1
|
Chen YC, Hou CY, Hsu MH, Huang LT, Hsiao CC, Sheen JM. The Impact of Gut Microbiota Changes on Methotrexate-Induced Neurotoxicity in Developing Young Rats. Biomedicines 2024; 12:908. [PMID: 38672262 PMCID: PMC11048417 DOI: 10.3390/biomedicines12040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Methotrexate (MTX) is an essential part of therapy in the treatment of acute lymphoblastic leukemia (ALL) in children, and inferior intellectual outcomes have been reported in children who are leukemia survivors. Although several studies have demonstrated that the interaction between gut microbiota changes and the brain plays a vital role in the pathogenesis of chemotherapy-induced brain injury, preexisting studies on the effect of MTX on gut microbiota changes focused on gastrointestinal toxicity only. Based on our previous studies, which revealed that MTX treatment resulted in inferior neurocognitive function in developing young rats, we built a young rat model mimicking MTX treatment in a child ALL protocol, trying to investigate the interactions between the gut and brain in response to MTX treatment. We found an association between gut microbiota changes and neurogenesis/repair processes in response to MTX treatment, which suggest that MTX treatment results in gut dysbiosis, which is considered to be related to MTX neurotoxicity through an alteration in gut-brain axis communication.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Traditional Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Tang D, Qiu R, Qiu X, Sun M, Su M, Tao Z, Zhang L, Tao S. Dietary restriction rescues 5-fluorouracil-induced lethal intestinal toxicity in old mice by blocking translocation of opportunistic pathogens. Gut Microbes 2024; 16:2355693. [PMID: 38780487 PMCID: PMC11123560 DOI: 10.1080/19490976.2024.2355693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.
Collapse
Affiliation(s)
- Duozhuang Tang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Katturajan R, Evan Prince S. Zinc and L-carnitine combination with or without methotrexate prevents intestinal toxicity during arthritis treatment via Nrf2/Sirt1/Foxo3 pathways: an In vivo and molecular docking approach. Inflammopharmacology 2023; 31:2599-2614. [PMID: 37405586 DOI: 10.1007/s10787-023-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Methotrexate (MTX) is an antifolate that is inescapable and widely used to treat autoimmune diseases and is the gold standard medicine for the arthritic condition. Despite its importance, it is more prone to gastrointestinal toxicity, which is most common in arthritis patients during MTX treatment. Combination therapies are required to ensure MTX's antiarthritic activity while providing gastrointestinal protection. Zinc (Zn) and L-carnitine (Lc) are well-known potent antioxidants and anti-inflammatory supplements with promising results in pre-clinical studies. Arthritis was induced in Wistar rat's ankles with Freund's adjuvant and treated with either MTX (2.5 mg/kg b.w per week for two weeks) or Zn (18 mg/kg b.w. per day) Lc (200 mg/kg b.w. per day) individually or in combination (MTX + Zn Lc). The antiarthritic effects were evaluated by body weight, paw volume, ankle tissue, and joint histopathology. At the same time, anti-toxicity/gastrointestinal protective activity was examined by tissue oxidative stress markers, antioxidants, mitochondrial function, inflammatory mediators, and antioxidant signaling proteins and their binding mechanism. Repercussions of MTX intoxication induced upregulation of oxidative stress markers, antioxidant depletion, ATP depletion, decreased expression of Nrf2/Sirt1/Foxo3, and the overexpression of inflammatory mediators attenuated by co-treatment with Zn Lc. Zn Lc markedly mitigated MTX-instigated intestinal injury by activating antioxidant signaling mechanisms Nrf2/Sirt1/Foxo3 signaling and tissue architectural anomalies and exhibited an enhanced antiarthritic effect. In conclusion, we report that Zn Lc and MTX combination could presumably protect the intestine from low-dose MTX which managed arthritis but induced severe intestinal damage with increased inflammation and downregulated Nrf2/Sirt1/Foxo3 pathway.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Katturajan R, Evan Prince S. L-carnitine and Zinc supplementation impedes intestinal damage in methotrexate-treated adjuvant-induced arthritis rats: Reinstating enterocyte proliferation and trace elements. J Trace Elem Med Biol 2023; 78:127188. [PMID: 37163819 DOI: 10.1016/j.jtemb.2023.127188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Methotrexate (MTX), a folic acid analogue, is used as a first-line treatment for rheumatoid arthritis (RA) since it has more therapeutic mechanisms than any other drug. Being an undeniable drug for the treatment of arthritis, even low-dose MTX provokes intestinal toxicity as a primary adverse effect and does not revive an anti-inflammatory element. Thus, our study aims to elucidate the anti-arthritic and prophylactic activity of supplements L-carnitine (L) and zinc (Z) against MTX-mediated intestinal damage in arthritis rats. METHODS The rats were assessed for arthritic parameters such as body weight, paw volume, x-ray scan, and serum trace elements level. To analyze the toxic effects of MTX in the rats, intestine