1
|
Akande AO, Carter ZA, Stokes KY, Nam HW. Endothelial Neurogranin Regulates Blood-Brain Barrier Permeability via Modulation of the AKT Pathway. Mol Neurobiol 2025; 62:3991-4007. [PMID: 39367201 PMCID: PMC11880131 DOI: 10.1007/s12035-024-04522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
Neurogranin (Ng) expression is a biomarker for Alzheimer's disease. A loss of brain Ng and an increase in CSF Ng positively correlate with cognitive decline. Ng is known to regulate neuronal calcium-calmodulin binding and synaptic plasticity, which are critical for learning/memory. Interestingly, we discovered that Ng is also expressed in mouse and human blood-brain barrier (BBB). However, the role of Ng expression in brain vasculature remains largely undefined. In this study, we investigated the role of Ng expression on neurovascular structure and function using Ng null mice and human cerebral microvascular endothelial (hCMEC/D3) cells. We performed brain clearing and immunolabeling of blood vessels from whole brains and brain slices. Deletion of Ng significantly decreases neurovascular density in mice. Using in vivo permeability assays, we found increased neurovascular permeability in Ng null mice. We also observed significant changes in the expression of tight junction proteins using western blot and immunofluorescent staining. To identify the molecular pathways involved, we carried out label-free proteomics on brain lysates from endothelial-specific Ng knockout mice. Ingenuity Pathway Analysis indicated that the AKT pathway is attenuated in the vasculature of endothelial-specific Ng knockout mice. To validate these in vivo findings, we pharmacologically manipulated AKT signaling in hCMEC/D3 cells and observed that inhibition of AKT activation causes increased permeability. Our results indicate that the loss of Ng expression alters neurovascular structure and permeability, potentially contributing to neurological dysfunction. Therefore, modulating Ng expression in the BBB may offer a novel therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Adesewa O Akande
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Zachary A Carter
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hyung W Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
2
|
Chen B, de Launoit E, Meseguer D, Garcia Caceres C, Eichmann A, Renier N, Schneeberger M. The interactions between energy homeostasis and neurovascular plasticity. Nat Rev Endocrinol 2024; 20:749-759. [PMID: 39054359 DOI: 10.1038/s41574-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Food intake and energy expenditure are sensed and processed by multiple brain centres to uphold energy homeostasis. Evidence from the past decade points to the brain vasculature as a new critical player in regulating energy balance that functions in close association with the local neuronal networks. Nutritional imbalances alter many properties of the neurovascular system (such as neurovascular coupling and blood-brain barrier permeability), thus suggesting a bidirectional link between the nutritional milieu and neurovascular health. Increasing numbers of people are consuming a Western diet (comprising ultra-processed food with high-fat and high-sugar content) and have a sedentary lifestyle, with these factors contributing to the current obesity epidemic. Emerging pharmacological interventions (for example, glucagon-like peptide 1 receptor agonists) successfully trigger weight loss. However, whether these approaches can reverse the detrimental effects of long-term exposure to the Western diet (such as neurovascular uncoupling, neuroinflammation and blood-brain barrier disruption) and maintain stable body weight in the long-term needs to be clarified in addition to possible adverse effects. Lifestyle interventions revert the nutritional trigger for obesity and positively affect our overall health, including the cardiovascular system. This Perspective examines how lifestyle interventions affect the neurovascular system and neuronal networks.
Collapse
Affiliation(s)
- Bandy Chen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Elisa de Launoit
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina Garcia Caceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France
| | - Nicolas Renier
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Wang J, Rang Y, Liu C. Effects of Caloric Restriction and Intermittent Fasting and Their Combined Exercise on Cognitive Functioning: A Review. Curr Nutr Rep 2024; 13:691-700. [PMID: 39240488 DOI: 10.1007/s13668-024-00570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE OF REVIEW The impact of dietary habits on cognitive function is increasingly gaining attention. The review is to discuss how caloric restriction (CR) and intermittent fasting (IF) can enhance cognitive function in healthy states through multiple pathways that interact with one another. Secondly, to explore the effects of CR and IF on cognitive function in conditions of neurodegenerative diseases, obesity diabetes and aging, as well as potential synergistic effects in combination with exercise to prevent cognitively related neurodegenerative diseases. RECENT FINDINGS With age, the human brain ages and develops corresponding neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and epilepsy, which in turn trigger cognitive impairment. Recent research indicates that the impact of diet and exercise on cognitive function is increasingly gaining attention. The benefits of exercise for cognitive function and brain plasticity are numerous, and future research can examine the efficacy of particular dietary regimens during physical activity when combined with diet which can prevent cognitive decline.
Collapse
Affiliation(s)
- Junming Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Lee J, An HS, Shin HJ, Jang HM, Im CO, Jeong Y, Eum K, Yoon S, Lee SJ, Jeong EA, Kim KE, Roh GS. Intermittent Fasting Reduces Neuroinflammation and Cognitive Impairment in High-Fat Diet-Fed Mice by Downregulating Lipocalin-2 and Galectin-3. Nutrients 2024; 16:159. [PMID: 38201988 PMCID: PMC10780385 DOI: 10.3390/nu16010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Intermittent fasting (IF), an alternating pattern of dietary restriction, reduces obesity-induced insulin resistance and inflammation. However, the crosstalk between adipose tissue and the hippocampus in diabetic encephalopathy is not fully understood. Here, we investigated the protective effects of IF against neuroinflammation and cognitive impairment in high-fat diet(HFD)-fed mice. Histological analysis revealed that IF reduced crown-like structures and adipocyte apoptosis in the adipose tissue of HFD mice. In addition to circulating lipocalin-2 (LCN2) and galectin-3 (GAL3) levels, IF reduced HFD-induced increases in LCN2- and GAL3-positive macrophages in adipose tissue. IF also improved HFD-induced memory deficits by inhibiting blood-brain barrier breakdown and neuroinflammation. Furthermore, immunofluorescence showed that IF reduced HFD-induced astrocytic LCN2 and microglial GAL3 protein expression in the hippocampus of HFD mice. These findings indicate that HFD-induced adipocyte apoptosis and macrophage infiltration may play a critical role in glial activation and that IF reduces neuroinflammation and cognitive impairment by protecting against blood-brain barrier leakage.
