1
|
Yachou Y, Bouaziz N, Makdah G, Senova YS, Januel D, Pelissolo A, Mallet L, Leboyer M, Houenou J, Opitz A, Wischnewski M, Laidi C. Transcranial direct current stimulation in patients with depression: An electric field modeling meta-analysis. J Affect Disord 2025; 374:540-552. [PMID: 39778744 DOI: 10.1016/j.jad.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Transcranial Direct Current Stimulation (tDCS) has shown potential in modulating cortical activity and treating depression. Despite its promise, variability in electrode montage configurations and electric field strength across studies has resulted in inconsistent outcomes. Traditional meta-analytic methods assessing the effect of tDCS in depression typically do not compare tDCS montage and the anatomical distribution of electric field, which is a major source of inter-experimental variability. We hypothesize that considering these parameters and anatomical variability in a meta-analysis might unravel brain regions associated with tDCS response in patients with depression. We correlate the clinical outcome (Effect size) with electric field intensities across 8 diverse head models, analyzing data from 29 studies involving 1766 patients between 2000 and 2023. Our analysis found a significant effect of tDCS on depression, with a Hedge's g = 0.66 (95 % CI: 0.565 to 0.767). Although studies aimed to target the L-DLPFC, particularly Brodmann area (BA) 46, based on the Frontal Brain Asymmetry theory, our findings show that all the montages do not selectively target the L-DLPFC as intended. Instead, our findings indicated that the electric field impact was dispersing broadly across the frontal lobes and exhibiting significant heterogeneity. We found a correlation between electric field strength and clinical outcomes in BA 10, BA 11, and the anterior part of BA 46 despite tDCS montages heterogeneity and individual variability, suggesting that targeting frontopolar prefrontal and orbitofrontal cortices could be ideal for tDCS in treating depression. Our work underscores brain regions associated with tDCS response and highlights the need for simulation-guided, personalized trials that consider individual anatomical differences.
Collapse
Affiliation(s)
- Yassine Yachou
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| | - Noomane Bouaziz
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; Clinical research center, Ville-Evrard Hospital, Neuilly-sur-Marne, France
| | - Gabriel Makdah
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Yann-Sühan Senova
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Dominique Januel
- Clinical research center, Ville-Evrard Hospital, Neuilly-sur-Marne, France
| | - Antoine Pelissolo
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Luc Mallet
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Marion Leboyer
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France
| | - Josselin Houenou
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Charles Laidi
- Mondor University Hospitals, INSERM U955, Institut Mondor de La Recherche Biomédicale (IMRB), University of Paris Est Créteil, Équipe Neuropsychiatrie Translationnelle, Créteil, France; NeuroSpin, Neuroimaging Platform, CEA, UNIACT Lab, PsyBrain Team, Saclay, France.
| |
Collapse
|
2
|
Lewis A, Toufexis C, Goldsmith C, Robinson R, Howie G, Rattray B, Flood A. The Effects of Transcranial Direct Current Stimulation and Exercise on Salivary S100B Protein Indicated Blood-Brain Barrier Permeability: A Pilot Study. Neuromodulation 2025; 28:76-85. [PMID: 38159099 DOI: 10.1016/j.neurom.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aimed to assess the effect of transcranial direct current stimulation (tDCS) and exercise on blood-brain barrier (BBB) permeability in humans as assessed through the quantification of the salivary protein biomarker S100B. It was hypothesized that active tDCS would induce a significant increase in salivary S100B concentration when compared with sham stimulation and no stimulation. It also was hypothesized that the increase in salivary S100B concentration would be greater after active tDCS and exercise than after tDCS or exercise alone. MATERIALS AND METHODS A total of 13 healthy adults (five male, eight female), ranging in age from 21 to 32 years, underwent three experimental conditions (active tDCS, sham tDCS, inactive control). To assess exercise- and tDCS-induced changes in BBB permeability, S100B in saliva was measured. Saliva samples were taken before tDCS, after tDCS, and immediately after a ramped cycling time-to-exhaustion (TTE) task. Active tDCS involved the application of anodal stimulation over the primary motor cortex for 20 minutes at 2 mA. RESULTS S100B concentrations in the control condition did not differ significantly from the active condition (estimate = 0.10, SE = 0.36, t = 0.27, p = 0.79) or the sham condition (estimate = 0.33, SE = 0.36, t = 0.89, p = 0.38). Similarly, S100B concentrations at baseline did not differ significantly from post-intervention (estimate = -0.35, SE = 0.34, t = -1.03, p = 0.31) or post-TTE (estimate = 0.66, SE = 0.34, t = 1.93, p = 0.06). CONCLUSIONS This research provides novel insight into the effect of tDCS and exercise on S100B-indicated BBB permeability in humans. Although the effects of tDCS were not significant, increases in salivary S100B after a fatiguing cycling task may indicate exercise-induced changes in BBB permeability.
