this study was to identify genetic loci linked to risk of contracting a bloodstream infection. DESIGN Genome-wide linkage analysis. SETTING Population-based, Norwegian cohort, followed between 1995 and 2017. SUBJECTS Among 69,423 genotyped subjects, there were 47 families with two or more second-degree relatives with bloodstream infection in the follow-up period. There were 365 subjects in these families, of which 110 were affected. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The cohort was genotyped using Illumina HumanCoreExome (Illumina, San Diego, CA) arrays. Before linkage analysis, single-nucleotide polymorphisms were pruned and clumped. In nonparametric linkage analysis using an exponential model, we found three loci with a suggestive linkage to bloodstream infection, all on chromosome 4, at 46.6 centimorgan (logarithm of odds, 2.3), 57.7 centimorgan (logarithm of odds, 3.2), and 70.0 centimorgan (logarithm of odds, 2.1). At the peak of the lead region are three genes: TLR10, TLR1, and TLR6. CONCLUSIONS Variations in the TLR10/1/6 locus appear to be linked with the risk of contracting a bloodstream infection.
Collapse
|
22
|
Rowaiye AB, Okpalefe OA, Onuh Adejoke O, Ogidigo JO, Hannah Oladipo O, Ogu AC, Oli AN, Olofinase S, Onyekwere O, Rabiu Abubakar A, Jahan D, Islam S, Dutta S, Haque M. Attenuating the Effects of Novel COVID-19 (SARS-CoV-2) Infection-Induced Cytokine Storm and the Implications. J Inflamm Res 2021; 14:1487-1510. [PMID: 33889008 PMCID: PMC8057798 DOI: 10.2147/jir.s301784] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic constitutes an arduous global health challenge, and the increasing number of fatalities calls for the speedy pursuit of a remedy. This review emphasizes the changing aspects of the COVID-19 disease, featuring the cytokine storm's pathological processes. Furthermore, we briefly reviewed potential therapeutic agents that may modulate and alleviate cytokine storms. The literature exploration was made using PubMed, Embase, MEDLINE, Google scholar, and China National Knowledge Infrastructure databases to retrieve the most recent literature on the etiology, diagnostic markers, and the possible prophylactic and therapeutic options for the management of cytokine storm in patients hospitalized with COVID-19 disease. The causative agent, severe acute respiratory coronavirus-2 (SARS-CoV-2), continually threatens the efficiency of the immune system of the infected individuals. As the first responder, the innate immune system provides primary protection against COVID-19, affecting the disease's progression, clinical outcome, and prognosis. Evidence suggests that the fatalities associated with COVID-19 are primarily due to hyper-inflammation and an aberrant immune function. Accordingly, the magnitude of the release of pro-inflammatory cytokines such as interleukin (IL)-1, (IL-6), and tumor necrosis alpha (TNF-α) significantly differentiate between mild and severe cases of COVID-19. The early prediction of a cytokine storm is made possible by several serum chemistry and hematological markers. The prompt use of these markers for diagnosis and the aggressive prevention and management of a cytokine release syndrome is critical in determining the level of morbidity and fatality associated with COVID-19. The prophylaxis and the rapid treatment of cytokine storm by clinicians will significantly enhance the fight against the dreaded COVID-19 disease.
Collapse
Affiliation(s)
- Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | | | - Olukemi Onuh Adejoke
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Joyce Oloaigbe Ogidigo
- Bioresources Development Centre, Abuja, National Biotechnology Development Agency, Abuja, Nigeria
| | - Oluwakemi Hannah Oladipo
- Bioresources Development Centre, Ilorin, National Biotechnology Development Agency, Kwara State, Nigeria
| | - Amoge Chidinma Ogu
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Samson Olofinase
- Department of Genetics, Genomics, Bioinformatics, National Biotechnology Development Agency, Abuja, Nigeria
| | - Onyekachi Onyekwere
- Bioresources Development Centre, Ubulu-Uku, National Biotechnology Development Agency, Delta State, Nigeria
| | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, Gandaria, Dhaka, 1204, Bangladesh
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
23
|
Yasmin H, Varghese PM, Bhakta S, Kishore U. Pathogenesis and Host Immune Response in Leprosy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:155-177. [PMID: 34661895 DOI: 10.1007/978-3-030-67452-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Leprosy is an ancient insidious disease caused by Mycobacterium leprae, where the skin and peripheral nerves undergo chronic granulomatous infections, leading to sensory and motor impairment with characteristic deformities. Susceptibility to leprosy and its disease state are determined by the manifestation of innate immune resistance mediated by cells of monocyte lineage. Due to insufficient innate resistance, granulomatous infection is established, influencing the specific cellular immunity. The clinical presentation of leprosy ranges between two stable polar forms (tuberculoid to lepromatous) and three unstable borderline forms. The tuberculoid form involves Th1 response, characterized by a well demarcated granuloma, infiltrated by CD4+ T lymphocytes, containing epitheloid and multinucleated giant cells. In the lepromatous leprosy, there is no characteristic granuloma but only unstructured accumulation of ineffective macrophages containing engulfed pathogens. Th1 response, characterised by IFN-γ and IL-2 production, activates macrophages in order to kill intracellular pathogens. Conversely, a Th2 response, characterized by the production of IL-4, IL-5 and IL-10, helps in antibody production and consequently downregulates the cell-mediated immunity induced by the Th1 response. M. lepare has a long generation time and its inability to grow in culture under laboratory conditions makes its study challenging. The nine-banded armadillo still remains the best clinical and immunological model to study host-pathogen interaction in leprosy. In this chapter, we present cellular morphology and the genomic uniqueness of M. leprae, and how the pathogen shows tropism for Schwann cells, macrophages and dendritic cells.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Praveen Mathews Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
24
|
McBride DA, Kerr MD, Dorn NC, Ogbonna DA, Santos EC, Shah NJ. Triggers, Timescales, and Treatments for Cytokine-Mediated Tissue Damage. ACTA ACUST UNITED AC 2020; 5:52-62. [PMID: 34013158 DOI: 10.33590/emjinnov/20-00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammation is an essential cytokine-mediated process for generating a neutralizing immune response against pathogens and is generally protective. However, aberrant or excessive production of pro-inflammatory cytokines is associated with uncontrolled local and systemic inflammation, resulting in cell death and often irreversible tissue damage. Uncontrolled inflammation can manifest over timescales spanning hours to years and is primarily dependent on the triggering event. Rapid and potentially lethal increase in cytokine production, or a 'cytokine storm,' develops in hours to days and is associated with cancer cell-based immunotherapies, such as CAR-T cell therapy. On the other hand, some bacterial and viral infections with high microbial replication or highly potent antigens elicit immune responses that result in supraphysiological systemic cytokine concentrations which manifest over days to weeks. Immune dysregulation in autoimmune diseases can lead to chronic cytokine-mediated tissue damage spanning months to years, which often occurs episodically. While the initiating events and cellular participants may differ in these disease processes, many of the cytokines that drive disease progression are shared. For example, upregulation of IL-1, IL-6, IFN-γ, TNF, and GM-CSF frequently coincides with cytokine storm, sepsis, and autoimmune disease. Targeted inhibition of these pro-inflammatory molecules via antagonist monoclonal antibodies has improved clinical outcomes, but the complexity of the underlying immune dysregulation results in high variability. Rather than a "one size fits all" treatment approach, an identification of disease endotypes may permit the development of effective therapeutic strategies that address the contributors of disease progression. Here, we present a literature review of the cytokine-associated etiology of acute and chronic cytokine-mediated tissue damage, describe successes and challenges in developing clinical treatments, and highlight advancements in preclinical therapeutic strategies for mitigating pathological cytokine production.