Collapse
Affiliation(s)
- Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Hye Min Jang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Chae Oh Im
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - Yeonjun Jeong
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - Kibaek Eum
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - Sejeong Yoon
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - So Jeong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| |
Collapse
|
5
|
Kim KE, Shin HJ, Ju Y, Jung Y, An HS, Lee SJ, Jeong EA, Lee J, Hwang GS, Roh GS. Intermittent Fasting Attenuates Metabolic-Dysfunction-Associated Steatohepatitis by Enhancing the Hepatic Autophagy-Lysosome Pathway. Nutrients 2023; 15:4574. [PMID: 37960230 PMCID: PMC10649202 DOI: 10.3390/nu15214574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
An intermittent fasting (IF) regimen has been shown to protect against metabolic dysfunction-associated steatohepatitis (MASH). However, the precise mechanism remains unclear. Here, we explored how IF reduced hepatic lipid accumulation, inflammation, and fibrosis in mice with MASH. The mice were fed a high-fat diet (HFD) for 30 weeks and either continued on the HFD or were subjected to IF for the final 22 weeks. IF reduced body weight, insulin resistance, and hepatic lipid accumulation in HFD-fed mice. Lipidome analysis revealed that IF modified HFD-induced hepatic lipid composition. In particular, HFD-induced impaired autophagic flux was reversed by IF. The decreased hepatic lysosome-associated membrane protein 1 level in HFD-fed mice was upregulated in HFD+IF-fed mice. However, increased hepatic lysosomal acid lipase protein levels in HFD-fed mice were reduced by IF. IF attenuated HFD-induced hepatic inflammation and galectin-3-positive Kupffer cells. In addition to the increases in hepatic hydroxyproline and lumican levels, lipocalin-2-mediated signaling was reversed in HFD-fed mice by IF. Taken together, our findings indicate that the enhancement of the autophagy-lysosomal pathway may be a critical mechanism of MASH reduction by IF.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Yeajin Ju
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; (Y.J.); (Y.J.)
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; (Y.J.); (Y.J.)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - So Jeong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; (Y.J.); (Y.J.)
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (K.E.K.); (H.J.S.); (H.S.A.); (S.J.L.); (E.A.J.); (J.L.)
| |
Collapse
|
6
|
Lu W, Feng W, Lai J, Yuan D, Xiao W, Li Y. Role of adipokines in sarcopenia. Chin Med J (Engl) 2023; 136:1794-1804. [PMID: 37442757 PMCID: PMC10406092 DOI: 10.1097/cm9.0000000000002255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Sarcopenia is an age-related disease that mainly involves decreases in muscle mass, muscle strength and muscle function. At the same time, the body fat content increases with aging, especially the visceral fat content. Adipose tissue is an endocrine organ that secretes biologically active factors called adipokines, which act on local and distant tissues. Studies have revealed that some adipokines exert regulatory effects on muscle, such as higher serum leptin levels causing a decrease in muscle function and adiponectin inhibits the transcriptional activity of Forkhead box O3 (FoxO3) by activating peroxisome proliferators-activated receptor-γ coactivator -1α (PGC-1α) and sensitizing cells to insulin, thereby repressing atrophy-related genes (atrogin-1 and muscle RING finger 1 [MuRF1]) to prevent the loss of muscle mass. Here, we describe the effects on muscle of adipokines produced by adipose tissue, such as leptin, adiponectin, resistin, mucin and lipocalin-2, and discuss the importance of these adipokines for understanding the development of sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Dongliang Yuan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
7
|
Benchoula K, Mediani A, Hwa WE. The functions of Ca 2+/calmodulin-dependent protein kinase II (CaMKII) in diabetes progression. J Cell Commun Signal 2023; 17:25-34. [PMID: 35551607 PMCID: PMC10030766 DOI: 10.1007/s12079-022-00680-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
The increase in blood glucose causes a myriad of pathways and molecular components to malfunction, leading to diabetes. Diabetes affects each organ differently by activating distinct pathways. It has an impact on the liver, pancreas, kidney (nephropathy), eyes (retinopathy), and nervous system (neuropathy). Understanding the effects of diabetes on each organ is the first step in developing a sustained treatment for the disease. Among the many cellular molecules impacted by diabetes is Ca2+/calmodulin-dependent protein kinase II (CaMKII), a complex Ca2+/calmodulin-activated serine/threonine-protein kinase. When intracellular [Ca2+] rises, it binds to calmodulin (CaM) to produce Ca2+/CaM, which activates CaMKIIs. This factor is involved in the pancreas, liver, heart, muscles, and various organs. Thus, Understanding CaMKII action in each organ is critical for gaining a complete picture of diabetic complications. Therefore, this review covers CaMKII's functions in many organs and how it affects and has been affected by diabetes.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
8
|
Dietary energy restriction in neurological diseases: what's new? Eur J Nutr 2023; 62:573-588. [PMID: 36369305 DOI: 10.1007/s00394-022-03036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
Energy-restricted diet is a specific dietary regimen, including the continuous energy-restricted diet and the intermittent energy-restricted diet. It has been proven effective not only to reduce weight and extend the lifespan in animal models, but also to regulate the development and progression of various neurological diseases such as epilepsy, cerebrovascular diseases (stroke), neurodegenerative disorders (Alzheimer's disease and Parkinson's disease) and autoimmune diseases (multiple sclerosis). However, the mechanism in this field is still not clear and a systematic neurological summary is still missing. In this review, we first give a brief summary of the definition and mainstream strategies of energy restrictions. We then review evidence about the effects of energy-restricted diet from both animal models and human trials, and update the current understanding of mechanisms underlying the biological role of energy-restricted diet in the fight against neurological diseases. Our review thus contributes to the modification of dietary regimen and the search for special diet mimics.
