1
|
Yin K, Guo Y, Wang J, Guo S, Zhang C, Dai Y, Guo Y, Dai C. Identification of a novel immune checkpoint-related gene signature predicts prognosis and immunotherapy in breast cancer and experiment verification. Sci Rep 2024; 14:31065. [PMID: 39730892 DOI: 10.1038/s41598-024-82266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Breast cancer (BRCA) is one of the pivotal causes of female death worldwide. And the morbidity and mortality of breast cancer have increased rapidly. Immune checkpoints are important to maintain immune tolerance and are regarded as important therapeutic targets. However, research for BRCA were limited to single immune checkpoint-related gene (ICG) and few studies have systematically explored expression profile of Immune checkpoint-related genes or attempted to construct a prognostic gene risk model based on immune checkpoint-related genes. We identified immune checkpoint-related differentially expressed genes (DEGs) in BRCA and normal breast tissues from TCGA database. A 7-gene signature was created by utilizing the univariate Cox regression model with least absolute shrinkage and selection operator (LASSO) Cox regression method. In addition, we conducted a nomogram to predict the prognostic significance. This tool enables quantitative prediction of patient prognosis, serving as a valuable reference for clinical decision-making, thereby improving patient outcomes. Relationships between our risk model and clinical indicators, TME (Tumor Microenvironment), immune cell infiltration, immune response and drug susceptibility were investigated. A set of in vitro cell assays was conducted to decipher the relationship between MAP2K6 and proliferation, invasion, migration, colony formation and apoptosis rate of breast cancer cells. As a result, we established a prognostic model composed of seven ICGs in BRCA. Based on the median risk score, BRCA patients were equally assigned into two groups of high- and low-risk. High-risk BRCA patients have poorer OS (overall survival) than low-risk patients. In addition, there were remarkable differences between these two groups in clinicopathological features, TME, immune cell infiltration, immune response and drug susceptibility. The results of GO and KEGG analyses indicated that DEGs between the high- and low-risk groups were involved in immune-related biological processes and pathways. GSEA analysis also showed that a number of immune-related pathways were notably enriched in the low-risk group. Finally, results of cell-based assays indicated that MAP2K6 may play a pivotal role in the initiation and progression of breast cancer as a tumor suppressor gene. In conclusion, we created a novel ICG signature that has the potential to predict the survival and drug sensitivity of BRCA patients. Furthermore, this study indicated that MAP2K6 may serve as a novel target for BRCA therapy.
Collapse
Affiliation(s)
- Ke Yin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yangyang Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jinqiu Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shenchao Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chunxu Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongping Dai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Yu Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Chen Dai
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
2
|
Zhu Y, Zhang J, Yu L, Xu S, Chen L, Wu K, Kong L, Lin W, Xue J, Wang Q, Lin Y, Chen X. SENP3 promotes tumor progression and is a novel prognostic biomarker in triple-negative breast cancer. Front Oncol 2023; 12:972969. [PMID: 36698419 PMCID: PMC9868814 DOI: 10.3389/fonc.2022.972969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background The clinical outcome of triple-negative breast cancer (TNBC) is poor. Finding more targets for the treatment of TNBC is an urgent need. SENPs are SUMO-specific proteins that play an important role in SUMO modification. Among several tumor types, SENPs have been identified as relevant biomarkers for progression and prognosis. The role of SENPs in TNBC is not yet clear. Methods The expression and prognosis of SENPs in TNBC were analyzed by TCGA and GEO data. SENP3 coexpression regulatory networks were determined by weighted gene coexpression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox univariate analyses were used to develop a risk signature based on genes associated with SENP3. A time-dependent receiver operating characteristic (ROC) analysis was employed to evaluate a risk signature's predictive accuracy and sensitivity. Moreover, a nomogram was constructed to facilitate clinical application. Results The prognostic and expression effects of SENP family genes were validated using the TCGA and GEO databases. SENP3 was found to be the only gene in the SENP family that was highly expressed and associated with an unfavorable prognosis in TNBC patients. Cell functional experiments showed that knockdown of SENP3 leads to growth, invasion, and migration inhibition of TNBC cells in vitro. By using WGCNA, 273 SENP3-related genes were identified. Finally, 11 SENP3-related genes were obtained from Cox univariate analysis and LASSO regression. Based on this, a prognostic risk prediction model was established. The risk signature of SENP3-related genes was verified as an independent prognostic marker for TNBC patients. Conclusion Among SENP family genes, we found that SENP3 was overexpressed in TNBC and associated with a worse prognosis. SENP3 knockdown can inhibit tumor proliferation, invasion, and migration. In TNBC patients, a risk signature based on the expression of 11 SENP3-related genes may improve prognosis prediction. The established risk markers may be promising prognostic biomarkers that can guide the individualized treatment of TNBC patients.