Collapse
Affiliation(s)
- David A McBride
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA.,Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.,Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D Kerr
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA.,Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.,Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas C Dorn
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA.,Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dora A Ogbonna
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA.,Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Evan C Santos
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA.,Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nisarg J Shah
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA.,Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.,Center for Nano-Immuno Engineering, University of California, San Diego, La Jolla, CA 92093, USA.,Program in Immunology, University of California, San Diego, La Jolla, CA 92093, USA.,San Diego Center for Precision Immunotherapy, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Lu H, Wen D, Sun J, Du J, Qiao L, Zhang H, Zeng L, Zhang L, Jiang J, Zhang A. Polygenic Risk Score for Early Prediction of Sepsis Risk in the Polytrauma Screening Cohort. Front Genet 2020; 11:545564. [PMID: 33281864 PMCID: PMC7689156 DOI: 10.3389/fgene.2020.545564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Increasing genetic variants associated with sepsis have been identified by candidate-gene and genome-wide association studies, but single variants conferred minimal alterations in risk prediction. Our aim is to evaluate whether a weighted genetic risk score (wGRS) that aggregates information from multiple variants could improve risk discrimination of traumatic sepsis. METHODS Sixty-four genetic variants potential relating to sepsis were genotyped in Chinese trauma cohort. Genetic variants with mean decrease accuracy (MDA) > 1.0 by random forest algorithms were selected to construct the multilocus wGRS. The area under the curve (AUC) and net reclassification improvement (NRI) were adopted to evaluate the discriminatory and reclassification ability of weighted genetic risk score (wGRS). RESULTS Seventeen variants were extracted to construct the wGRS in 883 trauma patients. The wGRS was significantly associated with sepsis after trauma (OR = 2.19, 95% CI = 1.53-3.15, P = 2.01 × 10-5) after being adjusted by age, sex, and ISS. Patients with higher wGRS have an increasing incidence of traumatic sepsis (P trend = 6.81 × 10-8), higher SOFA (P trend = 5.00 × 10-3), and APACHE II score (P trend = 1.00 × 10-3). The AUC of the risk prediction model incorporating wGRS into the clinical variables was 0.768 (95% CI = 0.739-0.796), with an increase of 3.40% (P = 8.00 × 10-4) vs. clinical factor-only model. Furthermore, the NRI increased 25.18% (95% CI = 17.84-32.51%) (P = 6.00 × 10-5). CONCLUSION Our finding indicated that genetic variants could enhance the predictive power of the risk model for sepsis and highlighted the application among trauma patients, suggesting that the sepsis risk assessment model will be a promising screening and prediction tool for the high-risk population.
Collapse
Affiliation(s)
- Hongxiang Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
- Department of Traumatic Orthopaedics, General Hospital of Xinjiang Militarary Region, Urumuqi, China
| | - Dalin Wen
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhui Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Qiao
- College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Huacai Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Anqiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Wound Trauma Medical Center, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Schott BH, Antonia AL, Wang L, Pittman KJ, Sixt BS, Barnes AB, Valdivia RH, Ko DC. Modeling of variables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF protease. Sci Rep 2020; 10:18269. [PMID: 33106516 PMCID: PMC7588472 DOI: 10.1038/s41598-020-75129-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
Susceptibility to infectious diseases is determined by a complex interaction between host and pathogen. For infections with the obligate intracellular bacterium Chlamydia trachomatis, variation in immune activation and disease presentation are regulated by both host genetic diversity and pathogen immune evasion. Previously, we discovered a single nucleotide polymorphism (rs2869462) associated with absolute abundance of CXCL10, a pro-inflammatory T-cell chemokine. Here, we report that levels of CXCL10 change during C. trachomatis infection of cultured cells in a manner dependent on both host and pathogen. Linear modeling of cellular traits associated with CXCL10 levels identified a strong, negative correlation with bacterial burden, suggesting that C. trachomatis actively suppresses CXCL10. We identified the pathogen-encoded factor responsible for this suppression as the chlamydial protease- or proteasome-like activity factor, CPAF. Further, we applied our modeling approach to other host cytokines in response to C. trachomatis and found evidence that RANTES, another T-cell chemoattractant, is actively suppressed by Chlamydia. However, this observed suppression of RANTES is not mediated by CPAF. Overall, our results demonstrate that CPAF suppresses CXCL10 to evade the host cytokine response and that modeling of cellular infection parameters can reveal previously unrecognized facets of host-pathogen interactions.