Collapse
|
9
|
Rapps K, Kisliouk T, Marco A, Weller A, Meiri N. Dieting reverses histone methylation and hypothalamic AgRP regulation in obese rats. Front Endocrinol (Lausanne) 2023; 14:1121829. [PMID: 36817590 PMCID: PMC9930686 DOI: 10.3389/fendo.2023.1121829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Although dieting is a key factor in improving physiological functions associated with obesity, the role by which histone methylation modulates satiety/hunger regulation of the hypothalamus through weight loss remains largely elusive. Canonically, H3K9me2 is a transcriptional repressive post-translational epigenetic modification that is involved in obesity, however, its role in the hypothalamic arcuate nucleus (ARC) has not been thoroughly explored. Here we explore the role that KDM4D, a specific demethylase of residue H3K9, plays in energy balance by directly modulating the expression of AgRP, a key neuropeptide that regulates hunger response. METHODS We used a rodent model of diet-induced obesity (DIO) to assess whether histone methylation malprogramming impairs energy balance control and how caloric restriction may reverse this phenotype. Using ChIP-qPCR, we assessed the repressive modification of H3K9me2 at the site of AgRP. To elucidate the functional role of KDM4D in reversing obesity via dieting, a pharmacological agent, JIB-04 was used to inhibit the action of KDM4D in vivo. RESULTS In DIO, downregulation of Kdm4d mRNA results in both enrichment of H3K9me2 on the AgRP promoter and transcriptional repression of AgRP. Because epigenetic modifications are dynamic, it is possible for some of these modifications to be reversed when external cues are altered. The reversal phenomenon was observed in calorically restricted rats, in which upregulation of Kdm4d mRNA resulted in demethylation of H3K9 on the AgRP promoter and transcriptional increase of AgRP. In order to verify that KDM4D is necessary to reverse obesity by dieting, we demonstrated that in vivo inhibition of KDM4D activity by pharmacological agent JIB-04 in naïve rats resulted in transcriptional repression of AgRP, decreasing orexigenic signaling, thus inhibiting hunger. DISCUSSION We propose that the action of KDM4D through the demethylation of H3K9 is critical in maintaining a stable epigenetic landscape of the AgRP promoter, and may offer a target to develop new treatments for obesity.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| |
Collapse
|
10
|
Global Proteome Profiling of the Temporal Cortex of Female Rats Exposed to Chronic Stress and the Western Diet. Nutrients 2022; 14:nu14091934. [PMID: 35565902 PMCID: PMC9103025 DOI: 10.3390/nu14091934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing consumption of highly processed foods with high amounts of saturated fatty acids and simple carbohydrates is a major contributor to the burden of overweight and obesity. Additionally, an unhealthy diet in combination with chronic stress exposure is known to be associated with the increased prevalence of central nervous system diseases. In the present study, the global brain proteome approach was applied to explore protein alterations after exposure to the Western diet and/or stress. Female adult rats were fed with the Western diet with human snacks and/or subjected to chronic stress induced by social instability for 12 weeks. The consumption of the Western diet resulted in an obese phenotype and induced changes in the serum metabolic parameters. Consuming the Western diet resulted in changes in only 5.4% of the proteins, whereas 48% of all detected proteins were affected by chronic stress, of which 86.3% were down-regulated due to this exposure to chronic stress. However, feeding with a particular diet modified stress-induced changes in the brain proteome. The down-regulation of proteins involved in axonogenesis and mediating the synaptic clustering of AMPA glutamate receptors (Nptx1), as well as proteins related to metabolic processes (Atp5i, Mrps36, Ndufb4), were identified, while increased expression was detected for proteins involved in the development and differentiation of the CNS (Basp1, Cend1), response to stress, learning and memory (Prrt2), and modulation of synaptic transmission (Ncam1, Prrt2). In summary, global proteome analysis provides information about the impact of the combination of the Western diet and stress exposure on cerebrocortical protein alterations and yields insight into the underlying mechanisms and pathways involved in functional and morphological brain alterations as well as behavioral disturbances described in the literature.