Collapse
Affiliation(s)
- Aidan Lewis
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia; University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia.
| | - Constantino Toufexis
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Chloe Goldsmith
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Rebecca Robinson
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Grace Howie
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Ben Rattray
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Andrew Flood
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia; University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Zheng EZ, Wong NML, Yang ASY, Lee TMC. Evaluating the effects of tDCS on depressive and anxiety symptoms from a transdiagnostic perspective: a systematic review and meta-analysis of randomized controlled trials. Transl Psychiatry 2024; 14:295. [PMID: 39025832 PMCID: PMC11258305 DOI: 10.1038/s41398-024-03003-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Depressive and anxiety symptoms are prevalent among patients with various clinical conditions, resulting in diminished emotional well-being and impaired daily functioning. The neural mechanisms underlying these symptoms, particularly across different disorders, remain unclear, limiting the effectiveness of conventional treatments. Therefore, it is crucial to elucidate the neural underpinnings of depressive and anxiety symptoms and investigate novel, effective treatments across clinical conditions. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that can help understand the neural underpinnings of symptoms and facilitate the development of interventions, addressing the two research gaps at both neural and clinical levels. Thus, this systematic review and meta-analysis aims to evaluate the existing evidence regarding the therapeutic efficacy of tDCS in reducing depressive and anxiety symptoms among individuals with diverse clinical diagnoses. This review evaluated evidence from fifty-six randomized, sham-controlled trials that administered repeated tDCS sessions with a parallel design, applying a three-level meta-analytic model. tDCS targeting the left dorsolateral prefrontal cortex (DLPFC) at 2-mA intensity demonstrates moderate efficacy in alleviating depressive symptoms, identifying the left DLPFC as a transdiagnostic neural mechanism of depressive symptoms across clinical conditions. In comparison, the findings on anxiety symptoms demonstrate greater heterogeneity. tDCS over the left DLPFC is effective in reducing depressive symptoms and shows promising effects in alleviating anxiety symptoms among individuals with diverse diagnoses. These findings enhance our understanding of the neuropsychological basis of depressive and anxiety symptoms, laying the groundwork for the development of more effective tDCS interventions applicable across clinical conditions.
Collapse
Affiliation(s)
- Esther Zhiwei Zheng
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong.
| | - Angela S Y Yang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
4
|
Valter Y, Rapallo F, Burlando B, Crossen M, Baeken C, Datta A, Deblieck C. Efficacy of non-invasive brain stimulation and neuronavigation for major depressive disorder: a systematic review and meta-analysis. Expert Rev Med Devices 2024; 21:643-658. [PMID: 38902968 DOI: 10.1080/17434440.2024.2370820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are increasingly used for major depressive disorder (MDD). Most tDCS and rTMS studies target the left dorsolateral prefrontal cortex, either with or without neuronavigation. We examined the effect of rTMS and tDCS, and the added value of neuronavigation in the treatment of MDD. METHODS A search on PubMed, Embase, and Cochrane databases for rTMS or tDCS randomized controlled trials of MDD up to 1 February 2023, yielded 89 studies. We then performed meta-analyses comparing tDCS efficacy to non-neuronavigated rTMS, tDCS to neuronavigated rTMS, and neuronavigated rTMS to non-neuronavigated rTMS. We assessed the significance of the effect in subgroups and in the whole meta-analysis with a z-test and subgroup differences with a chi-square test. RESULTS We found small-to-medium effects of both tDCS and rTMS on MDD, with a slightly greater effect from rTMS. No significant difference was found between neuronavigation and non-neuronavigation. CONCLUSION Although both tDCS and rTMS are effective in treating MDD, many patients do not respond. Additionally, current neuronavigation methods are not significantly improving MDD treatment. It is therefore imperative to seek personalized methods for these interventions.