Collapse
Affiliation(s)
- Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiasheng Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangfei Yu
- Department of Breast Surgery, the First Hospital of Fuzhou, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiajie Xue
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingshui Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Xiangjin Chen, ; Yao Lin, ; Qingshui Wang,
| |
Collapse
|
3
|
Qiu P, Guo Q, Pan K, Chen J, Lin J. A pyroptosis-associated gene risk model for predicting the prognosis of triple-negative breast cancer. Front Oncol 2022; 12:890242. [PMID: 36276158 PMCID: PMC9582146 DOI: 10.3389/fonc.2022.890242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Pyroptosis is a novel identified form of inflammatory cell death that is important in the development and progression of various diseases, including malignancies. However, the relationship between pyroptosis and triple-negative breast cancer (TNBC) is still unclear. Therefore, we started to investigate the potential prognostic value of pyroptosis-associated genes in TNBC. METHODS Thirty-three genes associated with pyroptosis were extracted from previous publications, 30 of which were identified in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. On the basis of the 30 pyroptosis-related genes, patients with TNBC were divided into three subtypes through unsupervised cluster analysis. The prognostic value of each pyroptosis-associated gene was assessed, and six genes were selected by univariate and LASSO Cox regression analysis to establish a multigene signature. According to the median value of risk score, patients with TNBC in the training and validation cohorts were separated to high- and low-risk sets. The enrichment analysis was conducted on the differentially expressed genes (DEGs) of the two risk sets using R clusterProfiler package. Moreover, the ESTIMATE score and immune cell infiltration were calculated by the ESTIMATE and CIBERSORT methods. After that, the correlation among pyroptosis-associated risk score and the expression of immune checkpoint-associated genes as well as anti-cancer drugs sensitivities were further analyzed. RESULTS In the training and validation cohorts, patients with TNBC in the high-risk set were found in a lower survival rate than those in the low-risk set. Combined with the clinical characteristics, the pyroptosis-related risk score was identified as an independent risk factor for the prognosis of patients with TNBC. The enrichment analysis indicated that the DEGs between the two risk groups were mainly enriched by immune responses and activities. In addition, patients with TNBC in the low-risk set were found to have a higher value of ESTIMATE score and a higher rate of immune cell infiltration. Finally, the expression levels of five genes [programmed cell death protein 1 (PD-1); cytotoxic t-lymphocyte antigen-4 (CTLA4); lymphocyte activation gene 3 (LAG3); T cell immunoreceptor with Ig and ITIM domains (TIGIT)] associated with immune checkpoint inhibitors were identified to be higher in the low-risk sets. The sensitivities of some anti-cancer drugs commonly used in breast cancer were found closely related to the pyroptosis-associated risk model. CONCLUSION The pyproptosis-associated risk model plays a vital role in the tumor immunity of TNBC and can be applied to be a prognostic predictor of patients with TNBC. Our discovery will provide novel insight for TNBC immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Jianqing Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Identification of Six N7-Methylguanosine-Related miRNA Signatures to Predict the Overall Survival and Immune Landscape of Triple-Negative Breast Cancer through In Silico Analysis. JOURNAL OF ONCOLOGY 2022; 2022:2735251. [PMID: 36199792 PMCID: PMC9529398 DOI: 10.1155/2022/2735251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is a widely prevalent breast cancer, with a mortality rate of up to 25%. TNBC has a lower survival rate, and the significance of N7-methylguanosine (m7G) modification in TNBC remains unclear. Thus, this study is aimed at investigating m7G-related miRNAs in TNBC patients through in silico analysis. In our research, RNA sequencing and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The miRNAs targeting typical m7G modification regulators Methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) were predicted on the TargetScan website. A miRNA risk model was built, and its prognostic value was evaluated by R soft packages. Single-sample gene set enrichment analysis was used to assess immune infiltration, and further expression of immune checkpoints was investigated. As a result, miR-421, miR-5001-3p, miR-4326, miR-1915-3p, miR-3177-5p, and miR-4505 were identified to create the risk model. A nomogram consisting of the stage N and risk model predicted overall survival effectively among TNBC patients. Treg and TIL were shown to be strongly linked to the risk model, and the high-risk group had higher levels of four immune checkpoints expression (CD28, CTLA-4, ICOS, and TNFRSF9). A risk model consisting of m7G-related miRNAs was constructed. The findings of the current study could be used as a prognostic biomarker and can provide a novel immunotherapy insight for TNBC patients.