Collapse
|
11
|
Jeong EA, Lee J, Shin HJ, Lee JY, Kim KE, An HS, Kim DR, Choi KY, Lee KH, Roh GS. Tonicity-responsive enhancer-binding protein promotes diabetic neuroinflammation and cognitive impairment via upregulation of lipocalin-2. J Neuroinflammation 2021; 18:278. [PMID: 34844610 PMCID: PMC8628424 DOI: 10.1186/s12974-021-02331-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic individuals have increased circulating inflammatory mediators which are implicated as underlying causes of neuroinflammation and memory deficits. Tonicity-responsive enhancer-binding protein (TonEBP) promotes diabetic neuroinflammation. However, the precise role of TonEBP in the diabetic brain is not fully understood. Methods We employed a high-fat diet (HFD)-only fed mice or HFD/streptozotocin (STZ)-treated mice in our diabetic mouse models. Circulating TonEBP and lipocalin-2 (LCN2) levels were measured in type 2 diabetic subjects. TonEBP haploinsufficient mice were used to investigate the role of TonEBP in HFD/STZ-induced diabetic mice. In addition, RAW 264.7 macrophages were given a lipopolysaccharide (LPS)/high glucose (HG) treatment. Using a siRNA, we examined the effects of TonEBP knockdown on RAW264 cell’ medium/HG-treated mouse hippocampal HT22 cells. Results Circulating TonEBP and LCN2 levels were higher in experimental diabetic mice or type 2 diabetic patients with cognitive impairment. TonEBP haploinsufficiency ameliorated the diabetic phenotypes including adipose tissue macrophage infiltrations, neuroinflammation, blood–brain barrier leakage, and memory deficits. Systemic and hippocampal LCN2 proteins were reduced in diabetic mice by TonEBP haploinsufficiency. TonEBP (+ / −) mice had a reduction of hippocampal heme oxygenase-1 (HO-1) expression compared to diabetic wild-type mice. In particular, we found that TonEBP bound to the LCN2 promoter in the diabetic hippocampus, and this binding was abolished by TonEBP haploinsufficiency. Furthermore, TonEBP knockdown attenuated LCN2 expression in lipopolysaccharide/high glucose-treated mouse hippocampal HT22 cells. Conclusions These findings indicate that TonEBP may promote neuroinflammation and cognitive impairment via upregulation of LCN2 in diabetic mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02331-8.
Collapse
Affiliation(s)
- Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Republic of Korea. .,Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea. .,Aging Neuroscience Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
12
|
Zhang L, Xu H, Ding N, Li X, Chen X, Chen Z. Beneficial Effects on Brain Micro-Environment by Caloric Restriction in Alleviating Neurodegenerative Diseases and Brain Aging. Front Physiol 2021; 12:715443. [PMID: 34899367 PMCID: PMC8660583 DOI: 10.3389/fphys.2021.715443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Aging and neurodegenerative diseases are frequently associated with the disruption of the extracellular microenvironment, which includes mesenchyme and body fluid components. Caloric restriction (CR) has been recognized as a lifestyle intervention that can improve long-term health. In addition to preventing metabolic disorders, CR has been shown to improve brain health owing to its enhancing effect on cognitive functions or retarding effect on the progression of neurodegenerative diseases. This article summarizes current findings regarding the neuroprotective effects of CR, which include the modulation of metabolism, autophagy, oxidative stress, and neuroinflammation. This review may offer future perspectives for brain aging interventions.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ning Ding
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Medical College, Kunming University of Science and Technology, Kunming, China
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhuangfei Chen
- Medical College, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Vemuganti R, Arumugam TV. Much ado about eating: Intermittent fasting and post-stroke neuroprotection. J Cereb Blood Flow Metab 2021; 41:1791-1793. [PMID: 33853407 PMCID: PMC8221776 DOI: 10.1177/0271678x211009362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A proper diet is important for health and longevity. Controlling the amount of food consumed is immensely beneficial as it promotes multiple cellular and molecular protective mechanisms and simultaneously prevents toxic mechanisms. Intermittent fasting (IF) is a flexible and easy-to-adopt dietary modification that helps to mitigate metabolic disorders like diabetes and hypertension, and thus the devastating age-related diseases like heart attack, stroke and dementia. The benefits of IF seem to be mediated by altered epigenetic and transcriptional programming leading to reduced oxidative stress, inflammation, mitochondrial damage and cell death.
Collapse
Affiliation(s)
- Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, USA.,William S. Middleton VA Hospital, Madison, USA
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Australia
| |
Collapse
|
14
|
Skeletal Lipocalin-2 Is Associated with Iron-Related Oxidative Stress in ob/ob Mice with Sarcopenia. Antioxidants (Basel) 2021; 10:antiox10050758. [PMID: 34064680 PMCID: PMC8150392 DOI: 10.3390/antiox10050758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity and insulin resistance accelerate aging-related sarcopenia, which is associated with iron load and oxidative stress. Lipocalin-2 (LCN2) is an iron-binding protein that has been associated with skeletal muscle regeneration, but details regarding its role in obese sarcopenia remain unclear. Here, we report that elevated LCN2 levels in skeletal muscle are linked to muscle atrophy-related inflammation and oxidative stress in leptin-deficient ob/ob mice. RNA sequencing analyses indicated the LCN2 gene expression is enhanced in skeletal muscle of ob/ob mice with sarcopenia. In addition to muscular iron accumulation in ob/ob mice, expressions of iron homeostasis-related divalent metal transporter 1, ferritin, and hepcidin proteins were increased in ob/ob mice compared to lean littermates, whereas expressions of transferrin receptor and ferroportin were reduced. Collectively, these findings demonstrate that LCN2 functions as a potent proinflammatory factor in skeletal muscle in response to obesity-related sarcopenia and is thus a therapeutic candidate target for sarcopenia treatment.
