1
|
Kooner HK, Wyszkiewicz PV, Matheson AM, McIntosh MJ, Abdelrazek M, Dhaliwal I, Nicholson JM, Kirby M, Svenningsen S, Parraga G. Chest CT Airway and Vascular Measurements in Females with COPD or Long-COVID. COPD 2024; 21:2394129. [PMID: 39221567 DOI: 10.1080/15412555.2024.2394129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chest CT provides a way to quantify pulmonary airway and vascular tree measurements. In patients with COPD, CT airway measurement differences in females are concomitant with worse quality-of-life and other outcomes. CT total airway count (TAC), airway lumen area (LA), and wall thickness (WT) also differ in females with long-COVID. Our objective was to evaluate CT airway and pulmonary vascular and quality-of-life measurements in females with COPD as compared to ex-smokers and patients with long-COVID. Chest CT was acquired 3-months post-COVID-19 infection in females with long-COVID for comparison with the same inspiratory CT in female ex-smokers and COPD patients. TAC, LA, WT, and pulmonary vascular measurements were quantified. Linear regression models were adjusted for confounders including age, height, body-mass-index, lung volume, pack-years and asthma diagnosis. Twenty-one females (53 ± 14 years) with long-COVID, 17 female ex-smokers (69 ± 9 years) and 13 female COPD (67 ± 6 years) patients were evaluated. In the absence of differences in quality-of-life scores, females with long-COVID reported significantly different LA (p = 0.006) compared to ex-smokers but not COPD (p = 0.7); WT% was also different compared to COPD (p = 0.009) but not ex-smokers (p = 0.5). In addition, there was significantly greater pulmonary small vessel volume (BV5) in long-COVID as compared to female ex-smokers (p = 0.045) and COPD (p = 0.003) patients and different large (BV10) vessel volume as compared to COPD (p = 0.03). In females with long-COVID and highly abnormal quality-of-life scores, there was CT evidence of airway remodelling, similar to ex-smokers and patients with COPD, but there was no evidence of pulmonary vascular remodelling.Clinical Trial Registration: www.clinicaltrials.gov NCT05014516 and NCT02279329.
Collapse
Affiliation(s)
- Harkiran K Kooner
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Paulina V Wyszkiewicz
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Alexander M Matheson
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | | | - Inderdeep Dhaliwal
- Division of Respirology, Department of Medicine, Western University, London, Canada
| | - J Michael Nicholson
- Division of Respirology, Department of Medicine, Western University, London, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Sarah Svenningsen
- Division of Respirology, Department of Medicine, McMaster University and Firestone Institute for Respiratory Health, St Joseph's Health Care, Hamilton, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Division of Respirology, Department of Medicine, Western University, London, Canada
| |
Collapse
|
2
|
Milne KM, Mitchell RA, Ferguson ON, Hind AS, Guenette JA. Sex-differences in COPD: from biological mechanisms to therapeutic considerations. Front Med (Lausanne) 2024; 11:1289259. [PMID: 38572156 PMCID: PMC10989064 DOI: 10.3389/fmed.2024.1289259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous respiratory condition characterized by symptoms of dyspnea, cough, and sputum production. We review sex-differences in disease mechanisms, structure-function-symptom relationships, responses to therapies, and clinical outcomes in COPD with a specific focus on dyspnea. Females with COPD experience greater dyspnea and higher morbidity compared to males. Imaging studies using chest computed tomography scans have demonstrated that females with COPD tend to have smaller airways than males as well as a lower burden of emphysema. Sex-differences in lung and airway structure lead to critical respiratory mechanical constraints during exercise at a lower absolute ventilation in females compared to males, which is largely explained by sex differences in maximum ventilatory capacity. Females experience similar benefit with respect to inhaled COPD therapies, pulmonary rehabilitation, and smoking cessation compared to males. Ongoing re-assessment of potential sex-differences in COPD may offer insights into the evolution of patterns of care and clinical outcomes in COPD patients over time.