Collapse
|
5
|
Li JB, Lin ZC, Wong MCS, Wang HHX, Li M, Li S. A cost-effectiveness analysis of capecitabine maintenance therapy versus routine follow-up for early-stage triple-negative breast cancer patients after standard treatment from a perspective of Chinese society. BMC Med 2022; 20:320. [PMID: 36156186 PMCID: PMC9511760 DOI: 10.1186/s12916-022-02516-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Capecitabine maintenance therapy is safe and efficacious for early-stage triple-negative breast cancer (TNBC) patients, but the cost-effectiveness of its long-term use has not been investigated. Here, we evaluated the cost-effectiveness of capecitabine maintenance therapy, compared with routine follow-up, in early-stage TNBC patients after standard treatment from a perspective of Chinese society. METHODS A three-state Markov model based on the data from the SYSUCC-001 trial was constructed to estimate the cost-effectiveness of capecitabine maintenance therapy in a month cycle over a period of 30-year time horizon. A 5% annual discount rate was set for all costs and benefits. One-way and probabilistic sensitivity analyses were performed to explore the model uncertainties. The main outcomes include quality-adjusted life years (QALYs), incremental cost-effectiveness ratio (ICER), and the number needed to treat (NNT) to prevent one additional event. RESULTS Compared with routine follow-up, 1-year capecitabine maintenance therapy yielded an additional 1.29 quality-adjusted life years (QALYs) at an additional cost of $3391.70, with an ICER of $2630.53 (95% CI: $1159.81-$5090.12) per QALY gained. The ICER was considerably lower than the recommended willingness-to-pay (WTP) threshold (i.e., $28,130.00 per QALY). The results were sensitive to the discount rate, drug cost, and treatment cost after relapse. Further, the NNT to prevent one additional relapse case was 29.2 (95% CI: 13.2-196.6), 16.7 (95% CI: 8.4-111.6), and 12.0 (95% CI: 5.7-82.6) at 1, 2, and 5 years, respectively. CONCLUSIONS One-year capecitabine maintenance therapy for early-stage TNBC after standard treatment, compared with routine follow-up, was found to be highly cost-effective with promising clinical benefits and acceptable increased costs. Real-world studies are warranted to validate our findings in the future.
Collapse
Affiliation(s)
- Ji-Bin Li
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.
| | - Zhuo-Chen Lin
- Department of Medical Records, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Martin C S Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,School of Public Health, The Peking University, Beijing, People's Republic of China
| | - Harry H X Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China.,Department of Cancer Prevention Research, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Su Li
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Zhang M, Zhang J, Liu N, Wang B, Zhou Y, Yang J. VISTA is associated with immune infiltration and predicts favorable prognosis in TNBC. Front Oncol 2022; 12:961374. [PMID: 36158663 PMCID: PMC9493462 DOI: 10.3389/fonc.2022.961374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background V-domain Ig-containing suppressor of T cell activation (VISTA), a critical immune checkpoint protein, can regulate the immune system. Nevertheless, little information is available on the expression level of VISTA and its clinical significance as well. The immunological and prognostic role of VISTA in triple-negative breast cancer (TNBC) still remains unclear. Methods The clinical significance and expression of VISTA in TNBC were examined using RNA sequencing and clinical data. Cancer single-cell state atlas (CancerSEA), gene set enrichment analyses (GSEA), single sample GSEA, ESTIMATE algorithm, immunohistochemistry (IHC) were utilized to assess the functions of VISTA. Results VISTA was down-regulated and closely associated with good prognosis in TNBC. The expression of VISTA was higher in Immunity-H group and immunomodulatory (IM) subtype. The level of VISTA expression in TNBC gradually increased with the degree of stromal tumor infiltrating lymphocytes (sTILs) infiltration. In addition, the high expression of VISTA was strongly linked to higher proportion of CD8 (+) T cell and M1 macrophages. Conclusion VISTA was remarkably correlated with a favorable prognosis and high immune infiltration in patients with TNBC.