pH, mucosal weight, digestive enzymes, myeloperoxidase, histopathological, and immunohistochemical analysis were performed. RESULTS Our study demonstrated that the arthritic parameters have shown that MTX has an ameliorative effect on arthritic rats. Besides, our findings showed that low-dose MTX (2.5 mg/kg b.w.) given once a week for two weeks during arthritis treatment had toxic effects in the rat's intestine, as evidenced by changes in intestine pH and mucosal weight, decreased digestive enzymes, increased MPO, and degenerative changes in histopathological analysis. Concurrent therapy of LZ with MTX, on the other hand, restored the modifications in these parameters. CONCLUSION MTX in combination with LZ effectively manages arthritis than monotherapy and significantly prevents MTX-induced intestinal damage in arthritis rats. Thus, LZ could be used as an improved therapeutic and safety for MTX-instigated intestinal damage during arthritis treatments. Therefore, our combination of L-carnitine and zinc with MTX would be promising prophylactic activity for arthritis patients.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhang H, Wang J, Lang W, Liu H, Zhang Z, Wu T, Li H, Bai L, Shi Q. Albiflorin ameliorates inflammation and oxidative stress by regulating the NF-κB/NLRP3 pathway in Methotrexate-induced enteritis. Int Immunopharmacol 2022; 109:108824. [PMID: 35561481 DOI: 10.1016/j.intimp.2022.108824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022]
Abstract
Methotrexate (MTX) treats various diseases but also damages intestinal barrier and leads to enteritis. Albiflorin (ALB) has a variety of pharmacological effects, including antioxidant, anti-inflammation and anti-apoptosis. In the present study, we evaluated the therapeutic effect of ALB on MTX-induced enteritis and investigated the possible mechanisms involved. Male SD rats were intraperitoneally injected with 7 mg/kg MTX for three consecutive days to establish the enteritis model. ALB (20 or 40 mg/kg/day) was intragastrically administrated since two days prior MTX treatment and lasted for six days. We found that ALB treatment increased body weight and intestinal weight of rats with MTX injection. The disease activity index (DAI) score was also decreased after ALB administration. In histological examination, ALB treatment attenuated inflammatory cells infiltration and promoted survival of goblet cells. In detection of inflammatory-associated factors, ALB treatment decreased CD68+ cells infiltration, inhibited myeloperoxidase activity, and suppressed intercellular cell adhesion molecule-1 and cyclooxygenase-2 expression. Additionally, ALB reduced malondialdehyde, glutathione levels, inhibited superoxide dismutase activity and suppressed reactive oxygen species production. Moreover, ALB treatment effectively inhibited NLRP3, as well as caspase 1 p20 and interleukin (IL)-1β and 18 expression. Finally, nuclear factor-κB (NF-κB) p65 phosphorylation and nuclear translocation were also demonstrated to be blocked upon ALB treatment. In conclusion, our findings indicated that ALB alleviated MTX-induced enteritis via inhibiting the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, People's Republic of China
| | - Hongli Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Hongqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Liya Bai
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China.
| |
Collapse
|
6
|
Kaliannan K, Donnell SO, Murphy K, Stanton C, Kang C, Wang B, Li XY, Bhan AK, Kang JX. Decreased Tissue Omega-6/Omega-3 Fatty Acid Ratio Prevents Chemotherapy-Induced Gastrointestinal Toxicity Associated with Alterations of Gut Microbiome. Int J Mol Sci 2022; 23:5332. [PMID: 35628140 PMCID: PMC9140600 DOI: 10.3390/ijms23105332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal toxicity (GIT) is a debilitating side effect of Irinotecan (CPT-11) and limits its clinical utility. Gut dysbiosis has been shown to mediate this side effect of CPT-11 by increasing gut bacterial β-glucuronidase (GUSB) activity and impairing the intestinal mucosal barrier (IMB). We have recently shown the opposing effects of omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) on the gut microbiome. We hypothesized that elevated levels of tissue n-3 PUFA with a decreased n-6/n-3 PUFA ratio would reduce CPT-11-induced GIT and associated changes in the gut microbiome. Using a unique transgenic mouse (FAT-1) model combined with dietary supplementation experiments, we demonstrate that an elevated tissue n-3 PUFA status with a decreased n-6/n-3 PUFA ratio significantly reduces CPT-11-induced weight loss, bloody diarrhea, gut pathological changes, and mortality. Gut microbiome analysis by 16S rRNA gene sequencing and QIIME2 revealed that improvements in GIT were associated with the reduction in the CPT-11-induced increase in both GUSB-producing bacteria (e.g., Enterobacteriaceae) and GUSB enzyme activity, decrease in IMB-maintaining bacteria (e.g., Bifidobacterium), IMB dysfunction and systemic endotoxemia. These results uncover a host-microbiome interaction approach to the management of drug-induced gut toxicity. The prevention of CPT-11-induced gut microbiome changes by decreasing the tissue n-6/n-3 PUFA ratio could be a novel strategy to prevent chemotherapy-induced GIT.