Collapse
Affiliation(s)
- Yishai Valter
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Fabio Rapallo
- Faculty of Economics, University of Genoa, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Miah Crossen
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, USA
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY, USA
| | - Choi Deblieck
- Lab for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Nejati V, Nozari M, Mirzaian B, Pourshahriar H, Salehinejad MA. Comparable Efficacy of Repeated Transcranial Direct Current Stimulation, Cognitive Behavioral Therapy, and Their Combination in Improvement of Cold and Hot Cognitive Functions and Amelioration of Depressive Symptoms. J Nerv Ment Dis 2024; 212:141-151. [PMID: 38198673 DOI: 10.1097/nmd.0000000000001745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
ABSTRACT This study aimed to evaluate the effectiveness of repeated transcranial direct current stimulation (rtDCS), cognitive behavioral therapy (CBT), and their combination (rtDCS-CBT) in the treatment of cognitive dysfunction, social cognition, and depressive symptoms in women diagnosed with major depressive disorder (MDD). A total of 40 female participants with MDD were randomly assigned to one of four groups: rtDCS, CBT, rtDCS-CBT, and a control group. The participants' depressive symptoms, executive functions, and social cognition were assessed at baseline, preintervention, postintervention, and during a 1-month follow-up. The rtDCS group received 10 sessions of anodal dorsolateral and cathodal ventromedial prefrontal cortex (2 mA for 20 minutes). The CBT group received 10 sessions of traditional CBT, whereas the combined group received CBT after the tDCS sessions. The results of the analysis of variance indicated that all intervention groups demonstrated significant improvements in depressive symptoms, cognitive dysfunction, and social cognition compared with the control group (all p < 0.001). Furthermore, the rtDCS-CBT group exhibited significantly greater reductions in depressive symptoms when compared with each intervention alone (all p < 0.001). Notably, working memory improvements were observed only in the rtDCS group ( p < 0.001). In conclusion, this study suggests that both CBT and tDCS, either individually or in combination, have a positive therapeutic impact on enhancing executive functions, theory of mind, and depressive symptoms in women with MDD.
Collapse
Affiliation(s)
- Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Masoumeh Nozari
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Bahram Mirzaian
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | | | | |
Collapse
|
6
|
Uenishi S, Tamaki A, Yamada S, Yasuda K, Ikeda N, Mizutani-Tiebel Y, Keeser D, Padberg F, Tsuji T, Kimoto S, Takahashi S. Computational modeling of electric fields for prefrontal tDCS across patients with schizophrenia and mood disorders. Psychiatry Res Neuroimaging 2022; 326:111547. [PMID: 36240572 DOI: 10.1016/j.pscychresns.2022.111547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/30/2022] [Accepted: 10/01/2022] [Indexed: 02/25/2023]
Abstract
This cross-diagnostic study aims to computationally model electric field (efield) for prefrontal transcranial direct current stimulation in mood disorders and schizophrenia. Enrolled were patients with major depressive disorder (n = 23), bipolar disorder (n = 24), schizophrenia (n = 23), and healthy controls (n = 23). The efield was simulated using SimNIBS software (ver.2.1.1). Electrodes were placed at the left and right prefrontal areas and the current intensity was set to 2 mA intensity. Schizophrenia and major depressive disorder groups showed significantly lower 99.5th percentile efield strength than healthy controls. In voxel-wise analysis, patients with schizophrenia showed a significant reduction of simulated efield strength in the bilateral frontal lobe, cerebellum and brain stem compared with healthy controls. Among the patients with schizophrenia, reduction of simulated efield strength was not significantly correlated with psychiatric symptoms or global functioning. The patients with bipolar disorder showed no significant difference in simulated efield strength compared with healthy controls, and there was no significant difference between the clinical groups. Our results suggest attenuated electrophysiological response to transcranial direct current stimulation to the prefrontal cortex in patients with schizophrenia, and to some extent in patients with major depressive disorder.
