1
|
Ou S, Sima C, Liu Z, Li X, Chen B. Facilitation of diabetic wound healing by far upstream element binding protein 1 through augmentation of dermal fibroblast activity. Acta Diabetol 2025; 62:353-365. [PMID: 39412701 DOI: 10.1007/s00592-024-02360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/08/2024] [Indexed: 03/04/2025]
Abstract
AIMS Diabetes mellitus (DM) often leads to wound healing complications, partly attributed to the accumulation of advanced glycosylation end products (AGEs) that impair fibroblast function. Far Upstream Element Binding Protein 1 (FUBP1) regulates cell proliferation, migration, and collagen synthesis. However, the impact of FUBP1 on diabetic wound healing remains unknown. This study is designed to explore the function and mechanisms of FUBP1 in diabetic wound healing. METHODS Eighteen Sprague-Dawley rats (weighing 220-240 g) were randomly assigned to three groups (n = 6): a control group (NC) of healthy rats, a model group (DM) of untreated diabetic rats, and a treatment group (DM + FUBP1) of diabetic rats accepting FUBP1 treatment. A 10 mm diameter circular full-thickness skin defect was created on the back of each rat. On days 1 and 7, rats in the treatment group received local injections of 5 µg FUBP1 protein at the wound site, whereas the control group and model group were administered saline. Wound healing was documented on days 0, 3, 7, 10, and 14, with tissue samples from the wound areas collected on day 14 for histological analysis, including H&E staining, Masson's trichrome staining, and immunohistochemistry. Western blot analysis was utilized to assess the expression of GSK-3β, Wnt3a, and β-catenin. In vitro, the effects of various concentrations of AGEs on cell viability and FUBP1 expression were examined in human dermal fibroblasts (HDF). Cells were genetically modified to overexpress FUBP1 using lentiviral vectors and were cultured for 48 h in media with or without AGEs. The impacts on fibroblast proliferation, migration, and Wnt/β-catenin signaling were evaluated using CCK-8, scratch assays, and Western blot analysis. RESULTS Animal investigation revealed that from day 7 onwards, the wound healing rate of the treatment group was higher than that of the model group but lower than the control group. On day 14, the wound healing rates were as follows: control group (0.97 ± 0.01), model group (0.84 ± 0.03), and treatment group (0.93 ± 0.01). These differences were statistically significant. Histological analysis indicates that FUBP1 promotes granulation tissue formation, re-epithelialization, and collagen deposition in treatment group. Additionally, FUBP1 protein expression decreased in dermal fibroblasts when exposed to AGEs. Overexpression of FUBP1 significantly enhanced fibroblast proliferation and migration, activating the Wnt/β-catenin pathway and mitigating the inhibitory effects of AGEs. CONCLUSIONS Our results suggest that FUBP1 can be a promising therapeutic target for diabetic wound healing, potentially counteracting the detrimental effects of AGEs on dermal fibroblasts through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shali Ou
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital of Jinan University, No 369, Tongfu Middle Road, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Chao Sima
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital of Jinan University, No 369, Tongfu Middle Road, Guangzhou, Guangdong, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital of Jinan University, No 369, Tongfu Middle Road, Guangzhou, Guangdong, China
| | - Bing Chen
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital of Jinan University, No 369, Tongfu Middle Road, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhang F, Xiong Q, Wang M, Cao X, Zhou C. FUBP1 in human cancer: Characteristics, functions, and potential applications. Transl Oncol 2024; 48:102066. [PMID: 39067088 PMCID: PMC11338137 DOI: 10.1016/j.tranon.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Far upstream element-binding protein 1 (FUBP1) is a single-stranded nucleic acid-binding protein that binds to the Far Upstream Element (FUSE) sequence and is involved in important biological processes, including DNA transcription, RNA biogenesis, and translation. Recent studies have highlighted the significance of aberrant expression or mutations in FUBP1 in the development of various tumors, with FUBP1 overexpression often indicating oncogenic roles in different tumor types. However, it is worth noting that recent research has discovered its tumor-suppressive role in cancer, which is not yet fully understood and appears to be tissue- or context-dependent. This review summarizes the association between FUBP1 and diverse cancers and discusses the functions of FUBP1 in cancer. In addition, this review proposes potential clinical implications and outlines future research directions to pave the way for the development of targeted therapeutic strategies focusing on FUBP1.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, No 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, No 69 Xijuyuan lane, Xi'an, 710002, Shaanxi, China