Collapse
Affiliation(s)
- Benjamin H Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Duke University Program in Genetics and Genomics, Duke University, Durham, NC, 27710, USA
| | - Alejandro L Antonia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Kelly J Pittman
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Barbara S Sixt
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Alyson B Barnes
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, 0049 CARL Building Box 3053, 213 Research Drive, Durham, NC, 27710, USA.
- Duke University Program in Genetics and Genomics, Duke University, Durham, NC, 27710, USA.
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the virus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread widely throughout the world. Despite the strict global outbreak management and quarantine measures that have been implemented, the incidence of COVID-19 continues to rise, resulting in more than 290,000 deaths and representing an extremely serious threat to human life and health. The clinical symptoms of the affected patients are heterogeneous, ranging from mild upper respiratory symptoms to severe pneumonitis and even acute respiratory distress syndrome (ARDS) or death. Systemic immune over activation due to SARS-CoV-2 infection causes the cytokine storm, which is especially noteworthy in severely ill patients with COVID-19. Pieces of evidence from current studies have shown that the cytokine storm may be an important factor in disease progression, even leading to multiple organ failure and death. This review provides an overview of the knowledge on the COVID-19 epidemiological profile, the molecular mechanisms of the SARS-CoV-2-induced cytokine storm and immune responses, the pathophysiological changes that occur during infection, the main antiviral compounds used in treatment strategies and the potential drugs for targeting cytokines, this information is presented to provide valuable guidance for further studies and for a therapeutic reduction of this excessive immune response.
Collapse
|
28
|
Ghafouri-Fard S, Noroozi R, Vafaee R, Branicki W, Poṡpiech E, Pyrc K, Łabaj PP, Omrani MD, Taheri M, Sanak M. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomed Pharmacother 2020; 128:110296. [PMID: 32480226 PMCID: PMC7258806 DOI: 10.1016/j.biopha.2020.110296] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global crisis, necessitating the identification of genetic factors that modulate the risk of disorder or its severity. The current data about the role of genetic risk factors in determination of rate of SARS-CoV-2 infection in each ethnic group and the severity of disorder is limited. Moreover, several confounding parameters such as the number of tests performed in each country, the structure of the population especially the age distribution, the presence of risk factors for respiratory disorders such as smoking and other environmental factors might be involved in the variability in disease course or prevalence of infection among different ethnic groups. However, assessment of the role of genetic variants in determination of the course of other respiratory infections might help in recognition of possible candidate for further analysis in patients affected with SARS-CoV-2. In the current review, we summarize the data showing the association between genomic variants and risk of acute respiratory distress syndrome, respiratory infections or severity of these conditions with an especial focus on the SARS-CoV-2.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewelina Poṡpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
29
|
Xu W, Zhou X, Fang W, Chen X. Genetic diversity of toll-like receptor genes in the vulnerable Chinese egret (Egretta eulophotes). PLoS One 2020; 15:e0233714. [PMID: 32469968 PMCID: PMC7259618 DOI: 10.1371/journal.pone.0233714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptor (TLR) genes have recently been employed to assess genetic diversity, as they can be used to infer both demographic history and adaptation to environments with different pathogen pressure. Here, we sampled 120 individuals of the Chinese egret (Egretta eulophotes), a globally vulnerable species, from four breeding populations across China. We assessed the levels of genetic diversity, selection pressure, and population differentiation at seven TLR loci (TLR1LB, TLR2A, TLR3, TLR4, TLR5, TLR7, and TLR15). Using a variety of metrics (SNPs, heterozygosity, nucleotides, haplotypes), our analyses showed that genetic diversity was lower at 4 of the 7 TLR loci in the vulnerable Chinese egret compared to the more common little egret (Egretta garzetta). The selection test indicated TLRs, except for TLR5, were under purifying selection in TLR evolution, suggesting that low TLR genetic diversity in the Chinese egret may be caused by purifying selection. Moreover, analysis of molecular variance indicated low but significant population differentiation among four populations at all of the TLR loci in this egret. However, some comparisons based on fixation index analyses did not show significant population differentiation, and Bayesian clustering showed admixture. Our finding suggested that these four populations of the Chinese egret in China may be considered a single unit for conservation planning. These results, the new report of TLR genetic diversity in a long-distance migratory vulnerable Ardeid species, will provide fundamental TLR information for further studies on the conservation genetics of the Chinese egret and other Ardeids.
Collapse
Affiliation(s)
- Wei Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaoping Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Wenzhen Fang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaolin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| |
Collapse
|
30
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
31
|
Strong toll-like receptor responses in cystic fibrosis patients are associated with higher lung function. J Cyst Fibros 2019; 19:608-613. [PMID: 31813753 DOI: 10.1016/j.jcf.2019.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) airways disease varies widely among patients with identical cystic fibrosis transmembrane conductance regulator (CFTR) genotypes. Robust airway inflammation is thought to be deleterious in CF; inter-individual variation in Toll-like receptor (TLR)-mediated innate immune inflammatory responses (TMIIR) might account for a portion of the phenotypic variation. We tested if TMIIR in people with CF are different than those of healthy controls, and whether higher TMIIR in people with CF are associated with reduced lung function. METHODS We cultured whole blood from clinically stable subjects with CF (n = 76) and healthy controls (n = 45) with TLR agonists, and measured cytokine production and expression of TLR-associated genes. We tested for differences in TLR-stimulated cytokine levels between subjects with CF and healthy subjects, and for associations between cytokine and gene expression levels with baseline lung function (forced expiratory volume in one second percent predicted (FEV1%)) and decline in FEV1% over time. RESULTS TMIIR in blood from subjects with CF were lower than in healthy controls. Expression of TLR regulators SARM1, TOLLIP, and AKT1 were downregulated in CF. In subjects with CF we found that lower TLR4-agonist-induced IL-8 was associated with lower FEV1% at enrollment (p<0.001) and with greater five year FEV1% decline (p<0.001). CONCLUSIONS TMIIR were lower in people with CF relative to healthy controls; however, unexpectedly, greater whole blood TMIIR were positively associated with lung function in people with CF. These findings suggest a complex interaction between inflammation and disease in people with CF.