Collapse
Affiliation(s)
- Shinya Uenishi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Hidaka Hospital, Gobo, Japan.
| | - Atsushi Tamaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Hidaka Hospital, Gobo, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Natsuko Ikeda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Wakayama Prefectural Mental Health Care Center, Aridagawa, Japan
| | - Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany; Department of Radiology, University Hospital LMU Munich, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan
| |
Collapse
|
7
|
Li Q, Fu Y, Liu C, Meng Z. Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex for Treatment of Neuropsychiatric Disorders. Front Behav Neurosci 2022; 16:893955. [PMID: 35711693 PMCID: PMC9195619 DOI: 10.3389/fnbeh.2022.893955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background The dorsolateral prefrontal cortex (DLPFC) is a key node of the frontal cognitive circuit. It is involved in executive control and many cognitive processes. Abnormal activities of DLPFC are likely associated with many psychiatric diseases. Modulation of DLPFC may have potential beneficial effects in many neural and psychiatric diseases. One of the widely used non-invasive neuromodulation technique is called transcranial direct current stimulation (or tDCS), which is a portable and affordable brain stimulation approach that uses direct electrical currents to modulate brain functions. Objective This review aims to discuss the results from the past two decades which have shown that tDCS can relieve clinical symptoms in various neurological and psychiatric diseases. Methods Here, we performed searches on PubMed to collect clinical and preclinical studies that using tDCS as neuromodulation technique, DLPFC as the stimulation target in treating neuropsychiatric disorders. We summarized the stimulation sites, stimulation parameters, and the overall effects in these studies. Results Overall, tDCS stimulation of DLPFC could alleviate the clinical symptoms of schizophrenia, depression, drug addiction, attention deficit hyperactivity disorder and other mental disorders. Conclusion The stimulation parameters used in these studies were different from each other. The lasting effect of stimulation was also not consistent. Nevertheless, DLPFC is a promising target for non-invasive stimulation in many psychiatric disorders. TDCS is a safe and affordable neuromodulation approach that has potential clinical uses. Larger clinical studies will be needed to determine the optimal stimulation parameters in each condition.
Collapse
Affiliation(s)
- Qing Li
- Medical School, Kunming University of Science and Technology, Kunming, China
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Fu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chang Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Chang Liu,
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Zhiqiang Meng,
| |
Collapse
|
8
|
Labree B, Hoare DJ, Gascoyne LE, Scutt P, Del Giovane C, Sereda M. Determining the Effects of Transcranial Direct Current Stimulation on Tinnitus, Depression, and Anxiety: A Systematic Review. Brain Sci 2022; 12:brainsci12040484. [PMID: 35448015 PMCID: PMC9029345 DOI: 10.3390/brainsci12040484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Tinnitus is the awareness of a sound in the absence of an external source. It affects around 10–15% of people, a significant proportion of whom also experience symptoms such as depression or anxiety that negatively affect their quality of life. Transcranial direct current stimulation (tDCS) is a technique involving constant low-intensity direct current delivered via scalp electrodes. It is a potential treatment option for tinnitus, as well as tinnitus-related conditions such as depression and anxiety. This systematic review estimates the effects of tDCS on outcomes relevant to tinnitus. In addition, it sheds light on the relationship between stimulation parameters and the effect of tDCS on these outcomes; (2) Methods: Exhaustive searches of electronic databases were conducted. Randomised controlled trials were included if they reported at least one of the following outcomes: tinnitus symptom severity, anxiety, or depression. Where available, data on quality of life, adverse effects, and neurophysiological changes were also reviewed. GRADE was used to assess the certainty in the estimate; (3) Results: Meta-analyses revealed a statistically significant reduction in tinnitus (moderate certainty) and depression (low certainty)-but not anxiety-following active tDCS compared to sham control. Network meta-analyses revealed potential optimal stimulation parameters; (4) Conclusions: The evidence synthesised in this review suggests tDCS has the potential to reduce symptom severity in tinnitus and depression. It further narrows down the number of potentially optimal stimulation parameters.
Collapse
Affiliation(s)
- Bas Labree
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Derek J. Hoare
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lauren E. Gascoyne
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2XQ, UK;
| | - Polly Scutt
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Cinzia Del Giovane
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 41124 Modena, Italy;
- Institute of Primary Health Care (BIHAM), University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Magdalena Sereda
- NIHR Nottingham Biomedical Research Centre, Ropewalk House, 113 The Ropewalk, Nottingham NG1 5DU, UK; (D.J.H.); (P.S.); (M.S.)