| | - Ximing Cao
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No 256 Youyi West Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
3
|
Curcio C, Rosso T, Brugiapaglia S, Guadagnin G, Giordano D, Castellino B, Satolli MA, Spadi R, Campra D, Moro F, Papotti MG, Bertero L, Cassoni P, De Angelis C, Langella S, Ferrero A, Armentano S, Bellotti G, Fenocchio E, Nuzzo A, Ciccone G, Novelli F. Circulating autoantibodies to alpha-enolase (ENO1) and far upstream element-binding protein 1 (FUBP1) are negative prognostic factors for pancreatic cancer patient survival. Clin Exp Med 2023; 23:5089-5100. [PMID: 37910256 PMCID: PMC10725354 DOI: 10.1007/s10238-023-01236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a dismal prognosis due to a lack of early diagnostic markers and effective therapy. In PDA patients, the glycolytic enzyme and plasminogen receptor alpha-enolase (ENO1) and the transcription factor far upstream element-binding protein 1 (FUBP1) are upregulated and elicit the production of autoantibodies (aAb) that discriminate healthy subjects from PDA patients, with the latter mostly directed to post-translational phosphorylated isoforms. Here, the correlation of prognosis with circulating ENO1 and FUBP1aAb, and their protein tissue expression was analyzed in PDA patients. Circulating ENO1 and FUBP1 aAb was analyzed in two cohorts of PDA patients by ELISA (n = 470), while tissues expression was observed by immunohistochemistry (n = 45). Overall survival (OS) was estimated using the Kaplan-Meier method, while the Cox model was used to estimate the hazard ratios (HR) adjusted for the main prognostic factors. Logistic models were applied to assess associations between death and its risk indicators. All statistical analyses were performed with Stata version 15. Unlike ENO1 aAb, there was a significant correlation between FUBP1 aAb and FUBP1 expression in tumors (p = 0.0268). In addition, we found that high ENO1 (p = 0.016) and intermediate FUBP1 aAb levels (p = 0.013) were unfavorable prognostic factors. Notably, it was found that high anti-FUBP1 aAb level is a good prognostic marker for tail-body PDA (p = 0.016). Our results suggest that different levels of circulating aAb to ENO1 and FUBP1 predict a poor outcome in PDA patients and can be used to improve therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Curcio
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Tiziana Rosso
- Unit of Clinical Epidemiology, AOU Città Della Salute E Della Scienza Di Torino and CPO Piemonte, Turin, Italy
| | - Silvia Brugiapaglia
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Giorgia Guadagnin
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Daniele Giordano
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Bruno Castellino
- Centro Oncologico Ematologico Subalpino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Maria Antonietta Satolli
- Centro Oncologico Ematologico Subalpino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Rosella Spadi
- Centro Oncologico Ematologico Subalpino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Donata Campra
- SC Chirurgia Generale d'urgenza E Pronto Soccorso, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Francesco Moro
- SC Chirurgia Generale U2, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Claudio De Angelis
- SCDU Gastroenterology U, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Serena Langella
- General Surgery and Oncology, Ordine Mauriziano Di Torino, Turin, Italy
| | | | - Serena Armentano
- General Surgery and Oncology, Ordine Mauriziano Di Torino, Turin, Italy
| | - Giovanna Bellotti
- Oncology Department, SS. Antonio E Biagio C. Arrigo Di Alessandria, Alessandria, Italy
| | | | - Annamaria Nuzzo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Giovannino Ciccone
- Unit of Clinical Epidemiology, AOU Città Della Salute E Della Scienza Di Torino and CPO Piemonte, Turin, Italy
| | - Francesco Novelli
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Piazza Nizza 44B, Turin, Italy.
