1
|
|
Chakkumpulakkal Puthan Veettil T, Duffin RN, Roy S, Vongsvivut J, Tobin MJ, Martin M, Adegoke JA, Andrews PC, Wood BR. Synchrotron-Infrared Microspectroscopy of Live Leishmania major Infected Macrophages and Isolated Promastigotes and Amastigotes. Anal Chem 2023;95:3986-95. [PMID: 36787387 DOI: 10.1021/acs.analchem.2c04004] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/16/2023]
Abstract
The prevalence of neglected tropical diseases (NTDs) is advancing at an alarming rate. The NTD leishmaniasis is now endemic in over 90 tropical and sub-tropical low socioeconomic countries. Current diagnosis for this disease involves serological assessment of infected tissue by either light microscopy, antibody tests, or culturing with in vitro or in vivo animal inoculation. Furthermore, co-infection by other pathogens can make it difficult to accurately determine Leishmania infection with light microscopy. Herein, for the first time, we demonstrate the potential of combining synchrotron Fourier-transform infrared (FTIR) microspectroscopy with powerful discrimination tools, such as partial least squares-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), and k-nearest neighbors (KNN), to characterize the parasitic forms of Leishmania major both isolated and within infected macrophages. For measurements performed on functional infected and uninfected macrophages in physiological solutions, the sensitivities from PLS-DA, SVM-DA, and KNN classification methods were found to be 0.923, 0.981, and 0.989, while the specificities were 0.897, 1.00, and 0.975, respectively. Cross-validated PLS-DA models on live amastigotes and promastigotes showed a sensitivity and specificity of 0.98 in the lipid region, while a specificity and sensitivity of 1.00 was achieved in the fingerprint region. The study demonstrates the potential of the FTIR technique to identify unique diagnostic bands and utilize them to generate machine learning models to predict Leishmania infection. For the first time, we examine the potential of infrared spectroscopy to study the molecular structure of parasitic forms in their native aqueous functional state, laying the groundwork for future clinical studies using more portable devices.
Collapse
|
2
|
|
Yao S, Bao H, Nuguri SM, Yu L, Mikulik Z, Osuna-diaz MM, Sebastian KR, Hackshaw KV, Rodriguez-saona L. Rapid Biomarker-Based Diagnosis of Fibromyalgia Syndrome and Related Rheumatologic Disorders by Portable FT-IR Spectroscopic Techniques. Biomedicines 2023;11:712. [PMID: 36979691 DOI: 10.3390/biomedicines11030712] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/02/2023] Open
Abstract
Fibromyalgia syndrome (FM), one of the most common illnesses that cause chronic widespread pain, continues to present significant diagnostic challenges. The objective of this study was to develop a rapid vibrational biomarker-based method for diagnosing fibromyalgia syndrome and related rheumatologic disorders (systemic lupus erythematosus (SLE), osteoarthritis (OA) and rheumatoid arthritis (RA)) through portable FT-IR techniques. Bloodspot samples were collected from patients diagnosed with FM (n = 122) and related rheumatologic disorders (n = 70), including SLE (n = 17), RA (n = 43), and OA (n = 10), and stored in conventional protein saver bloodspot cards. The blood samples were prepared by four different methods (blood aliquots, protein-precipitated extraction, and non-washed and water-washed semi-permeable membrane filtration extractions), and spectral data were collected with a portable FT-IR spectrometer. Pattern recognition analysis, OPLS-DA, was able to identify the signature profile and classify the spectra into corresponding classes (Rcv > 0.93) with excellent sensitivity and specificity. Peptide backbones and aromatic amino acids were predominant for the differentiation and might serve as candidate biomarkers for syndromes such as FM. This research evaluated the feasibility of portable FT-IR combined with chemometrics as an accurate and high-throughput tool for distinct spectral signatures of biomarkers related to the human syndrome (FM), which could allow for real-time and in-clinic diagnostics of FM.