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
9
|
Cheng YC, Kuo PH, Su MI, Huang WL. The efficacy of non-invasive, non-convulsive electrical neuromodulation on depression, anxiety and sleep disturbance: a systematic review and meta-analysis. Psychol Med 2022; 52:801-812. [PMID: 35105413 DOI: 10.1017/s0033291721005560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effects of non-invasive, non-convulsive electrical neuromodulation (NINCEN) on depression, anxiety and sleep disturbance are inconsistent in different studies. Previous meta-analyses on transcranial direct current stimulation (tDCS) and cerebral electrotherapy stimulation (CES) suggested that these methods are effective on depression. However, not all types of NINECN were included; results on anxiety and sleep disturbance were lacking and the influence of different populations and treatment parameters was not completely analyzed. We searched PubMed, Embase, PsycInfo, PsycArticles and CINAHL before March 2021 and included published randomized clinical trials of all types of NINCEN for symptoms of depression, anxiety and sleep in clinical and non-clinical populations. Data were pooled using a random-effects model. The main outcome was change in the severity of depressive symptoms after NINCEN treatment. A total of 58 studies on NINCEN were included in the meta-analysis. Active tDCS showed a significant effect on depressive symptoms (Hedges' g = 0.544), anxiety (Hedges' g = 0.667) and response rate (odds ratio = 1.9594) compared to sham control. CES also had a significant effect on depression (Hedges' g = 0.654) and anxiety (Hedges' g = 0.711). For all types of NINCEN, active stimulation was significantly effective on depression, anxiety, sleep efficiency, sleep latency, total sleep time, etc. Our results showed that tDCS has significant effects on both depression and anxiety and that these effects are robust for different populations and treatment parameters. The rational expectation of the tDCS effect is 'response' rather than 'remission'. CES also is effective for depression and anxiety, especially in patients with disorders of low severity.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Min-I Su
- Division of Cardiology, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| |
Collapse
|
10
|
Clinical effectiveness of non-TMS neurostimulation in depression: Clinical trials from 2010 to 2020. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110287. [PMID: 33610609 DOI: 10.1016/j.pnpbp.2021.110287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Treatment for major depressive disorder (MDD) have evolved, although there is still a strong unmet need for more effective and tolerable options. The present study summarizes and discusses recent evidence regarding the non-transcranial magnetic stimulation (non-TMS) neurostimulation treatment for MDD. METHODS The authors reviewed non-TMS neurostimulation clinical trials for MDD between 2010 and 2020. Electroconvulsive therapy was not included in this review. A systematic review was performed in MEDLINE database through PubMed, the Cochrane Collaboration's Clinical Trials Register (CENTRAL), PsycINFO and Thomson Reuters's Web of Science. RESULTS Only 20 articles met the inclusion criteria. Randomized controlled trials demonstrated efficacy of transcranial direct current stimulation (tDCS) in five of seven trials. tDCS augmented with sertraline, fluoxetine, citalopram and escitalopram was superior to placebo and to tDCS only. A comparative trial demonstrated that the duration of tDCS sessions can modulate the effectiveness of this treatment. Open trials indicated that deep brain stimulation, epidural cortical stimulation, trigeminal nerve stimulation, magnetic seizure therapy and vagus nerve stimulation may be effective in treatment-resistant depression. CONCLUSION This review confirmed the efficacy of tDCS in MDD. Despite new evidence showing effectiveness for other non-TMS neurostimulation, their effectiveness is still unclear. Non-TMS neurostimulation RCTs with large samples and head-to-head studies comparing non-TMS neurostimulation and gold standard pharmacological treatments are still lacking.
Collapse
|
11
|
Razza LB, De Smet S, Moffa A, Sudbrack-Oliveira P, Vanderhasselt MA, Brunoni AR. Follow-up effects of transcranial direct current stimulation (tDCS) for the major depressive episode: A systematic review and meta-analysis. Psychiatry Res 2021; 302:114024. [PMID: 34058716 DOI: 10.1016/j.psychres.2021.114024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
Transcranial Direct Current Stimulation (tDCS) is an effective treatment during the acute phase of a major depressive episode (MDE), although the evidence for its follow-up efficacy is mixed. A systematic review and meta-analysis were performed. MEDLINE/PubMed, Scopus (EMBASE), Web of Science, Cochrane Library and additional sources were searched from inception to April 29, 2021. Studies that followed up adults treated with tDCS during an MDE - using (interventional) and/or not using (observational) tDCS in the follow-up period were included. The primary outcome was the Hedges' g for the follow-up depression scores. Small study effects and sources of heterogeneity were explored. 427 studies were retrieved and 11 trials (13 datasets, n = 311) were included, most presenting moderate bias. Results showed a follow-up depression improvement (k = 13, g = -0.81, 95% confidence interval [CI]: -1.28; -0.34, I² = 84.0%), which was probably driven by the interventional studies (k = 7, g= -1.12, 95% CI: -1.84; -0.40, I² = 87.1%). No predictor of response was associated with the outcome. No risk of publication bias was found. Significant between-study heterogeneity may have influenced the overall results. Our findings suggest that tDCS produces effects beyond the intervention period during MDEs. Maintenance sessions are advised in future research.