Collapse
|
7
|
Qiu P, Guo Q, Yao Q, Chen J, Lin J. Characterization of Exosome-Related Gene Risk Model to Evaluate the Tumor Immune Microenvironment and Predict Prognosis in Triple-Negative Breast Cancer. Front Immunol 2021; 12:736030. [PMID: 34659224 PMCID: PMC8517454 DOI: 10.3389/fimmu.2021.736030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background As a kind of small membrane vesicles, exosomes are secreted by most cell types from multivesicular endosomes, including tumor cells. The relationship between exosomes and immune response plays a vital role in the occurrence and development of tumors. Nevertheless, the interaction between exosomes and the microenvironment of tumors remains unclear. Therefore, we set out to study the influence of exosomes on the triple-negative breast cancer (TNBC) microenvironment. Method One hundred twenty-one exosome-related genes were downloaded from ExoBCD database, and IVL, CXCL13, and AP2S1 were final selected because of the association with TNBC prognosis. Based on the sum of the expression levels of these three genes, provided by The Cancer Genome Atlas (TCGA), and the regression coefficients, an exosome risk score model was established. With the median risk score value, the patients in the two databases were divided into high- and low-risk groups. R clusterProfiler package was employed to compare the different enrichment ways between the two groups. The ESTIMATE and CIBERSORT methods were employed to analyze ESTIMATE Score and immune cell infiltration. Finally, the correlation between the immune checkpoint-related gene expression levels and exosome-related risk was analyzed. The relationship between selected gene expression and drug sensitivity was also detected. Results Different risk groups exhibited distinct result of TNBC prognosis, with a higher survival rate in the low-risk group than in the high-risk group. The two groups were enriched by immune response and biological process pathways. A better overall survival (OS) was demonstrated in patients with high scores of immune and ESTIMATE rather than ones with low scores. Subsequently, we found that CD4+-activated memory T cells and M1 macrophages were both upregulated in the low-risk group, whereas M2 macrophages and activated mast cell were downregulated in the low-risk group in patients from the TCGA and GEO databases, respectively. Eventually, four genes previously proposed to be targets of immune checkpoint inhibitors were evaluated, resulting in the expression levels of CD274, CTLA4, LAG3, and TIM3 being higher in the low-risk group than high-risk group. Conclusion The results of our study suggest that exosome-related risk model was related to the prognosis and ratio of immune cell infiltration in patients with TNBC. This discovery may make contributions to improve immunotherapy for TNBC.
Collapse
Affiliation(s)
- Pengjun Qiu
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiaonan Guo
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingzhi Yao
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianpeng Chen
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
8
|
Abdullah ML, Al-Shabanah O, Hassan ZK, Hafez MM. Eugenol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. Int J Mol Sci 2021; 22:ijms22179243. [PMID: 34502165 PMCID: PMC8430664 DOI: 10.3390/ijms22179243] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of natural compounds is promising in approaches to prevent and treat cancer. The long-term application of most currently employed chemotherapy techniques has toxic side effects. Eugenol, a phenolic phytochemical extracted from certain essential oils, has an anti-cancer effect. The modulation of autophagy can promote either the survival or apoptosis of cancer cells. Triple-negative (MDA-MB-231) and HER2 positive (SK-BR-3) breast cancer cell lines were treated with different doses of eugenol. Apoptosis was detected by a flow-cytometry technique, while autophagy was detected by acridine orange. Real-time PCR and Western blot assays were applied to investigate the effect of eugenol on the gene and protein expression levels of autophagy and apoptotic genes. Treating cells with different concentrations of eugenol significantly inhibited cell proliferation. The protein levels of AKT serine/threonine kinase 1 (AKT), forkhead box O3 (FOXO3a), cyclin dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor (p27), and Caspase-3 and -9 increased significantly in Eugenol-treated cells. Eugenol also induced autophagy by upregulating the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and downregulating the expression of nucleoporin 62 (NU p62). Eugenol is a promising natural anti-cancer agent against triple-negative and HER2-positive breast cancer. It appears to work by targeting the caspase pathway and by inducing autophagic cell death.