Collapse
|
15
|
Komleva Y, Chernykh A, Lopatina O, Gorina Y, Lokteva I, Salmina A, Gollasch M. Inflamm-Aging and Brain Insulin Resistance: New Insights and Role of Life-style Strategies on Cognitive and Social Determinants in Aging and Neurodegeneration. Front Neurosci 2021; 14:618395. [PMID: 33519369 PMCID: PMC7841337 DOI: 10.3389/fnins.2020.618395] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past decades, the human life span has dramatically increased, and therefore, a steady increase in diseases associated with age (such as Alzheimer's disease and Parkinson's disease) is expected. In these neurodegenerative diseases, there is a cognitive decline and memory loss, which accompany increased systemic inflammation, the inflamm-aging, and the insulin resistance. Despite numerous studies of age-related pathologies, data on the contribution of brain insulin resistance and innate immunity components to aging are insufficient. Recently, much research has been focused on the consequences of nutrients and adiposity- and nutrient-related signals in brain aging and cognitive decline. Moreover, given the role of metainflammation in neurodegeneration, lifestyle interventions such as calorie restriction may be an effective way to break the vicious cycle of metainflammation and have a role in social behavior. The various effects of calorie restriction on metainflammation, insulin resistance, and neurodegeneration have been described. Less attention has been paid to the social determinants of aging and the possible mechanism by which calorie restriction might influence social behavior. The purpose of this review is to discuss current knowledge in the interdisciplinary field of geroscience-immunosenescence, inflamm-aging, and metainflammation-which makes a significant contribution to aging. A substantial part of the review is devoted to frontiers in the brain insulin resistance in relation to neuroinflammation. In addition, we summarize new data on potential mechanisms of calorie restriction that influence as a lifestyle intervention on the social brain. This knowledge can be used to initiate successful aging and slow the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yulia Komleva
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Anatoly Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Olga Lopatina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Yana Gorina
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Irina Lokteva
- Medical Center “Private Practice”, Krasnoyarsk, Russia
| | - Alla Salmina
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voyno-Yasenetsky, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Greifswald Medical School, University of Greifswald, Greifswald, Germany
- Geriatric Medicine Center, Wolgast Hospital, Wolgast, Germany
| |
Collapse
|
16
|
Jin Z, Kim KE, Shin HJ, Jeong EA, Park KA, Lee JY, An HS, Choi EB, Jeong JH, Kwak W, Roh GS. Hippocampal Lipocalin 2 Is Associated With Neuroinflammation and Iron-Related Oxidative Stress in ob/ob Mice. J Neuropathol Exp Neurol 2020; 79:530-541. [PMID: 32296847 DOI: 10.1093/jnen/nlaa017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/08/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity causes brain injuries with inflammatory and structural changes, leading to neurodegeneration. Although increased circulating lipocalin 2 (LCN2) level has been implicated in neurodegenerative diseases, the precise mechanism of neurodegeneration in obesity is not clear. Here, we investigated whether LCN2-mediated signaling promotes neurodegeneration in the hippocampus of leptin-deficient ob/ob mice, which are characterized by obesity, insulin resistance, systemic inflammation, and neuroinflammation. In particular, there was significant upregulation of both LCN2 and matrix metalloproteinase 9 levels from serum and hippocampus in ob/ob mice. Using RNA-seq analysis, we found that neurodegeneration- sortilin-related receptor 1 (Sorl1) and brain-derived neurotrophic factor (Bdnf) genes were significantly reduced in the hippocampus of ob/ob mice. We additionally found that the endosome-related WD repeat and FYVE-domain-containing 1 (Wdfy1) gene were upregulated in ob/ob mice. In particular, iron overload-related mitochondrial ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) proteins were increased in the hippocampus of ob/ob. Thus, these findings indicate that iron-binding protein LCN2-mediated oxidative stress promotes neurodegeneration in ob/ob mice.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Jae Hun Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Woori Kwak
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR).,C&K Genomics, Inc., Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| |
Collapse
|
17
|
Jeong JH, Choi EB, Jang HM, Ahn YJ, An HS, Lee JY, Park G, Jeong EA, Shin HJ, Lee J, Kim KE, Roh GS. The Role of SHIP1 on Apoptosis and Autophagy in the Adipose Tissue of Obese Mice. Int J Mol Sci 2020; 21:ijms21197225. [PMID: 33007882 PMCID: PMC7582772 DOI: 10.3390/ijms21197225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
Obesity-induced adipocyte apoptosis promotes inflammation and insulin resistance. Src homology domain-containing inositol 5'-phosphatase 1 (SHIP1) is a key factor of apoptosis and inflammation. However, the role of SHIP1 in obesity-induced adipocyte apoptosis and autophagy is unclear. We found that diet-induced obesity (DIO) mice have significantly greater crown-like structures and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL)-positive cells than ob/ob or control mice. Using RNA sequencing (RNA-seq) analysis, we identified that the apoptosis- and inflammation-related gene Ship1 is upregulated in DIO and ob/ob mice compared with control mice. In particular, DIO mice had more SHIP1-positive macrophages and lysosomal-associated membrane protein 1 (LAMP1) as well as a higher B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio compared with ob/ob or control mice. Furthermore, caloric restriction attenuated adipose tissue inflammation, apoptosis, and autophagy by reversing increases in SHIP1-associated macrophages, Bax/Bcl2-ratio, and autophagy in DIO and ob/ob mice. These results demonstrate that DIO, not ob/ob, aggravates adipocyte inflammation, apoptosis, and autophagy due to differential SHIP1 expression. The evidence of decreased SHIP1-mediated inflammation, apoptosis, and autophagy indicates new therapeutic approaches for obesity-induced chronic inflammatory diseases.