Collapse
Affiliation(s)
- Kathryn M. Milne
- Centre for Heart Lung Innovation, The University of British Columbia and Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Reid A. Mitchell
- Centre for Heart Lung Innovation, The University of British Columbia and Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Olivia N. Ferguson
- Centre for Heart Lung Innovation, The University of British Columbia and Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Alanna S. Hind
- Centre for Heart Lung Innovation, The University of British Columbia and Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Jordan A. Guenette
- Centre for Heart Lung Innovation, The University of British Columbia and Providence Research, St. Paul’s Hospital, Vancouver, BC, Canada
- Division of Respiratory Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Bhatt SP, Bodduluri S, Nakhmani A, Kim YI, Reinhardt JM, Hoffman EA, Motahari A, Wilson CG, Humphries SM, Regan EA, DeMeo DL. Sex Differences in Airways at Chest CT: Results from the COPDGene Cohort. Radiology 2022; 305:699-708. [PMID: 35916677 PMCID: PMC9713451 DOI: 10.1148/radiol.212985] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Background The prevalence of chronic obstructive pulmonary disease (COPD) in women is fast approaching that in men, and women experience greater symptom burden. Although sex differences in emphysema have been reported, differences in airways have not been systematically characterized. Purpose To evaluate whether structural differences in airways may underlie some of the sex differences in COPD prevalence and clinical outcomes. Materials and Methods In a secondary analyses of a multicenter study of never-, current-, and former-smokers enrolled from January 2008 to June 2011 and followed up longitudinally until November 2020, airway disease on CT images was quantified using seven metrics: airway wall thickness, wall area percent, and square root of the wall thickness of a hypothetical airway with internal perimeter of 10 mm (referred to as Pi10) for airway wall; and lumen diameter, airway volume, total airway count, and airway fractal dimension for airway lumen. Least-squares mean values for each airway metric were calculated and adjusted for age, height, ethnicity, body mass index, pack-years of smoking, current smoking status, total lung capacity, display field of view, and scanner type. In ever-smokers, associations were tested between each airway metric and postbronchodilator forced expiratory volume in 1 second (FEV1)-to-forced vital capacity (FVC) ratio, modified Medical Research Council dyspnea scale, St George's Respiratory Questionnaire score, and 6-minute walk distance. Multivariable Cox proportional hazards models were created to evaluate the sex-specific association between each airway metric and mortality. Results In never-smokers (n = 420), men had thicker airway walls than women as quantified on CT images for segmental airway wall area percentage (least-squares mean, 47.68 ± 0.61 [standard error] vs 45.78 ± 0.55; difference, -1.90; P = .02), whereas airway lumen dimensions were lower in women than men after accounting for height and total lung capacity (segmental lumen diameter, 8.05 mm ± 0.14 vs 9.05 mm ± 0.16; difference, -1.00 mm; P < .001). In ever-smokers (n = 9363), men had greater segmental airway wall area percentage (least-squares mean, 52.19 ± 0.16 vs 48.89 ± 0.18; difference, -3.30; P < .001), whereas women had narrower segmental lumen diameter (7.80 mm ± 0.05 vs 8.69 mm ± 0.04; difference, -0.89; P < .001). A unit change in each of the airway metrics (higher wall or lower lumen measure) resulted in lower FEV1-to-FVC ratio, more dyspnea, poorer respiratory quality of life, lower 6-minute walk distance, and worse survival in women compared with men (all P < .01). Conclusion Airway lumen sizes quantified at chest CT were smaller in women than in men after accounting for height and lung size, and these lower baseline values in women conferred lower reserves against respiratory morbidity and mortality for equivalent changes compared with men. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Surya P. Bhatt
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Sandeep Bodduluri
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Arie Nakhmani
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Young-il Kim
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Joseph M. Reinhardt
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Eric A. Hoffman
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Amin Motahari
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Carla G. Wilson
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Stephen M. Humphries
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Elizabeth A. Regan
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| | - Dawn L. DeMeo
- From the UAB Lung Imaging Lab (S.P.B., S.B., A.N.), UAB Lung Health
Center (S.P.B., S.B.), Division of Pulmonary, Allergy and Critical Care Medicine
(S.P.B., S.B.), Department of Electrical and Computer Engineering (A.N.), and
Division of Preventive Medicine (Y.I.K.), University of Alabama at Birmingham,
1720 2nd Ave S, THT 422, Birmingham, AL 35294; Roy J. Carver Department
of Biomedical Engineering (J.M.R.) and Department of Radiology (E.A.H., A.M.),
University of Iowa, Iowa City, Iowa; Departments of Biostatistics and
Bioinformatics (C.G.W.), Radiology (S.M.H.), and Medicine (E.A.R.), National
Jewish Health, Denver, Colo; and Channing Division of Network Medicine and the
Division of Pulmonary and Critical Care Medicine, Brigham and Women's
Hospital, Harvard Medical School, Boston, Mass (D.L.D.)