Collapse
Affiliation(s)
- Laís B Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium
| | - Adriano Moffa
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Pedro Sudbrack-Oliveira
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - André R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Medicina Interna, Faculdade de Medicina Universidade de São Paulo e Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000, São Paulo, Brazil
| |
Collapse
|
12
|
De Smet S, Nikolin S, Moffa A, Suen P, Vanderhasselt MA, Brunoni AR, Razza LB. Determinants of sham response in tDCS depression trials: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110261. [PMID: 33497753 DOI: 10.1016/j.pnpbp.2021.110261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Randomised clinical trials (RCTs) investigating transcranial direct current stimulation (tDCS) efficacy for depression show significant heterogeneity in outcomes. OBJECTIVE To investigate the magnitude of the sham tDCS response and its potential moderators in the treatment of depression. METHODOLOGY A systematic review and aggregate meta-analysis (PROSPERO ID CRD42020161254). The systematic review was conducted in the PubMed, Scopus (EMBASE) and Cochrane Library databases. Only RCTs enrolling adult subjects with an acute depressive episode with a sham tDCS group were included. RESULTS Twenty-three studies (twenty-five datasets, 501 participants) were included. Sham tDCS response was large (Hedges' g = 1.09; 95% CI: 0.8;1.38). Secondary and subgroup analyses showed that sham protocols employing a ramp-up/ramp-down at the beginning and end of stimulation presented a significantly lower sham response compared to other protocols. Univariate meta-regression analyses found that sham response was associated with higher risk of blinding bias, and with thetreatment effect size of the active tDCS group. Subgroup analyses also showed that placement of the cathode over the lateral right frontal area (F8) presented a significantly lower sham response. Other moderators, including treatment resistance, baseline severity of depressive symptoms, and total charge delivered were not associated with the magnitude of the sham response. CONCLUSION The sham tDCS response was large. Our findings demonstrate the need for standardization of sham tDCS protocols and bring attention to important considerations that can guide future RCTs employing tDCS for the treatment of MDD.
Collapse
Affiliation(s)
- Stefanie De Smet
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Adriano Moffa
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - Paulo Suen
- Service of Interdisciplinary Neuromodulation, Neuroscience Laboratory (LIM-27), Department and Institute de Psychiatry, Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Neuroscience Laboratory (LIM-27), Department and Institute de Psychiatry, Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil; Department of Internal Medicine, University of São Paulo Medical School & University Hospital, University of São Paulo, Av. Prof Lineu Prestes 2565, 05508-000 São Paulo, Brazil
| | - Laís B Razza
- Service of Interdisciplinary Neuromodulation, Neuroscience Laboratory (LIM-27), Department and Institute de Psychiatry, Clinical Hospital, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
13
|
Homan S, Muscat W, Joanlanne A, Marousis N, Cecere G, Hofmann L, Ji E, Neumeier M, Vetter S, Seifritz E, Dierks T, Homan P. Treatment effect variability in brain stimulation across psychiatric disorders: A meta-analysis of variance. Neurosci Biobehav Rev 2021; 124:54-62. [PMID: 33482243 DOI: 10.1016/j.neubiorev.2020.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/26/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Noninvasive brain stimulation methods such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are promising add-on treatments for a number of psychiatric conditions. Yet, some of the initial excitement is wearing off. Randomized controlled trials (RCT) have found inconsistent results. This inconsistency is suspected to be the consequence of variation in treatment effects and solvable by identifying responders in RCTs and individualizing treatment. However, is there enough evidence from RCTs that patients respond differently to treatment? This question can be addressed by comparing the variability in the active stimulation group with the variability in the sham group. We searched MEDLINE/PubMed and included all double-blinded, sham-controlled RCTs and crossover trials that used TMS or tDCS in adults with a unipolar or bipolar depression, bipolar disorder, schizophrenia spectrum disorder, or obsessive compulsive disorder. In accordance with the PRISMA guidelines to ensure data quality and validity, we extracted a measure of variability of the primary outcome. A total of 130 studies with 5748 patients were considered in the analysis. We calculated variance-weighted variability ratios for each comparison of active stimulation vs sham and entered them into a random-effects model. We hypothesized that treatment effect variability in TMS or tDCS would be reflected by increased variability after active compared with sham stimulation, or in other words, a variability ratio greater than one. Across diagnoses, we found only a minimal increase in variability after active stimulation compared with sham that did not reach statistical significance (variability ratio = 1.03; 95% CI, 0.97, 1.08, P = 0.358). In conclusion, this study found little evidence for treatment effect variability in brain stimulation, suggesting that the need for personalized or stratified medicine is still an open question.