Collapse
|
18
|
Dias IR, Santos CDS, Magalhães CODE, de Oliveira LRS, Peixoto MFD, De Sousa RAL, Cassilhas RC. Does calorie restriction improve cognition? IBRO Rep 2020; 9:37-45. [PMID: 33336102 PMCID: PMC7733132 DOI: 10.1016/j.ibror.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
Calorie restriction (CR) has been considered the most effective non-pharmacological intervention to counteract aging-related diseases and improve longevity. This intervention has shown beneficial effects in the prevention and treatment of several chronic diseases and functional declines related to aging, such as Parkinson's, Alzheimer's, and neuroendocrine disorders. However, the effects of CR on cognition show controversial results since its effects vary according to intensity, duration, and the period of CR. This review focuses on the main studies published in the last ten years regarding the consequences of CR on cognition in different neurological diseases and conditions of experimental animals. Also, possible CR mimetics are discussed. These findings highlight the potential beneficial effects of CR of up to 40 % on cognition when started early in life in non human animals.
Collapse
Affiliation(s)
- Isabella Rocha Dias
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Carina de Sousa Santos
- Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Lucas Renan Sena de Oliveira
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Marco Fabrício Dias Peixoto
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.,Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil.,Post Graduation Program in Health Science (PPGCS), UFVJM, Diamantina, MG, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Ricardo Cardoso Cassilhas
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Diamantina, MG, Brazil.,Neuroplasticity and Exercise Study Group (Grupo de Estudos em Neuroplasticidade e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil.,Post Graduation Program in Health Science (PPGCS), UFVJM, Diamantina, MG, Brazil
| |
Collapse
|
19
|
Leigh SJ, Kaakoush NO, Bertoldo MJ, Westbrook RF, Morris MJ. Intermittent cafeteria diet identifies fecal microbiome changes as a predictor of spatial recognition memory impairment in female rats. Transl Psychiatry 2020; 10:36. [PMID: 32066702 PMCID: PMC7026185 DOI: 10.1038/s41398-020-0734-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive consumption of diets high in saturated fat and sugar impairs short-term spatial recognition memory in both humans and rodents. Several studies have identified associations between the observed behavioral phenotype and diet-induced changes in adiposity, hippocampal gene expression of inflammatory and blood-brain barrier-related markers, and gut microbiome composition. However, the causal role of such variables in producing cognitive impairments remains unclear. As intermittent cafeteria diet access produces an intermediate phenotype, we contrasted continuous and intermittent diet access to identify specific changes in hippocampal gene expression and microbial species that underlie the cognitive impairment observed in rats fed continuous cafeteria diet. Female adult rats were fed either regular chow, continuous cafeteria diet, or intermittent cafeteria diet cycles (4 days regular chow and 3 days cafeteria) for 7 weeks (12 rats per group). Any cafeteria diet exposure affected metabolic health, hippocampal gene expression, and gut microbiota, but only continuous access impaired short-term spatial recognition memory. Multiple regression identified an operational taxonomic unit, from species Muribaculum intestinale, as a significant predictor of performance in the novel place recognition task. Thus, contrasting intermittent and continuous cafeteria diet exposure allowed us to identify specific changes in microbial species abundance and growth as potential underlying mechanisms relevant to diet-induced cognitive impairment.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- grid.1005.40000 0004 4902 0432School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - Nadeem O. Kaakoush
- grid.1005.40000 0004 4902 0432School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - Michael J. Bertoldo
- grid.1005.40000 0004 4902 0432Fertility and Research Centre, School of Women’s and Children’s Health, UNSW, Sydney, NSW 2052 Australia
| | | | - Margaret J. Morris
- grid.1005.40000 0004 4902 0432School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| |
Collapse
|
20
|
Park KA, Jin Z, An HS, Lee JY, Jeong EA, Choi EB, Kim KE, Shin HJ, Lee JE, Roh GS. Effects of caloric restriction on the expression of lipocalin-2 and its receptor in the brown adipose tissue of high-fat diet-fed mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:335-344. [PMID: 31496871 PMCID: PMC6717793 DOI: 10.4196/kjpp.2019.23.5.335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023]
Abstract
Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.
Collapse
Affiliation(s)
- Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
21
|
Brain tumor necrosis factor-α mediates anxiety-like behavior in a mouse model of severe obesity. Brain Behav Immun 2019; 77:25-36. [PMID: 30508579 DOI: 10.1016/j.bbi.2018.11.316] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
Although the high prevalence of anxiety in obesity increasingly emerges as significant risk factor for related severe health complications, the underlying pathophysiological mechanisms remain poorly understood. Considering that chronic inflammation is a key component of obesity and is well known to impact brain function and emotional behavior, we hypothesized that it may similarly contribute to the development of obesity-related anxiety. This hypothesis was experimentally tested by measuring whether chronic food restriction, a procedure known to reduce inflammation, or chronic anti-inflammatory treatment with ibuprofen improved anxiety-like behavior and concomitantly decreased peripheral and/or hippocampal inflammation characterizing a model of severe obesity, the db/db mice. In both experiments, reduced anxiety-like behaviors in the open-field and/or elevated plus-maze were selectively associated with decreased hippocampal tumor necrosis factor-α (TNF-α) mRNA expression. Highlighting the causality of both events, chronic central infusion of the TNF-α blocker etanercept was then shown to be sufficient to improve anxiety-like behavior in db/db mice. Lastly, by measuring the impact of ex-vivo etanercept on hippocampal synaptic processes underlying anxiety-like behaviors, we showed that the anxiolytic effect of central TNF-α blockade likely involved modulation of synaptic transmission within the ventral hippocampus. Altogether, these results uphold the role of brain TNF-α in mediating obesity-related anxiety and provide important clues about how it may modulate brain function and behavior. They may therefore help to introduce novel therapeutic strategies to reduce anxiety associated with inflammatory conditions.