| |
Collapse
|
4
|
Lee K, Lee H, Lee K, Hong S, Shin H, Lee G. Gender differences in pulmonary function, physical activity, and quality of life of patients with COPD based on data from the Korea National Health and Nutrition Examination Survey 2015 to 2019 from the Perspective of Pulmonary Rehabilitation. Medicine (Baltimore) 2022; 101:e31413. [PMID: 36343059 PMCID: PMC9646631 DOI: 10.1097/md.0000000000031413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prevalence of chronic obstructive pulmonary disease (COPD) is increasing worldwide, with the fourth highest mortality rate. This study aims to analyze pulmonary function, physical activity, and quality of life (QoL) between genders from the perspective of pulmonary rehabilitation in Korean patients with COPD. This study investigated raw data from the Korea National Health and Nutrition Examination Survey from 2015 to 2019 and included 151 COPD patients (men: 66.55 ± 10.07 years, women: 65.21 ± 11.73) out of 39,759 participants. Pulmonary function, such as forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), and frequency of physical activities (e.g., physical activity for work and leisure, strengthening exercise, and sitting time a day) and QoL by using EQ-5D-3L, were compared between genders in patients with COPD. Smoking status differed in health-related characteristics between genders (P < .001). In pulmonary function, the FVC (men: 3.48 ± 0.98ℓ, women: 2.53 ± 0.56ℓ, P < .05), FEV1 (men: 2.13 ± 0.93 ℓ, women: 1.88 ± 0.53 ℓ, P < .001), FEV6 (men: 3.16 ± 1.00ℓ, women: 2.46 ± 1.56ℓ, P < .001) and peak expiratory flow (men: 5.61 ± 2.44ℓ/s, women: 4.68 ± 1.53ℓ/s, P < .05) was higher in men, however, predicted FEV1 (men: 66.03% ± 23.13%, women: 79.95% ± 18.45%, P < .05) and predicted FEV1/FVC ratio (men: 59.67% ± 15.02%, women: 74.10% ± 10.49%, P < .001) in women. The frequency of strengthening exercise was higher in men (P < .05). QoL of patients with COPD was not significantly different between genders. To provide correct interventions and pulmonary rehabilitation to patients with COPD, gender differences, including physiological and psychological differences, must be considered.
Collapse
Affiliation(s)
- Kyeongbong Lee
- Department of Physical Therapy, Kangwon National University, Samcheok, Republic of Korea
| | - HyoSun Lee
- Department of Physical Therapy, Graduate School of Kyungnam University, Changwon, Republic of Korea
| | - KyungJune Lee
- Department of Broadcasting and Communication Policy, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - SungKyun Hong
- Department of Physical Therapy, Woosuk University, Wanju, Republic of Korea
| | - HyeonHui Shin
- Department of Occupational Therapy, Dongseo University, Busan, Republic of Korea
| | - GyuChang Lee
- Department of Physical Therapy, Kyungnam University, Changwon, Republic of Korea
- *Correspondence: GyuChang Lee, Department of Physical Therapy, Kyungnam University, 7 Kyungnamdaehak-ro, Masanhappo-gu, Changwon, Gyeongsangnam-do 51767, Republic of Korea (e-mail: )
| |
Collapse
|
5
|
Xu W, Liu Y, Zeng B, Li X. Association between age, gender, body mass index, and pulmonary function in preoperative patients with lung cancer. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:244-251. [PMID: 35081274 PMCID: PMC9060039 DOI: 10.1111/crj.13476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/25/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Many confounding factors such as sex, age, and body mass index (BMI) affect pulmonary function parameters, but there are limited data about the direct and/or indirect effects of small airway function on lung function for differences in confounding factors. OBJECTIVES This study aimed to use structural equation model (SEM) to explain the influence of the confounding factors (age, sex, and BMI) on the relationship between small airway function and lung function in patients with lung cancer. METHODS A cross-sectional observational study was conducted in a single medical center. Subjects were assessed; small airway function was specified by MEF25% and MEF50%; lung function by FVC; pulmonary obstruction by FEV1, FEV1%, and FEV1/FVC; and PEF and PEF% reflected the strength of abdominal muscles. The measurement model was analyzed by confirmatory factor analysis. The SEM was conducted to analyze the structural models of the effects of the confounding factors. RESULTS In the measurement model, variables were fit to their domains, the path linking age and sex to pulmonary obstruction was positive and statistically significant, and the path linking sex to muscle strength was also positive and statistically significant. Muscle strength positively and significantly mediates the path between sex and FVC. As a moderator, BMI increased the effects of small airway function on FVC. CONCLUSION Age and sex were directed to pulmonary obstruction, and muscle strength as a mediator between sex and lung function was novel, and BMI adjusted the effects of small airway function on FVC.