Collapse
|
3
|
|
Barroso TG, Ribeiro L, Gregório H, Monteiro-silva F, Neves dos Santos F, Martins RC. Point-of-Care Using Vis-NIR Spectroscopy for White Blood Cell Count Analysis. CHEMOSENSORS 2022;10:460. [DOI: 10.3390/chemosensors10110460] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/09/2022] Open
Abstract
Total white blood cells count is an important diagnostic parameter in both human and veterinary medicines. State-of-the-art is performed by flow cytometry combined with light scattering or impedance measurements. Spectroscopy point-of-care has the advantages of miniaturization, low sampling, and real-time hemogram analysis. While white blood cells are in low proportions, while red blood cells and bilirubin dominate spectral information, complicating detection in blood. We performed a feasibility study for the direct detection of white blood cells counts in canine blood by visible-near infrared spectroscopy for veterinary applications, benchmarking current chemometrics techniques (similarity, global and local partial least squares, artificial neural networks and least-squares support vector machines) with self-learning artificial intelligence, introducing data augmentation to overcome the hurdle of knowledge representativity. White blood cells count information is present in the recorded spectra, allowing significant discrimination and equivalence between hemogram and spectra principal component scores. Chemometrics methods correlate white blood cells count to spectral features but with lower accuracy. Self-Learning Artificial Intelligence has the highest correlation (0.8478) and a small standard error of 6.92 × 109 cells/L, corresponding to a mean absolute percentage error of 25.37%. Such allows the accurate diagnosis of white blood cells in the range of values of the reference interval (5.6 to 17.8 × 109 cells/L) and above. This research is an important step toward the existence of a miniaturized spectral point-of-care hemogram analyzer.
Collapse
|
4
|
|
Veettil TCP, Wood BR. A Combined Near-Infrared and Mid-Infrared Spectroscopic Approach for the Detection and Quantification of Glycine in Human Serum. Sensors (Basel) 2022;22:4528. [PMID: 35746311 DOI: 10.3390/s22124528] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/15/2022] Open
Abstract
Serum is an important candidate in proteomics analysis as it potentially carries key markers on health status and disease progression. However, several important diagnostic markers found in the circulatory proteome and the low-molecular-weight (LMW) peptidome have become analytically challenging due to the high dynamic concentration range of the constituent protein/peptide species in serum. Herein, we propose a novel approach to improve the limit of detection (LoD) of LMW amino acids by combining mid-IR (MIR) and near-IR spectroscopic data using glycine as a model LMW analyte. This is the first example of near-IR spectroscopy applied to elucidate the detection limit of LMW components in serum; moreover, it is the first study of its kind to combine mid-infrared (25–2.5 μm) and near-infrared (2500–800 nm) to detect an analyte in serum. First, we evaluated the prediction model performance individually with MIR (ATR-FTIR) and NIR spectroscopic methods using partial least squares regression (PLS-R) analysis. The LoD was found to be 0.26 mg/mL with ATR spectroscopy and 0.22 mg/mL with NIR spectroscopy. Secondly, we examined the ability of combined spectral regions to enhance the detection limit of serum-based LMW amino acids. Supervised extended wavelength PLS-R resulted in a root mean square error of prediction (RMSEP) value of 0.303 mg/mL and R2 value of 0.999 over a concentration range of 0–50 mg/mL for glycine spiked in whole serum. The LoD improved to 0.17 mg/mL from 0.26 mg/mL. Thus, the combination of NIR and mid-IR spectroscopy can improve the limit of detection for an LMW compound in a complex serum matrix.
Collapse
|
5
|
|
Prada P, Brunel B, Reffuveille F, Gangloff SC. Technique Evolutions for Microorganism Detection in Complex Samples: A Review. Appl Sci (Basel) 2022;12:5892. [DOI: 10.3390/app12125892] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/12/2022] Open
Abstract
Rapid detection of microorganisms is a major challenge in the medical and industrial sectors. In a pharmaceutical laboratory, contamination of medical products may lead to severe health risks for patients, such as sepsis. In the specific case of advanced therapy medicinal products, contamination must be detected as early as possible to avoid late production stop and unnecessary costs. Unfortunately, the conventional methods used to detect microorganisms are based on time-consuming and labor-intensive approaches. Therefore, it is important to find new tools to detect microorganisms in a shorter time frame. This review sums up the current methods and represents the evolution in techniques for microorganism detection. First, there is a focus on promising ligands, such as aptamers and antimicrobial peptides, cheaper to produce and with a broader spectrum of detection. Then, we describe methods achieving low limits of detection, thanks to Raman spectroscopy or precise handling of samples through microfluids devices. The last part is dedicated to techniques in real-time, such as surface plasmon resonance, preventing the risk of contamination. Detection of pathogens in complex biological fluids remains a scientific challenge, and this review points toward important areas for future research.