Collapse
|
22
|
Niccolai E, Boem F, Russo E, Amedei A. The Gut⁻Brain Axis in the Neuropsychological Disease Model of Obesity: A Classical Movie Revised by the Emerging Director "Microbiome". Nutrients 2019; 11:156. [PMID: 30642052 PMCID: PMC6356219 DOI: 10.3390/nu11010156] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemic of obesity has become an important public health issue, with serious psychological and social consequences. Obesity is a multifactorial disorder in which various elements (genetic, host, and environment), play a definite role, even if none of them satisfactorily explains its etiology. A number of neurological comorbidities, such as anxiety and depression, charges the global obesity burden, and evidence suggests the hypothesis that the brain could be the seat of the initial malfunction leading to obesity. The gut microbiome plays an important role in energy homeostasis regulating energy harvesting, fat deposition, as well as feeding behavior and appetite. Dietary patterns, like the Western diet, are known to be a major cause of the obesity epidemic, probably promoting a dysbiotic drift in the gut microbiota. Moreover, the existence of a "gut⁻brain axis" suggests a role for microbiome on hosts' behavior according to different modalities, including interaction through the nervous system, and mutual crosstalk with the immune and the endocrine systems. In the perspective of obesity as a real neuropsychological disease and in light of the discussed considerations, this review focuses on the microbiome role as an emerging director in the development of obesity.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Federico Boem
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
23
|
Kim KE, Jeong EA, Shin HJ, Lee JY, Choi EB, An HS, Park KA, Jin Z, Lee DK, Horvath TL, Roh GS. Effects of myeloid sirtuin 1 deficiency on hypothalamic neurogranin in mice fed a high-fat diet. Biochem Biophys Res Commun 2019; 508:123-129. [PMID: 30471862 DOI: 10.1016/j.bbrc.2018.11.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Dong Kun Lee
- Department of Physiology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, 52777, Republic of Korea.
| |
Collapse
|
24
|
Mantor D, Pratchayasakul W, Minta W, Sutham W, Palee S, Sripetchwandee J, Kerdphoo S, Jaiwongkum T, Sriwichaiin S, Krintratun W, Chattipakorn N, Chattipakorn SC. Both oophorectomy and obesity impaired solely hippocampal-dependent memory via increased hippocampal dysfunction. Exp Gerontol 2018; 108:149-158. [PMID: 29678475 DOI: 10.1016/j.exger.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/18/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Our previous study demonstrated that obesity aggravated peripheral insulin resistance and brain dysfunction in the ovariectomized condition. Conversely, the effect of obesity followed by oophorectomy on brain oxidative stress, brain apoptosis, synaptic function and cognitive function, particularly in hippocampal-dependent and hippocampal-independent memory, has not been investigated. Our hypothesis was that oophorectomy aggravated metabolic impairment, brain dysfunction and cognitive impairment in obese rats. Thirty-two female rats were fed with either a normal diet (ND, n = 16) or a high-fat diet (HFD, n = 16) for a total of 20 weeks. At week 13, rats in each group were subdivided into sham and ovariectomized subgroups (n = 8/subgroup). At week 20, all rats were tested for hippocampal-dependent and hippocampal-independent memory by using Morris water maze test (MWM) and Novel objective recognition (NOR) tests, respectively. We found that the obese-insulin resistant condition occurred in sham-HFD-fed rats (HFS), ovariectomized-ND-fed rats (NDO), and ovariectomized-HFD-fed rats (HFO). Increased hippocampal oxidative stress level, increased hippocampal apoptosis, increased hippocampal synaptic dysfunction, decreased hippocampal estrogen level and impaired hippocampal-dependent memory were observed in HFS, NDO, and HFO rats. However, the hippocampal-independent memory, cortical estrogen levels, cortical ROS production, and cortical apoptosis showed no significant difference between groups. These findings suggested that oophorectomy and obesity exclusively impaired hippocampal-dependent memory, possibly via increased hippocampal dysfunction. Nonetheless, oophorectomy did not aggravate these deleterious effects under conditions of obesity.
Collapse
Affiliation(s)
- Duangkamol Mantor
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wanitchaya Minta
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wissuta Sutham
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkum
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warunsorn Krintratun
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
25
|
Reduced learning and memory performances in high-fat treated hamsters related to brain neurotensin receptor1 expression variations. Behav Brain Res 2018; 347:227-233. [DOI: 10.1016/j.bbr.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
|
26
|
Fasting and Fast Food Diet Play an Opposite Role in Mice Brain Aging. Mol Neurobiol 2018; 55:6881-6893. [DOI: 10.1007/s12035-018-0891-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
|
27
|
Krishan P, Bedi O, Rani M. Impact of diet restriction in the management of diabetes: evidences from preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 391:235-245. [PMID: 29249036 DOI: 10.1007/s00210-017-1453-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
The inappropriate dietary habits lead to the onset of age-related pathologies which include diabetes and cardiovascular ailments. Dietary restriction and nutritional therapy play an important role in the prevention of these chronic ailments. Preclinical research provides a basis for the therapeutic exploration of new dietary interventions for the clinical trials to potentiate the scientific management of diabetes and its related complications which further help in translating these nutritional improvements from bench to bedside. Within the same context, numerous therapeutically proved preclinical dietary interventions like high-fiber diet, caloric restriction, soy isoflavone-containing diets, etc., have shown the promising results for the management of diabetes and the associated complications. The focus of the present review is to highlight the various preclinical evidences of diet restriction for the management of diabetes and which will be helpful for enlightening the new ideas of nutritional therapy for future research exploration. In addition, some potential approaches are also discussed which are associated with various nutritional interventions to combat progressive diabetes and the associated disorders. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| | - Onkar Bedi
- JRF, DST-SERB, New Delhi, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Monika Rani
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
28
|