Collapse
Affiliation(s)
- Weicheng Xu
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric InstituteGuangdong Academy of Medical Sciences and Guangdong Provincial People's HospitalGuangzhouChina
| | - Yakang Liu
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric InstituteGuangdong Academy of Medical Sciences and Guangdong Provincial People's HospitalGuangzhouChina
| | - Bin Zeng
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric InstituteGuangdong Academy of Medical Sciences and Guangdong Provincial People's HospitalGuangzhouChina
| | - Xinping Li
- Department of Physical Medicine and Rehabilitation, Guangdong Geriatric InstituteGuangdong Academy of Medical Sciences and Guangdong Provincial People's HospitalGuangzhouChina
| |
Collapse
|
6
|
Dudurych I, Muiser S, McVeigh N, Kerstjens HAM, van den Berge M, de Bruijne M, Vliegenthart R. Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations: a systematic review and meta-analysis. Eur Radiol 2022; 32:5308-5318. [PMID: 35192013 PMCID: PMC9279249 DOI: 10.1007/s00330-022-08600-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/14/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
Objective Research on computed tomography (CT) bronchial parameter measurements shows that there are conflicting results on the values for bronchial parameters in the never-smoking, smoking, asthma, and chronic obstructive pulmonary disease (COPD) populations. This review assesses the current CT methods for obtaining bronchial wall parameters and their comparison between populations. Methods A systematic review of MEDLINE and Embase was conducted following PRISMA guidelines (last search date 25th October 2021). Methodology data was collected and summarised. Values of percentage wall area (WA%), wall thickness (WT), summary airway measure (Pi10), and luminal area (Ai) were pooled and compared between populations. Results A total of 169 articles were included for methodologic review; 66 of these were included for meta-analysis. Most measurements were obtained from multiplanar reconstructions of segmented airways (93 of 169 articles), using various tools and algorithms; third generation airways in the upper and lower lobes were most frequently studied. COPD (12,746) and smoking (15,092) populations were largest across studies and mostly consisted of men (median 64.4%, IQR 61.5 – 66.1%). There were significant differences between populations; the largest WA% was found in COPD (mean SD 62.93 ± 7.41%, n = 6,045), and the asthma population had the largest Pi10 (4.03 ± 0.27 mm, n = 442). Ai normalised to body surface area (Ai/BSA) (12.46 ± 4 mm2, n = 134) was largest in the never-smoking population. Conclusions Studies on CT-derived bronchial parameter measurements are heterogenous in methodology and population, resulting in challenges to compare outcomes between studies. Significant differences between populations exist for several parameters, most notably in the wall area percentage; however, there is a large overlap in their ranges. Key Points • Diverse methodology in measuring airways contributes to overlap in ranges of bronchial parameters among the never-smoking, smoking, COPD, and asthma populations. • The combined number of never-smoking participants in studies is low, limiting insight into this population and the impact of participant characteristics on bronchial parameters. • Wall area percent of the right upper lobe apical segment is the most studied (87 articles) and differentiates all except smoking vs asthma populations. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-08600-1.