Collapse
Affiliation(s)
- Stephanie Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Whitney Muscat
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Andrea Joanlanne
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | | | - Giacomo Cecere
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Lena Hofmann
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Ellen Ji
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Maria Neumeier
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Stefan Vetter
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Erich Seifritz
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Philipp Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA.
| |
Collapse
|
14
|
Azizi S, Rezasoltani Z, Najafi S, Mohebi B, Tabatabaee SM, Dadarkhah A. Transcranial direct current stimulation for knee osteoarthritis: a single-blind randomized sham-controlled trial. Neurophysiol Clin 2020; 51:329-338. [PMID: 33323306 DOI: 10.1016/j.neucli.2020.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate the effects of transcranial direct current stimulation on pain and other symptoms of knee osteoarthritis. METHODS We performed a single-blind randomized sham-controlled trial with two parallel arms in an outpatient clinic of physical medicine and rehabilitation at a teaching hospital. We randomized 54 patients, 30-70 years of age, with knee osteoarthritis into two groups. They had morning stiffness ≤ 30 min, knee pain ≥ 3 months, joint crepitus, and Kellgren-Lawrence grade 1 or 2 on radiographs. For the active stimulation we administered 2 mA current, 20 min for each session and for the sham group 30 s stimulation and 20 min no current. Using the 10/20 International EEG system, the anode was fixed over the contralateral primary motor cortex (C3 or C4), and the cathode was placed on the ipsilateral supraorbital region (Fp1 or Fp2), with respect to the included knee. The program was repeated once daily over 5 consecutive days. Both groups received acetaminophen. We assessed the patients before and after the interventions, and three months post-intervention. The primary outcome was knee pain on the visual analog scale, and the secondary outcome was the Knee injury and Osteoarthritis Outcome Score. RESULTS There was a statistically significant reduction in the intensity of pain within sham and active groups (both p < 0.001), but no significant difference between the groups (p = 0.226). Analyses of the Knee injury and Osteoarthritis Outcome Scores showed no clinically important changes. CONCLUSIONS Transcranial direct current stimulation does not reduce knee pain, does not abate other symptoms, and does not restore knee function in patients with knee osteoarthritis. The pain reduction in our study could be attributed to either placebo or the acetaminophen effect.
Collapse
Affiliation(s)
- Sirous Azizi
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Etemadzadeh St, Western Fatemi, Tehran, 1411718541 Islamic Republic of Iran
| | - Zahra Rezasoltani
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Etemadzadeh St, Western Fatemi, Tehran, 1411718541 Islamic Republic of Iran
| | - Sharif Najafi
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Etemadzadeh St, Western Fatemi, Tehran, 1411718541 Islamic Republic of Iran
| | - Bahare Mohebi
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Etemadzadeh St, Western Fatemi, Tehran, 1411718541 Islamic Republic of Iran
| | - Seyed Morteza Tabatabaee
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Etemadzadeh St, Western Fatemi, Tehran, 1411718541 Islamic Republic of Iran
| | - Afsaneh Dadarkhah
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Aja University of Medical Sciences, Etemadzadeh St, Western Fatemi, Tehran, 1411718541 Islamic Republic of Iran.