Sah SK, Lee C, Jang JH, Park GH. Effect of high-fat diet on cognitive impairment in triple-transgenic mice model of Alzheimer's disease. Biochem Biophys Res Commun 2017; 493:731-736. [PMID: 28865961 DOI: 10.1016/j.bbrc.2017.08.122] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
High-fat diet (HFD)-induced obesity is a risk factor for cognitive impairment in Alzheimer's disease (AD). It has been reported that two typical neuropathological markers of AD, β-amyloid (Aβ) peptide and hyperphosphorylated protein tau can cause neuronal apoptosis via oxidative stress, which ultimately leads to cognitive dysfunction. In this study, we tried to explore the molecular pathway underlying memory impairment in young AD transgenic mice model in response to HFD. We maintained non-transgenic control mice (non-Tg) and triple transgenic AD (3xTg-AD) mice aged 8 weeks on either normal diet (ND) containing 10% fat or HFD (60% fat) for 16 weeks. Cognitive functions were evaluated by Morris water maze and Y-maze tests. Behavioral tests showed a significant memory impairment in 3xTg-AD mice fed with HFD. HFD did not alter the levels of Aβ and phospho-tau protein in the cortical region regardless of groups. However, 3xTg-AD mice fed with HFD exhibited increased neuronal oxidative stress and apoptosis as assessed by augmentation of lipid peroxidation, activation of caspase-3 and elevated ratio of Bax/Bcl-2. Furthermore, HFD markedly reduced the activation of redox-sensitive transcription factor NF-E2-related factor 2 (Nrf2) by suppressing its up-stream regulatory protein kinase B/Akt as well as down-stream targets such as heme oxygenase-1 and manganese superoxide dismutase in these mice. Our findings suggest that HFD may accelerate cognitive impairment by enhancing oxidative stress and aggravating neuronal apoptosis via inactivation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chan Lee
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Jung-Hee Jang
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea.
| | - Gyu Hwan Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
29
|
Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, Zhuang P, Whalen MJ, Song B, Wang XJ, Li X, Lo EH, Xu Y, Wang X. FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice. Mol Neurobiol 2017; 55:4702-4717. [PMID: 28712011 DOI: 10.1007/s12035-017-0663-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
Accumulating studies suggest that overnutrition-associated obesity may lead to development of type 2 diabetes mellitus and metabolic syndromes (MetS). MetS and its components are important risk factors of mild cognitive impairment, age-related cognitive decline, vascular dementia, and Alzheimer's disease. It has been recently proposed that development of a disease-course modification strategy toward early and effective risk factor management would be clinically significant in reducing the risk of metabolic disorder-initiated cognitive decline. In the present study, we propose that fibroblast growth factor 21 (FGF21) is a novel candidate for the disease-course modification approach. Using a high-fat diet (HFD) consumption-induced obese mouse model, we tested our hypothesis that recombinant human FGF21 (rFGF21) administration is effective for improving obesity-induced cognitive dysfunction and anxiety-like behavior, by its multiple metabolic modulation and anti-pro-inflammation actions. Our experimental findings support our hypothesis that rFGF21 is protective to HFD-induced cognitive impairment, at least in part by metabolic regulation in glucose tolerance impairment, insulin resistance, and hyperlipidemia; potent systemic pro-inflammation inhibition; and improvement of hippocampal dysfunction, particularly by inhibiting pro-neuroinflammation and neurogenesis deficit. This study suggests that FGF21 might be a novel molecular target of the disease-course-modifying strategy for early intervention of MstS-associated cognitive decline.
Collapse
Affiliation(s)
- Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Jing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Li Lin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Zeyuan Cao
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Pengwei Zhuang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Michael J Whalen
- Neurobehavioral Core Facility, Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Xiao-Jie Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
30
|
O'Brien PD, Hinder LM, Callaghan BC, Feldman EL. Neurological consequences of obesity. Lancet Neurol 2017; 16:465-477. [PMID: 28504110 PMCID: PMC5657398 DOI: 10.1016/s1474-4422(17)30084-4] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/09/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
The high prevalence of obesity is associated with an enormous medical, social, and economic burden. The metabolic dysfunction, dyslipidaemia, and inflammation caused by obesity contribute to the development of a wide variety of disorders and effects on the nervous system. In the CNS, mild cognitive impairment can be attributed to obesity-induced alterations in hippocampal structure and function in some patients. Likewise, compromised hypothalamic function and subsequent defects in maintaining whole-body energy balance might be early events that contribute to weight gain and obesity development. In the peripheral nervous system, obesity-driven alterations in the autonomic nervous system prompt imbalances in sympathetic-parasympathetic activity, while alterations in the sensory-somatic nervous system underlie peripheral polyneuropathy, a common complication of diabetes. Pharmacotherapy and bariatric surgery are promising interventions for people with obesity that can improve neurological function. However, lifestyle interventions via dietary changes and exercise are the preferred approach to combat obesity and reduce its associated health risks.
Collapse
Affiliation(s)
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
McArthur S, Loiola RA, Maggioli E, Errede M, Virgintino D, Solito E. The restorative role of annexin A1 at the blood-brain barrier. Fluids Barriers CNS 2016; 13:17. [PMID: 27655189 PMCID: PMC5031267 DOI: 10.1186/s12987-016-0043-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022] Open
Abstract
Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood-brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood-brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood-brain barrier damage in disease and aging.
Collapse
Affiliation(s)
- Simon McArthur
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Rodrigo Azevedo Loiola
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University, London, UK
| | - Elisa Maggioli
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University, London, UK
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Bari University School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Bari University School of Medicine, Bari, Italy
| | - Egle Solito
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University, London, UK
| |
Collapse
|