Collapse
Affiliation(s)
- Ivan Dudurych
- Department of Radiology, EB49, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Susan Muiser
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Niall McVeigh
- Department of Cardiothoracic Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Huib A M Kerstjens
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marleen de Bruijne
- Department of Radiology and Nuclear Medicine, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, The Netherlands
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Rozemarijn Vliegenthart
- Department of Radiology, EB49, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands.
| |
Collapse
|
7
|
Yu N, Ma G, Duan H, Guo Y, Yu Y, Dang S. Sex-related Differences in Airway Dimensions: A Study Based on Quantitative Computed Tomography among Chinese Population. HEALTH PHYSICS 2021; 121:581-586. [PMID: 34714270 DOI: 10.1097/hp.0000000000001468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sex-dependent radiation injury may be related to the differences in physiological characteristics between the sexes. This study aimed to better understand variations in airway dimensions among male and female Chinese non-smokers. This study included 970 adults and 45 children who underwent chest CT. All participants were non-smokers, without current or former chronic pulmonary disease, and all underwent CT examination. The CT images were quantitatively assessed, providing airway dimensions. The differences in inner diameter, wall thickness, wall area (WA), and WA% for each airway were compared between male and female patients. Sex is an important influencing factor in airway morphological parameters. These parameters are different between men and women: men have a larger airway diameter (P < 0.05) and smaller wall area (WA%, P < 0.05) compared with women. Younger women (<35 years) have a greater diameter and smaller WA% compared with older women (P < 0.05). Sex-related differences in airway morphology were not observed in pediatric participants. Significant differences were found in quantitative CT measures of WA% and an internal diameter among non-smokers of varying sex. The differences found in this study might explain, in part, sex-dependency of radiation injury and a possible radiological protection scheme.
Collapse
Affiliation(s)
- Nan Yu
- Radiology Department, Shaanxi University of Chinese, Western Road, 2#, Xian Yang, China
| | | | | | | | | | | |
Collapse
|
8
|
Similarities in Quantitative Computed Tomography Imaging of the Lung in Severe Asthma with Persistent Airflow Limitation and Chronic Obstructive Pulmonary Disease. J Clin Med 2021; 10:jcm10215058. [PMID: 34768576 PMCID: PMC8584690 DOI: 10.3390/jcm10215058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Severe asthma with persistent airflow limitation (SA-PAL) and chronic obstructive pulmonary disease (COPD) are characterised by irreversible airflow limitation and the remodelling of the airways. The phenotypes of the diseases overlap and may cause diagnostic and therapeutic concerns. Methods: There were 10 patients with SA-PAL, 11 patients with COPD, and 10 healthy volunteers (HV) enrolled in this study. The patients were examined with a 128-multislice scanner at full inspiration. Measurements were taken from the third to ninth bronchial generations. Results: The thickness of the bronchial wall was greater in the SA-PAL than in the COPD group for most bronchial generations (p < 0.05). The mean lung density was the lowest in the SA-PAL group (−846 HU), followed by the COPD group (−836 HU), with no statistical difference between these two groups. The low-attenuation volume percentage (LAV% < −950 HU) was significantly higher in the SA-PAL group (15.8%) and COPD group (10.4%) compared with the HV group (7%) (p = 0.03). Conclusion: Severe asthma with persistent airflow limitation and COPD become similar with time within the functional and morphological dimensions. Emphysema qualities are present in COPD and in SA-PAL patients.
Collapse
|
9
|
Evaluation of sex-based differences in airway size and the physiological implications. Eur J Appl Physiol 2021; 121:2957-2966. [PMID: 34331574 DOI: 10.1007/s00421-021-04778-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Recent evidence suggests healthy females have significantly smaller central conducting airways than males when matched for either height or lung volume during analysis. This anatomical sex-based difference could impact the integrative response to exercise. Our review critically evaluates the literature on direct and indirect techniques to measure central conducting airway size and their limitations. We present multiple sources highlighting the difference between male and female central conducting airway size in both pediatric and adult populations. Following the discussion of measurement techniques and results, we discuss the functional implications of these differences in central conducting airway size, including work of breathing, oxygen cost of breathing, and how these impacts will continue into elderly populations. We then discuss a range of topics for the future direction of airway differences and the benefits they could provide to both healthy and diseased populations. Specially, these sex-differences in central conducting airway size could result in different aerosol deposition or how lung disease manifests. Finally, we detail emerging techniques that uniquely allow for high-resolution imaging to be paired with detailed physiological measures.
