1
|
Meesawat S, Aiempichitkijkarn N, Warit S, Kaewparuehaschai M, Malaivijitnond S. Non-invasive specimen collections for Mycobacterium tuberculosis detection in free-ranging long-tailed macaques (Macaca fascicularis). PLoS One 2023; 18:e0289961. [PMID: 37616219 PMCID: PMC10449189 DOI: 10.1371/journal.pone.0289961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Surveillance of infectious diseases in free-ranging or wild animals has been widely conducted in many habitat-range countries after the COVID-19 episode. Thailand is located in the center of the distribution range of long-tailed macaques (Macaca fascicularis; Mf) where the animals have both frequent human contact and a high prevalence of human tuberculosis. For the large-scale detection of Mycobacterium tuberculosis complex (MTBC) using IS6110-nested PCR in free-ranging Mf, non-invasive sampling was developed using oral (via rope bait) and fecal (direct swabs of fresh feces) specimen collection. Firstly, the MTBC-IS6110-nested PCR was validated in non-invasively collected specimens, in terms of its specificity and sensitivity, and then compared with those of the invasively collected oral and rectal swabs in 24 captive MTBC-suspected Mf. After validation, these methods were applied to survey for the prevalence of shed MTBC (MTBCS) in four previously reported MTBC-infected populations. A total of 173 baited rope specimens and 204 freshly defecated excretions were collected. The limit of detection of the IS6110-nested PCR technique was 10 fg/μL and the 181-bp PCR amplicon showed 100% sequence similarity with the MTB H37Rv genome sequence. Comparing the MTBCS detection between the invasive and non-invasive collected specimens in captive suspected Mf revealed a significant correlation between the two types of oral specimens (oral swabs and baited ropes; n = 24, r2 = 1, p-value < 0.001), but fresh fecal swabs showed higher MTBCS frequencies than the rectal swabs. Moreover, the proportion of MTBCS-positive free-ranging Mf were significantly higher in the fresh fecal swabs (8.82%; 95% CI; 4.9-12.7%) than in the baited ropes (5.20%; 95% CI; 1.9-8.5%). This result indicates that oral sampling via baited ropes and fecal sampling via defecated excretion swabs can serve as ancillary specimens for MTBCS detection in free-ranging non-human primates.
Collapse
Affiliation(s)
- Suthirote Meesawat
- Faculty of Science, Biological Sciences Program, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Department of Biology, Chulalongkorn University, Bangkok, Thailand
| | - Nalina Aiempichitkijkarn
- Animal Behavior Graduate Group, University of California, Davis, California, United States of America
| | - Saradee Warit
- Industrial Tuberculosis Team (ITBT), IMBG, BIOTEC, NSTDA, Thailand Science Park, Pathumthani, Thailand
| | - Mutchamon Kaewparuehaschai
- Department of National Parks, Wildlife Rescue Center No.2 (Krabokkoo), Wildlife and Plant Conservation, Chachoengsao, Thailand
| | - Suchinda Malaivijitnond
- Faculty of Science, Department of Biology, Chulalongkorn University, Bangkok, Thailand
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand
| |
Collapse
|
2
|
Thomson P, Toro J, Lara F, Hernández D, Aros K, Valenzuela-Lopez N. First Case Report of Aspergillary Rhinopharyngitis in a Foal From Chile. J Equine Vet Sci 2021; 109:103831. [PMID: 34871753 DOI: 10.1016/j.jevs.2021.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
We present the first case of rhinopharyngitis due to Aspergillus fumigatus in a purebred Chilean horse. Clinically, manifested mucopurulent discharge from both nostrils, inflammation of the nasal, ocular, and ear mucosa; associated with decay and hyporexia. Based on the clinical signs and analysis of the mycological and molecular transtracheal aspirate sample, the present case was diagnosed as Aspergillus fumigatus rhinopharyngitis. After the antifungal susceptibility test, oral itraconazole treatment was maintained for 45 days, showing no clinical sign.