Collapse
|
6
|
|
Kokot I, Mazurek S, Piwowar A, Szostak R, Jędryka M, Kratz EM, Ciobica A. ATR-IR Spectroscopy Application to Diagnostic Screening of Advanced Endometriosis. Oxid Med Cell Longev 2022;2022:1-13. [PMID: 35707272 DOI: 10.1155/2022/4777434] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/18/2022] Open
Abstract
Endometriosis is one of the most common gynecological diseases among young women of reproductive age. Thus far, it has not been possible to define a parameter that is sensitive and specific enough to be a recognized biomarker for diagnosing this disease. Nonspecific symptoms of endometriosis and delayed diagnosis are impulses for researching noninvasive methods of differentiating endometriosis from other gynecological disorders. We compared three groups of individuals in our research: women with endometriosis (E), patients suffering from other gynecological disorders (nonendometriosis, NE), and healthy women from the control group (C). Partial least squares discriminant analysis (PLS-DA) models were developed based on selected serum biochemical parameters, specific regions of the serum’s infrared attenuated total reflectance (FTIR ATR) spectra, and combined data. Incorporating the spectral data into the models significantly improved differentiation among the three groups, with an overall accuracy of 87.5%, 97.3%, and 98.5%, respectively. This study shows that infrared spectroscopy and discriminant analysis can be used to differentiate serum samples among women with advanced endometriosis, women without this disease, i.e., healthy women, and, most importantly, also women with other benign gynecological disorders.
Collapse
|
7
|
|
Zimphango C, Alimagham FC, Carpenter KLH, Hutchinson PJ, Hutter T. Monitoring Neurochemistry in Traumatic Brain Injury Patients Using Microdialysis Integrated with Biosensors: A Review. Metabolites 2022;12:393. [PMID: 35629896 DOI: 10.3390/metabo12050393] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 02/04/2023] Open
Abstract
In a traumatically injured brain, the cerebral microdialysis technique allows continuous sampling of fluid from the brain’s extracellular space. The retrieved brain fluid contains useful metabolites that indicate the brain’s energy state. Assessment of these metabolites along with other parameters, such as intracranial pressure, brain tissue oxygenation, and cerebral perfusion pressure, may help inform clinical decision making, guide medical treatments, and aid in the prognostication of patient outcomes. Currently, brain metabolites are assayed on bedside analysers and results can only be achieved hourly. This is a major drawback because critical information within each hour is lost. To address this, recent advances have focussed on developing biosensing techniques for integration with microdialysis to achieve continuous online monitoring. In this review, we discuss progress in this field, focusing on various types of sensing devices and their ability to quantify specific cerebral metabolites at clinically relevant concentrations. Important points that require further investigation are highlighted, and comments on future perspectives are provided.
Collapse
|
8
|
|
Refaat A, Kamel G. Synchrotron radiation infrared microspectroscopy: Insights on biomedicine. APPL SPECTROSC REV. [DOI: 10.1080/05704928.2022.2052308] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/02/2022]
|
9
|
|
Nair KPPR, Veettil TCP, Wood BR, Paul D, Alan T. Haemoprocessor: A Portable Platform Using Rapid Acoustically Driven Plasma Separation Validated by Infrared Spectroscopy for Point-of-Care Diagnostics. Biosensors (Basel) 2022;12:119. [PMID: 35200379 DOI: 10.3390/bios12020119] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/23/2023] Open
Abstract
The identification of biomarkers from blood plasma is at the heart of many diagnostic tests. These tests often need to be conducted frequently and quickly, but the logistics of sample collection and processing not only delays the test result, but also puts a strain on the healthcare system due to the sheer volume of tests that need to be performed. The advent of microfluidics has made the processing of samples quick and reliable, with little or no skill required on the user’s part. However, while several microfluidic devices have been demonstrated for plasma separation, none of them have validated the chemical integrity of the sample post-process. Here, we present Haemoprocessor: a portable, robust, open-fluidic system that utilizes Travelling Surface Acoustic Waves (TSAW) with the expression of overtones to separate plasma from 20× diluted human blood within a span of 2 min to achieve 98% RBC removal. The plasma and red blood cell separation quality/integrity was validated through Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy and multivariate analyses to ascertain device performance and reproducibility when compared to centrifugation (the prevailing gold-standard for plasma separation). Principal Component Analysis (PCA) showed a remarkable separation of 92.21% between RBCs and plasma components obtained through both centrifugation and Haemoprocessor methods. Moreover, a close association between plasma isolates acquired by both approaches in PCA validated the potential of the proposed system as an eminent cell enrichment and plasma separation platform. Thus, compared to contemporary acoustic devices, this system combines the ease of operation, low sample requirement of an open system, the versatility of a SAW device using harmonics, and portability.