Collapse
|
32
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
33
|
A Functional Polymorphism-Mediated Disruption of EGR1/ADAM10 Pathway Confers the Risk of Sepsis Progression. mBio 2019; 10:mBio.01663-19. [PMID: 31387910 PMCID: PMC6686044 DOI: 10.1128/mbio.01663-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has indicated that single nucleotide polymorphisms (SNPs) are related to the susceptibility of sepsis and might provide potential evidence for the mechanisms of sepsis. Our recent preliminary study showed that the ADAM10 genetic polymorphism was clinically associated with the development of sepsis, and little is known about the underlying mechanism. The aim of this study was to confirm the association between the ADAM10 promoter rs653765 G→A polymorphism and the progression of sepsis and to discover the underlying mechanism. Clinical data showed that the rs653765 G→A polymorphism was positively correlated with the development of sepsis, as evidenced by a multiple-center case-control association study with a large sample size, and showed that EGR1 and ADAM10 levels were associated well with the different subtypes of sepsis patients. In vitro results demonstrated that the rs653765 G→A variants could functionally modulate ADAM10 promoter activity by altering the binding of the EGR1 transcription factor (TF) to the ADAM10 promoter, affecting the transcription and translation of the ADAM10 gene. Electrophoretic mobility shift assay (EMSA) followed by chromatin immunoprecipitation (ChIP) assay indicated the direct interaction. Functional studies further identified that the EGR1/ADAM10 pathway is important for the inflammatory response. EGR1 intervention in vivo decreased host proinflammatory cytokine secretion and rescued the survival and tissue injury of the mouse endotoxemia model.IMPORTANCE Sepsis is characterized as life-threatening organ dysfunction, with unacceptably high mortality. Evidence has indicated that functional SNPs within inflammatory genes are associated with susceptibility, progression, and prognosis of sepsis. These mechanisms on which these susceptible sites depended often suggest the key pathogenesis and potential targets in sepsis. In the present study, we confirmed that a functional variant acts as an important genetic factor that confers the progression of sepsis in a large sample size and in multiple centers and revealed that the variants modulate the EGR1/ADAM10 pathway and influence the severity of sepsis. We believe that we provide an important insight into this new pathway involving the regulation of inflammatory process of sepsis based on the clinical genetic evidence, which will enhance the understanding of nosogenesis of sepsis and provide the potential target for inflammation-related diseases.
Collapse
|
34
|
Ye J, Guan M, Lu Y, Zhang D, Li C, Li Y, Zhou C. Protective effects of hesperetin on lipopolysaccharide-induced acute lung injury by targeting MD2. Eur J Pharmacol 2019; 852:151-158. [DOI: 10.1016/j.ejphar.2019.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
35
|
Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol 2019; 90:e12771. [PMID: 31054156 DOI: 10.1111/sji.12771] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Immunopolymorphism is considered as an important aspect behind the resistance or susceptibility of the host to an infectious disease. Over the years, researchers have explored many genetic factors for their role in immune surveillance against infectious diseases. Polymorphic characters in the gene encoding Toll-like receptors (TLRs) play profound roles in inducing differential immune responses by the host against parasitic infections. Protein(s) encoded by TLR gene(s) are immensely important due to their ability of recognizing different types of pathogen associated molecular patterns (PAMPs). This study reviews the polymorphic residues present in the nucleotide or in the amino acid sequence of TLRs and their influence on alteration of inflammatory signalling pathways promoting either susceptibility or resistance to major infectious diseases, including tuberculosis, leishmaniasis, malaria and filariasis. Population-based studies exploring TLR polymorphisms in humans are primarily emphasized to discuss the association of the polymorphic residues with the occurrence and epidemiology of the mentioned infectious diseases. Principal polymorphic residues in TLRs influencing immunity to infection are mostly single nucleotide polymorphisms (SNPs). I602S (TLR1), R677W (TLR2), P554S (TLR3), D299G (TLR4), F616L (TLR5), S249P (TLR6), Q11L (TLR7), M1V (TLR8), G1174A (TLR9) and G1031T (TLR10) are presented as the major influential SNPs in shaping immunity to pathogenic infections. The contribution of these SNPs in the structure-function relationship of TLRs is yet not clear. Therefore, molecular studies on such polymorphisms can improve our understanding on the genetic basis of the immune response and pave the way for therapeutic intervention in a more feasible way.