Collapse
Affiliation(s)
- Kanakaraju Kaliannan
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Shane O. Donnell
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.O.D.); (C.S.)
- Teagasc Moorepark Food Research Centre, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Kiera Murphy
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.O.D.); (C.S.)
- Teagasc Moorepark Food Research Centre, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Chao Kang
- Department of Nutrition, The General Hospital of Western Theater Command, Chengdu 610000, China;
| | - Bin Wang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Xiang-Yong Li
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; (K.K.); (B.W.); (X.-Y.L.)
| |
Collapse
|
7
|
Yan H, Su R, Xue H, Gao C, Li X, Wang C. Pharmacomicrobiology of Methotrexate in Rheumatoid Arthritis: Gut Microbiome as Predictor of Therapeutic Response. Front Immunol 2022; 12:789334. [PMID: 34975886 PMCID: PMC8719371 DOI: 10.3389/fimmu.2021.789334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a disabling autoimmune disease with invasive arthritis as the main manifestation and synovitis as the basic pathological change, which can cause progressive destruction of articular cartilage and bone, ultimately leading to joint deformity and loss of function. Since its introduction in the 1980s and its widespread use in the treatment of RA, low-dose methotrexate (MTX) therapy has dramatically changed the course and outcome of RA treatment. The clinical use of this drug will be more rational with a better understanding of the pharmacology, anti-inflammatory mechanisms of action and adverse reaction about it. At present, the current clinical status of newly diagnosed RA is that MTX is initiated first regardless of the patients’ suitability. But up to 50% of patients could not reach adequate clinical efficacy or have severe adverse events. Prior to drug initiation, a prognostic tool for treatment response is lacking, which is thought to be the most important cause of the situation. A growing body of studies have shown that differences in microbial metagenomes (including bacterial strains, genes, enzymes, proteins and/or metabolites) in the gastrointestinal tract of RA patients may at least partially determine their bioavailability and/or subsequent response to MTX. Based on this, some researchers established a random forest model to predict whether different RA patients (with different gut microbiome) would respond to MTX. Of course, MTX, in turn, alters the gut microbiome in a dose-dependent manner. The interaction between drugs and microorganisms is called pharmacomicrobiology. Then, the concept of precision medicine has been raised. In this view, we summarize the characteristics and anti-inflammatory mechanisms of MTX and highlight the interaction between gut microbiome and MTX aiming to find the optimal treatment for patients according to individual differences and discuss the application and prospect of precision medicine.
Collapse
Affiliation(s)
- Huanhuan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children' s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Hassanein EHM, Kamel EO, Ali FEM, Ahmed MAR. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways. Life Sci 2021; 281:119754. [PMID: 34174323 DOI: 10.1016/j.lfs.2021.119754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
AIM The present study was undertaken to elucidate the potential protective mechanism of berberine (BBR) and/or zinc (Zn) against methotrexate (MTX)-induced intestinal injury. METHODS Five groups of rats were assigned; normal group (received vehicle), MTX group (20 mg/kg; i.p. single dose), and the other three groups received a single daily oral dose of BBR (50 mg/kg), Zn (5 mg/kg), and BBR plus Zn respectively, for 5 days before MTX and 5 days after. RESULTS Our results emphasized the toxic effect of MTX on rat's intestine as shown by disturbance of oxidant/antioxidant status, down-regulation of NRF2, SIRT1, FOXO-3, Akt, and mTOR expressions, along with up-regulation of GSK-3β, JAK1, and STAT-3 expressions. Besides, severe intestinal histopathological changes were also observed. On the contrary, BBR and/or Zn produced marked protection against MTX-induced intestinal toxicity via amelioration of oxidative stress, improving NRF2, SIRT1, FOXO-3, GSK-3β, Akt, mTOR, JAK1, and STAT-3 alterations. Moreover, our treatments significantly restored histopathological abnormalities. Interestingly, combination therapy of BBR plus Zn exhibited higher effectiveness than mono-therapy. SIGNIFICANCE BBR plus Zn could be used as a novel therapy for the treatment of MTX-induced intestinal damage through modulation of GSK-3β/NRF2, Akt/mTOR, JAK1/STAT-3, and SIRT1/FOXO-3 signaling pathways.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esam Omar Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | |
Collapse
|