Collapse
|
10
|
|
Nimer R, Kamel G, Obeidat MA, Dahabiyeh LA. Investigating the molecular structure of plasma in type 2 diabetes mellitus and diabetic nephropathy by synchrotron Fourier-transform infrared microspectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2022;264:120259. [PMID: 34388428 DOI: 10.1016/j.saa.2021.120259] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is associated with a high incidence of morbidity and mortality which, in many cases, is derived from the progressive kidney dysfunction due to diabetic nephropathy (DN). In this study, synchrotron-Fourier-transform infrared (SR-FTIR) microspectroscopy was used to identify molecular changes in the lipid and protein regions in the plasma of patients with different stages of DN (mild, moderate, severe and end-stage), and patients with type 2 diabetes mellitus (T2DM) without DN. Our results revealed different conformational changes in the proteins secondary structure between DN stages, and between DN and T2DM groups illustrated by peak shifts and intensity alterations. End-stage DN showed the highest CH2/CH3 ratio and intensity of the carbonyl group in protein-carbonyl region compared to other DN stages indicating high level of unsaturation and lipid peroxidation and oxidation conditions. Moreover, end-stage DN group was characterized by a decrease in amide I and amide II absorption signals which reflected a sign of hypoalbuminemia. When compared to T2DM, DN group demonstrated a higher oxidation state as confirmed via the high intensity of the carbonyl group and the high level of malondialdehyde. The current study highlights the promising role of SR-FTIR microspectroscopy as a new sensitive analytical approach that can be used to provide better understanding of the pathophysiology of DN, and guide the development of new preventive therapies and treatments.
Collapse
|
11
|
|
Pourabed A, Chakkumpulakkal puthan Veetil T, Devendran C, Nair KPR, Wood BR, Alan T. A Star Shaped Acoustofluidic Mixer Enhances Rapid Malaria Diagnostics via Cell Lysis and Whole Blood Homogenisation in 2 Seconds. Lab Chip. [DOI: 10.1039/d2lc00195k] [Cited by in Crossref: 0] [Cited by in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/21/2022]
Abstract
Malaria is a life-threatening disease caused by a parasite, which can be transmitted to humans through bites of infected female Anopheles mosquitoes. This disease plagues a significant population of the...
Collapse
|
12
|
|
Dybas J, Alcicek FC, Wajda A, Kaczmarska M, Zimna A, Bulat K, Blat A, Stepanenko T, Mohaissen T, Szczesny-malysiak E, Perez-guaita D, Wood BR, Marzec KM. Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022;146:116481. [DOI: 10.1016/j.trac.2021.116481] [Cited by in Crossref: 5] [Cited by in RCA: 6] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/11/2022]
|
13
|
|
Konnikova M, Cherkasova O, Geints T, Dizer E, Man’kova A, Vasilievskii I, Butylin A, Kistenev Y, Tuchin V, Shkurinov A. Study of adsorption of the SARS-CoV-2 virus spike protein by vibrational spectroscopy using terahertz metamaterials. QUANTUM ELECTRON+ 2022;52:2-12. [DOI: 10.1070/qel17960] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/08/2022]
Abstract
Abstract
Adhesion of the spike protein of the SARS-CoV-2 virus is studied by vibrational spectroscopy using terahertz metamaterials. The features of metastructure absorption upon the deposition of histidine, albumin, and the receptor-binding domain of the spike protein films are investigated. An original technique for quantitative assessment of the efficiency of virus adhesion on the metamaterial surfaces are proposed and experimentally tested.
Collapse
|
14
|
|
Adegoke JA, Raper H, Gassner C, Heraud P, Wood BR. Visible microspectrophotometry coupled with machine learning to discriminate the erythrocytic life cycle stages of P. falciparum malaria parasites in functional single cells. Analyst 2022;147:2662-2670. [DOI: 10.1039/d2an00274d] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/21/2022]
Abstract
Visible microspectroscopy combined with machine learning is able to detect and quantify functional malaria infected erythrocytes at different stages of the P. falciparum erythrocytic life cycle.