Collapse
Affiliation(s)
| | - Sahel Huda
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| | - Santi P Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| |
Collapse
|
36
|
Shoraka S, Mohebbi SR, Hosseini SM, Hosseini Razavi A, Hatami Y, Sharifian A, Rostami-Nejad M, Asadzadeh Aghdaei H, Zali MR. Association between Interleukin-21 and Interleukin-21 receptor gene polymorphisms with susceptibility to chronic hepatitis B virus infection and HBV spontaneous clearance in Iranian population. Microb Pathog 2019; 128:263-267. [PMID: 30639626 DOI: 10.1016/j.micpath.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
UNLABELLED Hepatitis B virus (HBV) infection is a major public health concern due to the infection often leads to chronic infection, liver cirrhosis and also liver cancer. The host immune response to HBV infection and also genetic background play significant role in outcome of infection. Single nucleotide polymorphisms (SNPs) are the most important kind of variation in genetic sequences that caused by point mutations. As cytokines have major roles in viral infections, it seems that cytokine gene polymorphisms are independently associated with response to viral infections. Interleukin 21 (IL-21) plays an influential role in both innate and adaptive immune responses. Its specific receptor, IL-21R, produced and located on the surface of T, B and natural killer (NK) cells and is critical for the proliferation and differentiation of these immune effector cells. Many studies confirmed that the IL-21 involved in response to viral infections. We aimed to investigate the association of G/T IL-21 (rs2055979) and C/T IL-21R (rs3093390) gene polymorphisms with chronic hepatitis B virus infection and HBV spontaneous clearance in Iranian population. METHODS In this study, blood samples were gathered from 320 patients with chronic HBV and 310 healthy controls and also 120 HBV spontaneous clearance individuals. Following genomic DNA extraction, genotypes of the selected SNPs determined by PCR and restriction fragment length polymorphism (RFLP) method. The results were analyzed by SPSS software using Chi-square, Logistic Regression, ANOVA and Independent Samples t-Test. RESULTS According to our results, in IL-21R (rs3093390 C/T) gene polymorphism, allele frequency of T is statistically different in the HBV spontaneous clearance group compared to chronic HBV cases. But there is no significant difference between G/T IL-21 (rs2055979) and C/T IL-21R (rs3093390) genotypes distribution in three groups. Also we found that higher serum aspartate transaminase (AST) level in HBV spontaneous clearance group is significantly associated with TT genotype of IL-21 (rs2055979) compared to GG genotype (P value = 0.006). DISCUSSION Our results showed that T allele frequency in IL-21R (rs3093390 C/T) gene polymorphism could consider as a host genetic factor for HBV spontaneous clearance. Probably we can serve it as a potential prognostic genetic marker for spontaneous clearance of HBV infection.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Armin Hosseini Razavi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasin Hatami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Sharifian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Genetic Polymorphisms in Sepsis and Cardiovascular Disease: Do Similar Risk Genes Suggest Similar Drug Targets? Chest 2019; 155:1260-1271. [PMID: 30660782 DOI: 10.1016/j.chest.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic variants are associated with altered clinical outcome of patients with sepsis and cardiovascular diseases. Common gene signaling pathways may be involved in the pathophysiology of these diseases. A better understanding of genetic commonality among these diseases may enable the discovery of important genes, signaling pathways, and therapeutic targets for these diseases. We investigated the common genetic factors by a systematic search of the literature. Twenty-four genes (ADRB2, CD14, FGB, FV, HMOX1, IL1B, IL1RN, IL6, IL10, IL17A, IRAK1, MASP2, MBL, MIR608, MIF, NOD2, PCSK9, PPARG, PROC, SERPINE1, SOD2, SVEP1, TF, TIRAP, TLR1) were extracted as reported genetic variations associated with altered outcome of both sepsis and cardiovascular diseases. Of these genes, the adverse allele (or combinations) was same in nine (ADRB2, FV, HMOX1, IL6, MBL, MIF, NOD2, PCSK9, SERPINE1), and the effect appears to be in the same direction in both sepsis and cardiovascular disease. Shared gene signaling pathways suggest that these are true biological results and could point to overlapping drug targets in sepsis and cardiovascular disease.
Collapse
|
38
|
Wright SW, Emond MJ, Lovelace-Macon L, Ducken D, Kashima J, Hantrakun V, Chierakul W, Teparrukkul P, Chantratita N, Limmathurotsakul D, West TE. Exonic sequencing identifies TLR1 genetic variation associated with mortality in Thais with melioidosis. Emerg Microbes Infect 2019; 8:282-290. [PMID: 30866782 PMCID: PMC6455179 DOI: 10.1080/22221751.2019.1575172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
Melioidosis, an infectious disease caused by the bacterium Burkholderia pseudomallei, is a common cause of sepsis in Southeast Asia. We investigated whether novel TLR1 coding variants are associated with outcome in Thai patients with melioidosis. We performed exonic sequencing on a discovery set of patients with extreme phenotypes (mild vs. severe) of bacteremic melioidosis. We analysed the association of missense variants in TLR1 with severe melioidosis in a by-gene analysis. We then genotyped key variants and tested the association with death in two additional sets of melioidosis patients. Using a by-gene analysis, TLR1 was associated with severe bacteremic melioidosis (P = 0.016). One of the eight TLR1 variants identified, rs76600635, a common variant in East Asians, was associated with in-hospital mortality in a replication set of melioidosis patients (adjusted odds ratio 1.71, 95% CI 1.01-2.88, P = 0.04.) In a validation set of patients, the point estimate of effect of the association of rs76600635 with 28-day mortality was similar but not statistically significant (adjusted odds ratio 1.81, 95% CI 0.96-3.44, P = 0.07). Restricting the validation set analysis to patients recruited in a comparable fashion to the discovery and replication sets, rs76600635 was significantly associated with 28-day mortality (adjusted odds ratio 3.88, 95% CI 1.43-10.56, P = 0.01). Exonic sequencing identifies TLR1 as a gene associated with a severe phenotype of bacteremic melioidosis. The TLR1 variant rs76600635, common in East Asian populations, may be associated with poor outcomes from melioidosis. This variant has not been previously associated with outcomes in sepsis and requires further study.
Collapse
Affiliation(s)
- Shelton W. Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lara Lovelace-Macon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Deirdre Ducken
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James Kashima
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wirongrong Chierakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prapit Teparrukkul
- Department of Internal Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- International Respiratory and Severe Illness Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Factors Underlying Racial Disparities in Sepsis Management. Healthcare (Basel) 2018; 6:healthcare6040133. [PMID: 30463180 PMCID: PMC6315577 DOI: 10.3390/healthcare6040133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Sepsis, a syndrome characterized by systemic inflammation during infection, continues to be one of the most common causes of patient mortality in hospitals across the United States. While standardized treatment protocols have been implemented, a wide variability in clinical outcomes persists across racial groups. Specifically, black and Hispanic populations are frequently associated with higher rates of morbidity and mortality in sepsis compared to the white population. While this is often attributed to systemic bias against minority groups, a growing body of literature has found patient, community, and hospital-based factors to be driving racial differences. In this article, we provide a focused review on some of the factors driving racial disparities in sepsis. We also suggest potential interventions aimed at reducing health disparities in the prevention, early identification, and clinical management of sepsis.