| |
Collapse
|
4
|
Wang S, Wang Y, Li S, Nian S, Xu W, Liang F. Far upstream element -binding protein 1 (FUBP1) participates in the malignant process and glycolysis of colon cancer cells by combining with c-Myc. Bioengineered 2022; 13:12115-12126. [PMID: 35546072 PMCID: PMC9276009 DOI: 10.1080/21655979.2022.2073115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Human distal upstream element (Fuse) binding protein 1 (FUBP1) is a transcriptional regulator of c-Myc and represents an important prognostic marker in many cancers. Therefore, the present study aimed to investigate whether FUBP1 could combine with c-Myc to participate in the progression of colon cancer. Detection of FUBP1 expression was done through reverse transcription-quantitative PCR (RT-qPCR), and the combination of FUBP1 and c-Myc was detected by immunoprecipitation assay. Cell counting kit (CCK)-8, colony formation, transwell and wound healing were applied for assessing the ability of cells to proliferate, migrate, and invade; glycolysis and lactic acid detection kits were used to detect glucose uptake and lactic acid content, while western blotting was adopted to detect the protein expression of glycolysis-related genes. FUBP1 expression was elevated in HCT116 cells relative to other colon cancer cell lines, and silencing FUBP1 could inhibit the ability of HCT116 cells to proliferate, migrate, invade and glycolysis, and enhance its apoptosis. In addition, the results of immunoprecipitation experiments showed that FUBP1 could bind to c-Myc. c-Myc overexpression reversed the inhibitory effects of FUBP1 knockdown on the ability of HCT116 cells to proliferate, migrate, invade and glycolysis. The results indicated that FUBP1 could participate in the deterioration process of colon cancer cells by combining with c-Myc, and it has clinical significance for understanding the key role of FUBP1 in tumor genesis.
Collapse
Affiliation(s)
- Shanwei Wang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Sheng Li
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Shen Nian
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Wenjing Xu
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| | - Fenli Liang
- Department of Pathology, Xi'an Medical College, Xi'an City, Shanxi Province, China
| |
Collapse
|
5
|
Wang H, Zhang R, Li E, Yan R, Ma B, Ma Q. Pan-Cancer Transcriptome and Immune Infiltration Analyses Reveal the Oncogenic Role of Far Upstream Element-Binding Protein 1 (FUBP1). Front Mol Biosci 2022; 9:794715. [PMID: 35274005 PMCID: PMC8902172 DOI: 10.3389/fmolb.2022.794715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Despite increasing evidence to support the relationship between FUBP1 and tumorigenesis in some types of cancers, there have been no analyses from a pan-cancer perspective. Here, we are the first to investigate the putative oncogenic role of FUBP1 in 33 cancer types based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Dysregulated FUBP1 expression was observed in most cancer types, and high FUBP1 expression suggests poor prognosis in cancers such as ACC, KICH, LIHC, LUAD, LUSC, SARC, CESC, and SKCM. Missense mutation is the most common type of FUBP1 mutation, and R430 in KH_4 is a predominant mutation site. Enhanced phosphorylation of FUBP1 at the S120 site has been observed in clear cell RCC, lung adenocarcinoma, and pediatric brain cancer specimens from African-American and Asian individuals. The expression of FUBP1 was found to be negatively correlated with the infiltration of CD8+ T lymphocytes in GBM, HNSC-HPV- and UCEC but positively correlated with that of tumor-associated fibroblasts in CESC, ESCA, HNSC, LIHC, LUAD, PAAD, and THYM. Furthermore, RNA splicing and spliceosome signaling were predominantly enriched in both GO and KEGG analyses of the functional mechanism of FUBP1. Briefly, this pan-cancer analysis comprehensively revealed the multifaceted characteristics and oncogenic role of FUBP1 in different human cancers.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Ma
- *Correspondence: Qiong Ma, ; Baoan Ma,
| | - Qiong Ma
- *Correspondence: Qiong Ma, ; Baoan Ma,
| |
Collapse
|
6
|
Zhang Y, Chen J, Zhou N, Lu Y, Lu J, Xing X, Chen H, Zhang X. FUBP1 mediates the growth and metastasis through TGFβ/Smad signaling in pancreatic adenocarcinoma. Int J Mol Med 2021; 47:66. [PMID: 33649780 PMCID: PMC7952245 DOI: 10.3892/ijmm.2021.4899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/29/2021] [Indexed: 11/06/2022] Open
Abstract