Collapse
Affiliation(s)
- Pamela Thomson
- Laboratorio Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Javiera Toro
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Hospital Clínico Veterinario de Equinos, Santiago, Chile
| | - Felipe Lara
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Hospital Clínico Veterinario de Equinos, Santiago, Chile
| | - Diego Hernández
- Laboratorio Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Karina Aros
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Hospital Clínico Veterinario de Equinos, Santiago, Chile
| | - Nicomedes Valenzuela-Lopez
- Unidad de Microbiología, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.
| |
Collapse
|
3
|
Seyedmousavi S, Bosco SDMG, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J. Fungal infections in animals: a patchwork of different situations. Med Mycol 2018. [PMID: 29538732 DOI: 10.1093/mmy/myx104] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The importance of fungal infections in both human and animals has increased over the last decades. This article represents an overview of the different categories of fungal infections that can be encountered in animals originating from environmental sources without transmission to humans. In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed. Opportunistic mycoses are responsible for a wide range of diseases from localized infections to fatal disseminated diseases, such as aspergillosis, mucormycosis, candidiasis, cryptococcosis and infections caused by melanized fungi. The amphibian fungal disease chytridiomycosis and the Bat White-nose syndrome are due to obligatory fungal pathogens. Zoonotic agents are naturally transmitted from vertebrate animals to humans and vice versa. The list of zoonotic fungal agents is limited but some species, like Microsporum canis and Sporothrix brasiliensis from cats, have a strong public health impact. Mycotoxins are defined as the chemicals of fungal origin being toxic for warm-blooded vertebrates. Intoxications by aflatoxins and ochratoxins represent a threat for both human and animal health. Resistance to antifungals can occur in different animal species that receive these drugs, although the true epidemiology of resistance in animals is unknown, and options to treat infections caused by resistant infections are limited.
Collapse
Affiliation(s)
- Seyedmojtaba Seyedmousavi
- Molecular Microbiology Section, Laboratory of Clinical Microbiology and Immunology (LCMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sandra de M G Bosco
- Department of Microbiology and Immunology, Institute of Biosciences-UNESP Univ Estadual Paulista Botucatu, São Paulo, Brazil
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Munich, Germany
| | - Daniel Elad
- Department of Clinical Bacteriology and Mycology, Kimron Veterinary Institute, Veterinary Services, Ministry of Agriculture, Beit Dagan, Israel
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Graduate Programme, Curitiba Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
| | | | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases. Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bernard Mignon
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, FARAH (Fundamental and Applied Research for Animals & Health), University of Liège, Liège, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases. Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elena Piecková
- Faculty of Medicine, Slovak Medical University, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Anderson Messias Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Karuna Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Vania A Vicente
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jacques Guillot
- Department of Parasitology, Mycology and Dermatology, EA Dynamyc UPEC, EnvA, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
4
|
Mätz-Rensing K, Lowenstine LJ. New World and Old World Monkeys. PATHOLOGY OF WILDLIFE AND ZOO ANIMALS 2018:343-374. [DOI: 10.1016/b978-0-12-805306-5.00014-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Seyedmousavi S, Guillot J, Arné P, de Hoog GS, Mouton JW, Melchers WJG, Verweij PE. Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. Med Mycol 2015; 53:765-97. [PMID: 26316211 DOI: 10.1093/mmy/myv067] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/30/2015] [Indexed: 12/22/2022] Open
Abstract
The importance of aspergillosis in humans and various animal species has increased over the last decades. Aspergillus species are found worldwide in humans and in almost all domestic animals and birds as well as in many wild species, causing a wide range of diseases from localized infections to fatal disseminated diseases, as well as allergic responses to inhaled conidia. Some prevalent forms of animal aspergillosis are invasive fatal infections in sea fan corals, stonebrood mummification in honey bees, pulmonary and air sac infection in birds, mycotic abortion and mammary gland infections in cattle, guttural pouch mycoses in horses, sinonasal infections in dogs and cats, and invasive pulmonary and cerebral infections in marine mammals and nonhuman primates. This article represents a comprehensive overview of the most common infections reported by Aspergillus species and the corresponding diseases in various types of animals.
Collapse
Affiliation(s)
- Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC, the Netherlands Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jacques Guillot
- Department of Parasitology-Mycology, Dynamyc Research Group, EnvA, UPEC, UPE, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pascal Arné
- Department of Animal Production, Dynamyc Research Group, EnvA, UPEC, UPE, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands, Peking University Health Science Center, Research Center for Medical Mycology, Beijing, China, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China, and King Abdullaziz University, Jeddah, Saudi Arabia
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, ErasmusMC, the Netherlands Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|