Collapse
|
40
|
Uchino K, Mizuno S, Sato-Otsubo A, Nannya Y, Mizutani M, Horio T, Hanamura I, Espinoza JL, Onizuka M, Kashiwase K, Morishima Y, Fukuda T, Kodera Y, Doki N, Miyamura K, Mori T, Ogawa S, Takami A. Toll-like receptor genetic variations in bone marrow transplantation. Oncotarget 2018; 8:45670-45686. [PMID: 28484092 PMCID: PMC5542217 DOI: 10.18632/oncotarget.17315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 11/25/2022] Open
Abstract
The Toll-like receptor family mediates the innate immune system through recognizing the molecular patterns of microorganisms and self-components and leading the synthesis of the inflammatory mediators. We retrospectively examined whether or not genetic variations in toll-like receptor 1 (rs5743551, -7202GQ>A), toll-like receptor 2 (rs7656411, 22215G>T), and toll-like receptor 4 (rs11536889, +3725G>C) affected transplant outcomes in a cohort of 365 patients who underwent unrelated HLA-matched bone marrow transplantation (for hematologic malignancies through the Japan Marrow Donor Program. Only donor toll-like receptor 4 variation significantly improved the survival outcomes. A multivariate analysis showed that the donor toll-like receptor 4 +3725G/G genotype was significantly associated with a better 5-year progression-free survival and a lower 5-year transplant-related mortality than other variations. Furthermore, the donor toll-like receptor 4 +3725G/G genotype was associated with a significantly lower incidence of fatal infections than other variations. The validation study of 502 patients confirmed that the donor toll-like receptor 4 +3725G/G genotype was associated with better survival outcomes. Toll-like receptor4 genotyping in transplant donors may therefore be a useful tool for optimizing donor selection and evaluating pretransplantation risks.
Collapse
Affiliation(s)
- Kaori Uchino
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motonori Mizutani
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tomohiro Horio
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - J Luis Espinoza
- Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Koichi Kashiwase
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takahiro Fukuda
- Hematopoietic Stem Cell Transplantation Unit, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihisa Kodera
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University, Nagakute, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
41
|
Campos CF, van de Veerdonk FL, Gonçalves SM, Cunha C, Netea MG, Carvalho A. Host Genetic Signatures of Susceptibility to Fungal Disease. Curr Top Microbiol Immunol 2018; 422:237-263. [PMID: 30043341 DOI: 10.1007/82_2018_113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our relative inability to predict the development of fungal disease and its clinical outcome raises fundamental questions about its actual pathogenesis. Several clinical risk factors are described to predispose to fungal disease, particularly in immunocompromised and severely ill patients. However, these alone do not entirely explain why, under comparable clinical conditions, only some patients develop infection. Recent clinical and epidemiological studies have reported an expanding number of monogenic defects and common polymorphisms associated with fungal disease. By directly implicating genetic variation in the functional regulation of immune mediators and interacting pathways, these studies have provided critical insights into the human immunobiology of fungal disease. Most of the common genetic defects reported were described or suggested to impair fungal recognition by the innate immune system. Here, we review common genetic variation in pattern recognition receptors and its impact on the immune response against the two major fungal pathogens Candida albicans and Aspergillus fumigatus. In addition, we discuss potential strategies and opportunities for the clinical translation of genetic information in the field of medical mycology. These approaches are expected to transfigure current clinical practice by unleashing an unprecedented ability to personalize prophylaxis, therapy and monitoring for fungal disease.
Collapse
Affiliation(s)
- Cláudia F Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
42
|
Lu X, Xue L, Sun W, Ye J, Zhu Z, Mei H. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database. Mol Med Rep 2017; 17:3042-3054. [PMID: 29257295 PMCID: PMC5783525 DOI: 10.3892/mmr.2017.8258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a life-threatening condition in which an uncontrolled inflammatory host response is triggered. The exact pathogenesis of sepsis remains unclear. The aim of the present study was to identify key genes that may aid in the diagnosis and treatment of sepsis. mRNA expression data from blood samples taken from patients with sepsis and healthy individuals was downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) between the two groups were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network construction, was performed to investigate the function of the identified DEGs. Furthermore, for validation of these results, the expression levels of several DEGs were analyzed by reverse transcription quantitative-polymerase chain reaction (RT-qPCR) in three patients with sepsis and three healthy blood samples to support the results obtained from the bioinformatics analysis. Receiver operating characteristic analyses were also used to analyze the diagnostic ability of the identified DEGs for sepsis. The results demonstrated that a total of 4,402 DEGs, including 1,960 upregulated and 2,442 downregulated genes, were identified between patients with sepsis and healthy individuals. KEGG pathway analysis revealed that 39 DEGs were significantly enriched in toll-like receptor signaling pathways. The top 20 upregulated and downregulated DEGs were used to construct the PPI network. Hub genes with high degrees, including interleukin 1 receptor-associated kinase 3 (IRAK3), S100 calcium-binding protein (S100)A8, angiotensin II receptor-associated protein (AGTRAP) and S100A9, were demonstrated to be associated sepsis. Furthermore, RT-qPCR results demonstrated that IRAK3, adrenomedullin (ADM), arachidonate 5-lipoxygenase (ALOX5), matrix metallopeptidase 9 (MMP9) and S100A8 were significantly upregulated, while ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) was upregulated but not significantly, in blood samples from patients with sepsis compared with healthy individuals, which was consistent with bioinformatics analysis results. Therefore, AGTRAP, IRAK3, ADM, ALOX5, MMP9, S100A8 and ENTPD1 were identified to have potential diagnostic value in sepsis. In conclusion, dysregulated levels of the AGTRAP, IRAK3, ADM, ALOX5, MMP9, S100A8 and ENTPD1 genes may be involved in sepsis pathophysiology and may be utilized as potential diagnostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xinxing Lu
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Lu Xue
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Wenbin Sun
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jilu Ye
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Zhiyun Zhu
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Haifeng Mei