Collapse
|
15
|
|
Paraskevaidi M, Matthew BJ, Holly BJ, Hugh BJ, Thulya CPV, Loren C, Stjohn C, Peter G, Callum G, Sergei KG, Kamila K, Maria K, Kássio LMG, Pierre ML, Evangelos P, Savithri P, John AA, Alexandra S, Marfran S, Josep S, Gunjan T, Michael W, Bayden W. Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases. APPL SPECTROSC REV 2021;56:804-68. [DOI: 10.1080/05704928.2021.1946076] [Cited by in Crossref: 15] [Cited by in RCA: 8] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/16/2022]
|
16
|
|
Adegoke JA, De Paoli A, Afara IO, Kochan K, Creek DJ, Heraud P, Wood BR. Ultraviolet/Visible and Near-Infrared Dual Spectroscopic Method for Detection and Quantification of Low-Level Malaria Parasitemia in Whole Blood. Anal Chem 2021;93:13302-10. [PMID: 34558904 DOI: 10.1021/acs.analchem.1c02948] [Cited by in Crossref: 6] [Cited by in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/11/2022]
Abstract
The scourge of malaria infection continues to strike hardest against pregnant women and children in Africa and South East Asia. For global elimination, testing methods that are ultrasensitive to low-level ring-staged parasitemia are urgently required. In this study, we used a novel approach for diagnosis of malaria infection by combining both electronic ultraviolet-visible (UV/vis) spectroscopy and near infrared (NIR) spectroscopy to detect and quantify low-level (1-0.000001%) ring-staged malaria-infected whole blood under physiological conditions uisng Multiclass classification using logistic regression, which showed that the best results were achieved using the extended wavelength range, providing an accuracy of 100% for most parasitemia classes. Likewise, partial least-squares regression (PLS-R) analysis showed a higher quantification sensitivity (R2 = 0.898) for the extended spectral region compared to UV/vis and NIR (R2 = 0.806 and 0.556, respectively). For quantifying different-stage blood parasites, the extended wavelength range was able to detect and quantify all thePlasmodium falciparum accurately compared to testing each spectral component separately. These results demonstrate the potential of a combined UV/vis-NIR spectroscopy to accurately diagnose malaria-infected patients without the need for elaborate sample preparation associated with the existing mid-IR approaches.
Collapse
|
17
|
|
Cameron JM, Rinaldi C, Rutherford SH, Sala A, Theakstone AG, Baker MJ. EXPRESS: Clinical Spectroscopy: Lost in Translation? Appl Spectrosc 2021;:37028211021846. [PMID: 34041957 DOI: 10.1177/00037028211021846] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/15/2022]
Abstract
This focal point article discusses the developments of biomedical Raman and infrared spectroscopy, and the recent strive towards being a recognised clinical tool for various applications. The promise of vibrational spectroscopy in the field of biomedical science, alongside the development of computational methods for spectral analysis, has driven a plethora of proof-of-concept studies which convey the potential of various spectroscopic approaches. Here we report a brief review of the literature published over the past few decades, with a focus on the current technical, clinical and economic barriers to translation, namely the limitations of many of these early studies, the lack of understanding of clinical pathways, health technology assessments, regulatory approval, clinical feasibility and funding applications. The field of biomedical vibrational spectroscopy must acknowledge and overcome these hurdles in order to achieve clinical efficacy. Current prospects have been overviewed with comment on the advised future direction of spectroscopic technologies, with the aspiration that many of these innovative approaches can ultimately reach the frontier of medical diagnostics and other clinical applications.
Collapse
|
18
|
|
Adegoke JA, Kochan K, Heraud P, Wood BR. A Near-Infrared "Matchbox Size" Spectrometer to Detect and Quantify Malaria Parasitemia. Anal Chem 2021;93:5451-8. [PMID: 33759513 DOI: 10.1021/acs.analchem.0c05103] [Cited by in Crossref: 5] [Cited by in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/30/2022]
Abstract
New point-of-care diagnostic approaches for malaria that are sensitive to low parasitemia, easy to use in a field setting, and affordable are urgently required to meet the World Health Organization's objective of reducing malaria cases and related life losses by 90% globally on or before 2030. In this study, an inexpensive "matchbox size" near-infrared (NIR) spectrophotometer was used for the first time to detect and quantify malaria infection in vitro from isolated dried red blood cells using a fingerpick volume of blood. This the first study to apply a miniaturized NIR device to diagnose a parasitic infection and identify marker bands indicative of malaria infection in the NIR region. An NIR device has many advantages including wavelength accuracy and repeatability, speed, resolution, and a greatly improved signal-to-noise ratio compared to existing spectroscopic options. Using multivariate data analysis, we discriminated control red blood cells from infected cells and established the limit of detection of the technique. Principal component analysis displayed a good separation between the infected and uninfected RBCs, while partial least-squares regression analysis yielded a robust parasitemia prediction with root-mean-square error of prediction values of 0.446 and 0.001% for the higher and lower parasitemia models, respectively. The R2 values of the higher and lower parasitemia models were 0.947 and 0.931, respectively. Finally, an estimated parasitemia detection limit of 0.00001% and a qunatification limit of 0.001% was achieved; to ascertain the true efficacy of the technique for point-of-care screening, clinical studies using large patient numbers are required, which is the subject of future studies.
Collapse
|