Collapse
|
10
|
Jin Z, Shen L, Zhao H, Zheng Y, Shen J. Application of Multi-Slice Spiral CT in the Evaluation of Diffuse Lung Diseases. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article analyzes the manifestations, characteristics, and significance of multi-slice spiral CT for diffuse lung disease, and evaluates the diagnostic value of multi-slice CT multi-directional reconstruction for diffuse lung disease. After performing multi-slice spiral CT examination
on the patient and collecting relevant data, the characteristic multi-slice CT imaging findings of diffuse lung disease were determined by statistical analysis. Diffuse lung disease is representative in multi-slice spiral CT image imaging manifestations of the disease include multiple disseminated
small nodules, multiple voids, ground glass shadows, and lung consolidation. And analyze the correlation of image performance, and then use statistical methods to analyze and evaluate the value of multi-slice spiral CT characteristic images in the diagnosis of diffuse lung disease, and analyze
the characteristics of these characteristic multi-slice CT image appearances. The use of high-resolution CT to screen the characteristic CT imaging findings of the same research object, and then to perform a statistical analysis of the diagnostic differences with multi-slice spiral CT, further
confirmed the importance of multi-slice CT for diffuse lung disease Diagnostic value. Studies have shown that multi-slice CT imaging technology is of great significance in the evaluation of diffuse lung diseases.
Collapse
Affiliation(s)
- ZanHui Jin
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - LiYing Shen
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - HongXing Zhao
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - YinYuan Zheng
- Department of Radiology, The First People's Hospital of Huzhou & The First Affiliated Hospital of Huzhou Teachers College, Zhejiang, 313000, China
| | - Jian Shen
- Department of Radiology, Huzhou Central Hospital & Affiliated Cent Hosp HuZhou University, Zhejiang, 313000, China
| |
Collapse
|
11
|
Patyk M, Obojski A, Sokołowska-Dąbek D, Parkitna-Patyk M, Zaleska-Dorobisz U. Airway wall thickness and airflow limitations in asthma assessed in quantitative computed tomography. Ther Adv Respir Dis 2021; 14:1753466619898598. [PMID: 31964312 PMCID: PMC6977202 DOI: 10.1177/1753466619898598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Asthma is a frequent chronic disease of the airways. In spite of the fact that symptoms of asthma are well known, the pathogenesis has not yet been fully understood. Quantitative computed tomography (qCT) of the lung allows for the measurment of a set of parameters. The aim of this study was to evaluate the usefulness of quantitative computed tomography in the assessment of airway wall thickness in asthma. Methods: The prospective study was performed on a group of 83 patients with well-defined, long-term asthma between 2016 and 2018. The control group was composed of 30 healthy volunteers. All examined subjects were non-smokers. All computed tomography (CT) studies were performed using a 128 multi-slice CT scanner with no contrast, following a chest scanning protocol in the supine position, at full inspiration and breath-holds. Results: Quantitative bronchial tree measurements were obtained from the third up to the ninth generation of the posterior basal bronchi (B10) of the right lung in a blinded fashion. The value of the wall thickness in patients with asthma was significantly higher in all measured generations of the bronchial tree (third to ninth generation). The lumen area and the inner diameter significantly correlated with the lung function tests and were substantially smaller in the examined group from the seventh to the ninth generation of the bronchi (p < 0.05). Conclusions: We conclude that airway remodelling occurs in most patients with long-term asthma and is associated mainly with the medium and small airways. Imaging techniques, especially qCT can be useful in the diagnosis and management of asthma. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Mateusz Patyk
- Department of General and Paediatric Radiology, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Obojski
- Department of Internal Diseases, Pneumology and Allergology, Wroclaw Medical University, Curie-Skłodowskiej 68, Wroclaw 50-369, Poland
| | | | - Martyna Parkitna-Patyk
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
12
|
Yang Y, Li Q, Guo Y, Liu Y, Li X, Guo J, Li W, Cheng L, Chen H, Kang Y. Lung parenchyma parameters measure of rats from pulmonary window computed tomography images based on ResU-Net model for medical respiratory researches. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4193-4211. [PMID: 34198432 DOI: 10.3934/mbe.2021210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Our paper proposes a method to measure lung parenchyma parameters from pulmonary window computed tomography images based on ResU-Net model including the CT value, the density, the lung volume, and the surface area of the lungs of healthy rats, to help promote the quantitative analysis of lung parenchyma parameters of rats in medical respiratory researches. Through the analysis of the lung parenchyma parameters of the control group and the treatment group, the law of change among the lung parenchyma parameters is given in our paper. After comparing and analyzing the lung parenchyma parameter CT value and the density of the two groups, it is discovered that the lung parenchyma parameter CT value and the density significantly increase in the treatment group which is after continuously inhaling the nebulization of contrast agents. The change of the lung volume with the surface area in both two groups conforms to the law of lung changes during breathing. The relationship between the lung volume and the CT value or the density is analyzed and it is concluded that the lung volume is negatively correlated with the CT value or the density.