- Department of Intensive Medicine, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
43
|
Elisia I, Lam V, Hofs E, Li MY, Hay M, Cho B, Brooks-Wilson A, Rosin M, Bu L, Jia W, Krystal G. Effect of age on chronic inflammation and responsiveness to bacterial and viral challenges. PLoS One 2017; 12:e0188881. [PMID: 29186188 PMCID: PMC5706672 DOI: 10.1371/journal.pone.0188881] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
To identify reliable biomarkers of age-related changes in chronic inflammation and responsiveness to bacterial and viral challenges, we evaluated endogenous and ex vivo stimulated levels of 18 inflammatory markers, using whole blood collected in EDTA and sodium heparin tubes from 41 healthy volunteers, i.e., 11 men + 10 women aged 20–35 and 10 men + 10 women aged 50–77. These studies revealed significant differences in the levels of inflammatory markers when blood was collected in EDTA versus sodium heparin and age related differences in these biomarkers were confirmed with blood collected in EDTA from 120 healthy volunteers in 3 age categories, ie, 20 men + 20 women, aged 20–35, 36–49 and 50–77. Studies with unstimulated blood samples, to measure levels of chronic inflammation, revealed a significant increase with age in IL-12p70, CRP and PGE2, consistent with the concept of “inflammaging”, and a decrease in G-CSF in both men and women. Interestingly, in response to E. coli stimulation, PGE2 levels were markedly reduced in the 50–77 year old cohort while they were increased following Herpes Simplex virus-1 (HSV-1) stimulation, along with IL-8. In addition, unlike E. coli, HSV-1 potently stimulated IFNα production, but levels were dramatically reduced in the older cohort, consistent with a reduced ability to generate an anti-viral response. We also found platelets and CD8+ T cells were reduced with age while CD4+ T cells were significantly increased, resulting in a substantially higher CD4/CD8 ratio in the older cohort. Surprisingly, however, we found that the older cohort exhibited more T cell proliferation and IFNγ production in response to anti-CD3+anti-CD28 stimulation. Importantly, there was considerable person-to-person variation in these inflammatory markers in all age groups, making possible comparisons between a person’s “inflammage” and chronological age. These assays should help to identify individuals at high risk of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Vivian Lam
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Elyse Hofs
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Michael Yu Li
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Mariah Hay
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Brandon Cho
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Angela Brooks-Wilson
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miriam Rosin
- Cancer Control Research, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Luke Bu
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - William Jia
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
44
|
THP-1-derived macrophages render lung epithelial cells hypo-responsive to Legionella pneumophila - a systems biology study. Sci Rep 2017; 7:11988. [PMID: 28931863 PMCID: PMC5607273 DOI: 10.1038/s41598-017-12154-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Immune response in the lung has to protect the huge alveolar surface against pathogens while securing the delicate lung structure. Macrophages and alveolar epithelial cells constitute the first line of defense and together orchestrate the initial steps of host defense. In this study, we analysed the influence of macrophages on type II alveolar epithelial cells during Legionella pneumophila-infection by a systems biology approach combining experimental work and mathematical modelling. We found that L. pneumophila-infected THP-1-derived macrophages provoke a pro-inflammatory activation of neighboring lung epithelial cells, but in addition render them hypo-responsive to direct infection with the same pathogen. We generated a kinetic mathematical model of macrophage activation and identified a paracrine mechanism of macrophage-secreted IL-1β inducing a prolonged IRAK-1 degradation in lung epithelial cells. This intercellular crosstalk may help to avoid an overwhelming inflammatory response by preventing excessive local secretion of pro-inflammatory cytokines and thereby negatively regulating the recruitment of immune cells to the site of infection. This suggests an important but ambivalent immunomodulatory role of macrophages in lung infection.
Collapse
|
45
|
Chakrapani V, Rasal KD, Kumar S, Mohapatra SD, Sundaray JK, Jayasankar P, Barman HK. In Silico Analysis of nsSNPs of Carp TLR22 Gene Affecting its Binding Ability with Poly I:C. Interdiscip Sci 2017; 10:641-652. [PMID: 28660537 DOI: 10.1007/s12539-017-0247-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Abstract
Immune response mediated by toll-like receptor 22 (TLR22), only found in teleost/amphibians, is triggered by double-stranded RNA binding to its LRR (leucine-rich repeats) ecto-domain. Accumulated evidences suggested that missense mutations in TLR genes affect its function. However, information on mutation linked pathogen recognition for TLR22 was lacking. The present study was commenced for predicting the effect of non-synonymous single-nucleotide polymorphisms (nsSNPs) on the pathogen recognizable LRR domain of TLR22 of farmed carp, Labeo rohita. The sequence-based algorithms (SIFT, PROVEAN and I-Mutant2.0) indicated that three SNPs (out of 27) such as p.L159F (rs76759876) and p.L529P (rs749355507) of LRR, and p.I836M (rs750758397) of intracellular motifs could potentially disrupt protein function. The 3D structure was generated using MODELLER 9.13 and further validated by SAVEs server. The simulated molecular docking of native TLR22 and mutants with poly I:C ligand indicated that mutations positioned at p.L159F and p.L529P of the LRR region affects the binding affinity significantly. This is the first kind of study of predicting nsSNPs of teleost TLR22 with disturbed ligand binding affinity with its extra-cellular LRR domain and thereby likely hindrance in subsequent signal transduction. This study serves as a guide for in vivo evaluation of impact of mutation on immune response mediated by teleost TLR22 gene.
Collapse
Affiliation(s)
- Vemulawada Chakrapani
- Fish Genetics and Biotechnology Division, ICAR, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751002, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751002, India
| | - Sunil Kumar
- ICAR, National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, 275103, India
| | - Shibani D Mohapatra
- Fish Genetics and Biotechnology Division, ICAR, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751002, India
| | - Jitendra K Sundaray
- Fish Genetics and Biotechnology Division, ICAR, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751002, India
| | - Pallipuram Jayasankar
- Fish Genetics and Biotechnology Division, ICAR, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751002, India
| | - Hirak K Barman
- Fish Genetics and Biotechnology Division, ICAR, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751002, India.