| |
Collapse
|
15
|
Cosmo C, DiBiasi M, Lima V, Grecco LC, Muszkat M, Philip NS, de Sena EP. A systematic review of transcranial direct current stimulation effects in attention-deficit/hyperactivity disorder. J Affect Disord 2020; 276:1-13. [PMID: 32697687 PMCID: PMC8128973 DOI: 10.1016/j.jad.2020.06.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/15/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) stands out as the most prevalent neurodevelopmental disorder of childhood, with global prevalence ranging from 3.4% to 7•2%. Its cognitive symptoms result from the combination of complex etiological processes encompassing genetic and environmental components. Available therapeutic approaches are associated with significant challenges such as modest efficacy or side effects. Transcranial direct current stimulation (tDCS) is a promising tool for enhancing cognitive performance in neuropsychiatric disorders. Trials investigating its applicability in ADHD have showed propitious, however, still preliminary findings. METHODS We performed a systemic review by searching on Medline, Cochrane Library, Web of Science, ScienceDirect and Embase using the descriptors: "attention-deficit/hyperactivity disorder" or "ADHD"; and "transcranial direct current stimulation" or "tDCS"; following PRISMA guidelines. RESULTS A total of 383 articles were identified. After removing duplicates, 45 studies were assessed for eligibility, and after careful review, 11 manuscripts applying tDCS in ADHD were included. Significant improvements in attention, inhibitory control and working memory were reported, in addition to increased brain connectivity following use of active tDCS. LIMITATIONS The main limitation was the small number of trials investigating use of tDCS in ADHD. Study methods and outcome measures were quite variable, and generally did not include long-term follow-up. CONCLUSIONS Although the extent literature indicates promising findings, the available data remains highly preliminary. Further trials evaluating the efficacy of tDCS for ADHD, with longer follow-up, are necessary. These studies will be needed to determine the optimal protocol for clinical efficacy.
Collapse
Affiliation(s)
- Camila Cosmo
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School, Brown University, Butler Campus, Box G-BH, 345 Blackstone Boulevard, Providence, RI 02906, USA; Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA.
| | - Melany DiBiasi
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Vania Lima
- Department of Hearing and Speech Pathology, Federal University of São Paulo, Brazil
| | | | - Mauro Muszkat
- Psychobiology Department, Federal University of São Paulo, Brazil
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School, Brown University, Butler Campus, Box G-BH, 345 Blackstone Boulevard, Providence, RI 02906, USA; Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
| | - Eduardo Pondé de Sena
- Postgraduate Program in Interactive Process of Organs and Systems, Federal University of Bahia, Brazil
| |
Collapse
|
16
|
Razza LB, Palumbo P, Moffa AH, Carvalho AF, Solmi M, Loo CK, Brunoni AR. A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety 2020; 37:594-608. [PMID: 32101631 DOI: 10.1002/da.23004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has shown mixed results for depression treatment. OBJECTIVE To perform a systematic review and meta-analysis of trials using tDCS to improve depressive symptoms. METHODS A systematic review was performed from the first date available to January 06, 2020 in PubMed, EMBASE, Cochrane Library, and additional sources. We included randomized, sham-controlled clinical trials (RCTs) enrolling participants with an acute depressive episode and compared the efficacy of active versus sham tDCS, including association with other interventions. The primary outcome was the Hedges' g for continuous depression scores; secondary outcomes included odds ratios (ORs) and number needed to treat (NNT) for response, remission, and acceptability. Random effects models were employed. Sources of heterogeneity were explored via metaregression, sensitivity analyses, subgroup analyses, and bias assessment. RESULTS We included 23 RCTs (25 datasets, 1,092 participants), most (57%) presenting a low risk of bias. Active tDCS was superior to sham regarding endpoint depression scores (k = 25, g = 0.46, 95% confidence interval [CI]: 0.22-0.70), and also achieved superior response (k = 18, 33.3% vs. 16.56%, OR = 2.28 [1.52-3.42], NNT = 6) and remission (k = 18, 19.12% vs. 9.78%, OR = 2.12 [1.42-3.16], NNT = 10.7) rates. Moreover, active tDCS was as acceptable as sham. No risk of publication bias was identified. Cumulative meta-analysis showed that effect sizes are basically unchanged since total sample reached 439 participants. CONCLUSIONS TDCS is modestly effective in treating depressive episodes. Further well-designed, large-scale RCTs are warranted.
Collapse
Affiliation(s)
- Lais B Razza
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Priscila Palumbo
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano H Moffa
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Colleen K Loo
- Black Dog Institute, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Andre Russowsky Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|