Collapse
Affiliation(s)
- Yingjian Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Medical Health and Intelligent Simulation Laboratory, Medical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Qiang Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Medical Health and Intelligent Simulation Laboratory, Medical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Medical Health and Intelligent Simulation Laboratory, Medical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Yang Liu
- Medical Health and Intelligent Simulation Laboratory, Medical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Xian Li
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiaqi Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Wei Li
- Medical Health and Intelligent Simulation Laboratory, Medical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Lei Cheng
- Medical Health and Intelligent Simulation Laboratory, Medical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| | - Huai Chen
- Department of Radiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Medical Health and Intelligent Simulation Laboratory, Medical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
| |
Collapse
|
13
|
Predictors for bronchoalveolar lavage recovery failure in diffuse parenchymal lung disease. Sci Rep 2021; 11:1682. [PMID: 33462365 PMCID: PMC7814131 DOI: 10.1038/s41598-021-81313-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Bronchoalveolar lavage (BAL) plays a role in the diagnosis of diffuse parenchymal lung diseases (DPLD); however, poor BAL fluid (BALF) recovery results in low diagnostic reliability. BAL is relatively safe, but its indications should be carefully considered in patients with risks. Therefore, estimating the likelihood of recovery failure is helpful in clinical practice. This study aimed to clarify predictors of BALF recovery failure and to develop its simple-to-use prediction models. We detected the predictors applying a logistic regression model on clinical, physiological, and radiological data from 401 patients with DPLD (derivation cohort). The discrimination performance of the prediction models using these factors was evaluated by the c-index. In the derivation cohort, being a man, the forced expiratory volume in one second/forced vital capacity, and a BAL target site other than right middle lobe or left lingula were independent predictors. The c-indices of models 1 and 2 that we developed were 0.707 and 0.689, respectively. In a separate cohort of 234 patients (validation cohort), the c-indices of the models were 0.689 and 0.670, respectively. In conclusion, we developed and successfully validated simple-to-use prediction models useful for pulmonologists considering BAL indications or target sites, based on independent predictors for BALF recovery failure.
Collapse
|
14
|
Han MK. Chronic Obstructive Pulmonary Disease in Women: A Biologically Focused Review with a Systematic Search Strategy. Int J Chron Obstruct Pulmon Dis 2020; 15:711-721. [PMID: 32280209 PMCID: PMC7132005 DOI: 10.2147/copd.s237228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Evidence suggests that chronic obstructive pulmonary disease (COPD) symptoms and progression may differ between men and women. However, limited information is currently available on the pathophysiological and biological factors that may underlie these sex-related differences. The objective of this review is to systematically evaluate reports of potential sex-related differences, including genetic, pathophysiological, structural, and other biological factors, that may influence COPD development, manifestation, and progression in women. Patients and Methods A PubMed literature search was conducted from inception until January 2020. Original reports of genetic, hormonal, and physiological differences, and biological influences that could contribute to COPD development, manifestation, and progression in women were included. Results Overall, 491 articles were screened; 29 articles met the inclusion criteria. Results from this analysis demonstrated between-sex differences in inflammatory, immune, genetic, structural, and physiological factors in patients with COPD. Conclusion Various biological differences are observed between men and women with COPD including differences in inflammatory and metabolic pathways related to obesity and fat distribution, immune cell function and autophagy, extent and distribution of emphysema and airway wall remodeling. An enhanced understanding of these differences has the potential to broaden our understanding of how COPD develops and progresses, thereby providing an opportunity to ultimately improve diagnosis, treatment, and monitoring of COPD in both men and women.
Collapse
Affiliation(s)
- MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|