| |
Collapse
|
46
|
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017; 39:517-528. [PMID: 28555385 DOI: 10.1007/s00281-017-0639-8] [Citation(s) in RCA: 845] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Infectious diseases are a leading cause of death worldwide. Sepsis is a severe clinical syndrome related to the host response to infection. The severity of infections is due to an activation cascade that will lead to an autoamplifying cytokine production: the cytokine storm. Cytokines are a broad category of relatively small proteins (<40 kDa) that are produced and released with the aim of cell signaling. Our understanding of the processes that trigger this tremendous amount of cytokine production has made dramatic progress over the last decades, but unfortunately, these findings could not translate yet into effective treatments; so far, all clinical trials targeting cytokine production or effects failed. This review aims to summarize the pathophysiology of the cytokine storm; to describe the type, effects, and kinetics of cytokine production; and to discuss the therapeutic challenges of targeting cytokines. New promising therapeutic strategies focusing on the endothelium, as a source and a target of cytokines, are described.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Département d'Anesthésie-Réanimation, Hôpitaux Universitaires Lariboisière-Saint-Louis, AP-HP, Paris, France. .,Inserm U1160, Hôpital Saint-Louis, Paris, France.
| | - Filip K Swirski
- Center for Systems Biology, Department of Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Georg F Weber
- Department of Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
47
|
Epistatic effect of TLR-1, -6 and -10 polymorphisms on organic dust-mediated cytokine response. Genes Immun 2017; 18:67-74. [PMID: 28123183 PMCID: PMC5407948 DOI: 10.1038/gene.2016.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
Abstract
Exposure to organic dust from agricultural environments is associated
with inflammatory respiratory conditions. The putative causal agents in organic
dust include viral, microbial and fungal components, which are recognized by the
family of toll-like receptors and drive host innate and adaptive responses. Our
aim in this study was to determine whether responsiveness to organic dust among
agricultural workers was dependent on polymorphisms in the
TLR10-TLR1-TLR6 gene cluster. We stimulated whole blood
from 509 agricultural workers with organic dust, triacyl lipopeptide
N-palmitoyl-S-dipalmitoylglyceryl Cys-Ser-(Lys)4 (Pam3CSK4) and the
diacyl- lipopeptide peptidoglycan. Several of the tagging polymorphisms and
haplotypes conferred hyper-responsiveness to organic dust with an increase in
IL-6 (p < 0.005), but not TNF-α, secretion. We conclude that
genetic variation in the TLR10-TLR1-TLR6 gene cluster mediates
responsiveness to organic dust, but indicates different signaling pathways for
IL-6 and TNF-α. These studies provide new insight into the role of the
TLR10-TLR1-TLR6 gene cluster and the innate immune response
to organic dust.
Collapse
|
48
|
Tartey S, Takeuchi O. Pathogen recognition and Toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol 2017; 36:57-73. [PMID: 28060562 DOI: 10.1080/08830185.2016.1261318] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The innate immune system deploys a variety of pattern-recognition receptors (PRRs) which include Toll-like receptors (TLRs), RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors to detect the invasion of pathogens and initiate protective responses. The intercellular and intracellular orchestration of signals from different PRRs, their endogenous or microbial ligands and accessory molecules determine the stimulatory or inhibitory responses. Progressing over the last two decades, considerable research on the molecular mechanisms underlying host-pathogen interactions has led to a paradigm shift of our understanding of TLR signaling in the innate immune system. Given that a significant amount of evidence implicates TLRs in the pathogenesis of immune diseases and cancer, and their activation occurs early in the inflammatory cascade, they are attractive targets for novel therapeutic agents. In this review, we discuss the recent advances in TLR signaling cross talks and the mechanism of pathogen recognition with special emphasis on the role of TLRs in tumor immunity and TLR-targeted therapeutics.
Collapse
Affiliation(s)
- Sarang Tartey
- a Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University , Kawara-Cho, Sakyo-Ku, Kyoto , Japan.,b AMED-CREST, Japan Agency for Medical Research and Development , Kyoto , Japan
| | - Osamu Takeuchi
- a Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University , Kawara-Cho, Sakyo-Ku, Kyoto , Japan.,b AMED-CREST, Japan Agency for Medical Research and Development , Kyoto , Japan
| |
Collapse
|
49
|
|
50
|
Prado-Díaz A, Castillo A, Rojas DM, Chávez-Vivas M. Marcadores moleculares en el diagnóstico y pronóstico de sepsis, sepsis grave y choque séptico. REVISTA DE LA FACULTAD DE MEDICINA 2017. [DOI: 10.15446/revfacmed.v65n1.53876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introducción. A pesar de los importantes avances en el entendimiento de la patofisiología de la sepsis, la mortalidad que genera sigue siendo alta.Objetivo. Describir el estado del arte de los biomarcadores moleculares propuestos hasta el momento como potenciales marcadores para el diagnóstico y pronóstico de sepsis, sepsis grave y choque séptico.Materiales y métodos. Se analizaron los registros de los últimos 14 años que se encontraban en PubMed, en The New England Journal of Medicine (NEJM) y en Illinois Automatic Computer (ILLIAC) con los términos sepsis, genetic polymorphisms, genetic variation y molecular marker. Se clasificaron los artículos por año de publicación y solo se tuvieron en cuenta los publicados durante los últimos 10 años.Resultados. La búsqueda arrojó 3 370 referencias que cubren más de 30 genes con polimorfismos genéticos que pueden ser empleados como potenciales marcadores de polimorfismos. Estos fueron evaluados para su uso en las diferentes manifestaciones de sepsis, su diagnóstico y progresión. Se describen 20 genes marcadores: cuatro asociados con bacteremia (TLR-1, TLR-2, Proteína C y Selectina-E), nueve con sepsis (IL-1B, IL-1A, IL-6, TNF-α, TLR-1, MBL-1, Hsp70, PAI-1 y MIF-1), siete con sepsis grave (IL-1RN, IL-10, TNF-α, CD14, TREM-1, Caspasa 12 y DEFB-1), cinco con choque séptico (TNF-B, TLR-4, Hsp70, MBL-1 y CD14 ) y tres con disfunción multiorgánica (TLR-1, PAI-1 y Proteína C).Conclusión. Los polimorfismos genéticos, en su mayoría, han sido probados clínicamente como marcadores de diagnóstico y pronóstico en la sepsis con resultados prometedores por la alta especificidad y sensibilidad en la práctica clínica.
Collapse
|