Recent studies have reported that the expression levels of far upstream element‑binding protein 1 (FUBP1) were upregulated and served a crucial role in several types of cancer. However, the underlying molecular mechanisms and clinical significance of FUBP1 in pancreatic adenocarcinoma (PAAD) remain unclear. The present study aimed to determine the expression levels of FUBP1 in patients with PAAD and subsequently investigated the biological functions and mechanisms of FUBP1 using in vitro assays. FUBP1 expression levels and survival outcomes in patients with PAAD were analyzed using The Cancer Genome Atlas and starBase databases. Reverse transcription‑quantitative PCR was used to analyze the mRNA expression levels of FUBP1 in PAAD and adjacent normal tissues. In addition, the expression of FUBP1 was knocked down with small interfering RNA and overexpressed using FUBP1‑overexpressed plasmids, and the effects on biological functions, including cell proliferation, migration and invasion, were investigated. Western blotting and immunofluorescence assays were used to determine the role of FUBP1 in epithelial‑mesenchymal transition (EMT). The results of the present study revealed that the expression levels of FUBP1 were upregulated in PAAD tissues compared with adjacent normal tissues and the upregulated expression was significantly associated with poor survival. The knockdown of FUBP1 expression significantly inhibited the proliferative, migratory and invasive abilities of the PAAD PaTu8988 cell line, while the overexpression of FUBP1 promoted cell proliferation, migration and invasion in the PAAD SW1990 cell line. Furthermore, the knockdown of FUBP1 downregulated the expression levels of EMT‑related markers, including N‑cadherin, β‑catenin and vimentin, while the expression levels of E‑cadherin were upregulated. The knockdown of FUBP1 was also revealed to regulate the TGFβ/Smad signaling cascade by downregulating phosphorylated‑Smad2/3 and TGFβ1 expression levels. Conversely, the overexpression of FUBP1 reversed these effects. In conclusion, the findings of the present study indicated that FUBP1 may be a potential oncogene that mediates the EMT of PAAD via TGFβ/Smad signaling. These data suggested that FUBP1 may represent a potential biomarker for the diagnosis of PAAD or a target for the treatment of patients with PAAD.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Jinlian Chen
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| | - Nvshi Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yun Lu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Jingwen Lu
- Department of Pathology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Xin Xing
- Central Laboratory, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| | - Hua Chen
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| | - Xingxing Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai 201499, P.R. China
| |
Collapse
|
7
|
Ma C, Huang Z, Wu Z, Di C, Lin X, Huang M, Hong H, Yin H. Overexpression of FUBP1 is associated with human cervical carcinoma development and prognosis. Life Sci 2021; 269:119098. [PMID: 33476628 DOI: 10.1016/j.lfs.2021.119098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
AIMS Far upstream element-binding protein 1 (FUBP1) has been shown to involve in the tumorigenesis and tumor progression of various cancers. However, the expression and function of FUBP1 in cervical carcinoma remains unknown. MAIN METHODS Transcriptional expression of FUBP1 was initially evaluated using the Oncomine database, followed by evaluation of FUBP1 protein levels using immunohistochemistry in 119 cervical carcinoma patient tissues. In vitro experiments were performed to assess the tumorigenic role of FUBP1. Besides, Gene Set Enrichment Analysis, EnrichmentMap analysis, and protein-protein interaction (PPI) networks were used to evaluate the potential mechanisms of FUBP1 in promoting cervical cancer progression. KEY FUNDINGS In this research, we found both FUBP1 mRNA transcription and protein expression levels increased significantly in cervical carcinoma tissues compared with adjacent normal cervical tissues. Furthermore, elevated FUBP1 expression was positively correlated with age, T classification, N classification, tumor recurrence, Ki67 expression, and poor prognosis in cervical carcinoma patients. Besides, elevated FUBP1 expression acted as an independent unfavorable predictor for overall survival and disease-free survival in cervical carcinoma. Overexpression of FUBP1 significantly promoted cervical carcinoma cell proliferation and inhibits cell apoptosis in vitro, while knockdown of FUBP1 showed the opposite effect. Mechanistically, bioinformatics analysis revealed that FUBP1 promoted the biological function of cervical carcinoma cells via enhancing DNA repair signal pathways. Our results demonstrate for the first time that FUBP1 is a novel prognostic factor and therapeutic target for cervical carcinoma.
Collapse
Affiliation(s)
- Caiqi Ma
- Reproductive Medical Center, Guangzhou Women and Children's Medical Center of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhijian Huang
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China
| | - Zhikun Wu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Chunguang Di
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xueping Lin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Mao Huang
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China.
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Haofan Yin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|