Collapse
Affiliation(s)
- Mashan L. Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
- Correspondence: (M.L.A.); (M.M.H.)
| | - Othman Al-Shabanah
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Mohamed M. Hafez
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
- Correspondence: (M.L.A.); (M.M.H.)
| |
Collapse
|
9
|
Liu Y, Teng L, Fu S, Wang G, Li Z, Ding C, Wang H, Bi L. Highly heterogeneous-related genes of triple-negative breast cancer: potential diagnostic and prognostic biomarkers. BMC Cancer 2021; 21:644. [PMID: 34053447 PMCID: PMC8165798 DOI: 10.1186/s12885-021-08318-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, showing aggressive clinical behaviors and poor outcomes. It urgently needs new therapeutic strategies to improve the prognosis of TNBC. Bioinformatics analyses have been widely used to identify potential biomarkers for facilitating TNBC diagnosis and management. Methods We identified potential biomarkers and analyzed their diagnostic and prognostic values using bioinformatics approaches. Including differential expression gene (DEG) analysis, Receiver Operating Characteristic (ROC) curve analysis, functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, survival analysis, multivariate Cox regression analysis, and Non-negative Matrix Factorization (NMF). Results A total of 105 DEGs were identified between TNBC and other breast cancer subtypes, which were regarded as heterogeneous-related genes. Subsequently, the KEGG enrichment analysis showed that these genes were significantly enriched in ‘cell cycle’ and ‘oocyte meiosis’ related pathways. Four (FAM83B, KITLG, CFD and RBM24) of 105 genes were identified as prognostic signatures in the disease-free interval (DFI) of TNBC patients, as for progression-free interval (PFI), five genes (FAM83B, EXO1, S100B, TYMS and CFD) were obtained. Time-dependent ROC analysis indicated that the multivariate Cox regression models, which were constructed based on these genes, had great predictive performances. Finally, the survival analysis of TNBC subtypes (mesenchymal stem-like [MSL] and mesenchymal [MES]) suggested that FAM83B significantly affected the prognosis of patients. Conclusions The multivariate Cox regression models constructed from four heterogeneous-related genes (FAM83B, KITLG, RBM24 and S100B) showed great prediction performance for TNBC patients’ prognostic. Moreover, FAM83B was an important prognostic feature in several TNBC subtypes (MSL and MES). Our findings provided new biomarkers to facilitate the targeted therapies of TNBC and TNBC subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08318-1.
Collapse
Affiliation(s)
- Yiduo Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Linxin Teng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Shiyi Fu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Guiyang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Chao Ding
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Haodi Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Lei Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
10
|
Differential gene expression analysis of palbociclib-resistant TNBC via RNA-seq. Breast Cancer Res Treat 2021; 186:677-686. [PMID: 33599863 PMCID: PMC8019424 DOI: 10.1007/s10549-021-06127-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/02/2021] [Indexed: 11/05/2022]
Abstract
Purpose The management of triple-negative breast cancer (TNBC) remains a significant clinical challenge due to the lack of effective targeted therapies. Inhibitors of the cyclin-dependent kinases 4 and 6 (CDK4/6) are emerging as promising therapeutic agents against TNBC; however, cells can rapidly acquire resistance through multiple mechanisms that are yet to be identified. Therefore, determining the mechanisms underlying resistance to CDK4/6 inhibition is crucial to develop combination therapies that can extend the efficacy of the CDK4/6 inhibitors or delay resistance. This study aims to identify differentially expressed genes (DEG) associated with acquired resistance to palbociclib in ER− breast cancer cells. Methods We performed next-generation transcriptomic sequencing (RNA-seq) and pathway analysis in ER− MDA-MB-231 palbociclib-sensitive (231/pS) and palbociclib-resistant (231/pR) cells. Results We identified 2247 up-regulated and 1427 down-regulated transcripts in 231/pR compared to 231/pS cells. DEGs were subjected to functional analysis using Gene Ontology (GO) and the KEGG database which identified many transduction pathways associated with breast cancer, including the PI3K/AKT, PTEN and mTOR pathways. Additionally, Ingenuity Pathway Analysis (IPA) revealed that resistance to palbociclib is closely associated with altered cholesterol and fatty acid biosynthesis suggesting that resistance to palbociclib may be dependent on lipid metabolic reprograming. Conclusion This study provides evidence that lipid metabolism is altered in TNBC with acquired resistance to palbociclib. Further studies are needed to determine if the observed lipid metabolic rewiring can be exploited to overcome therapy resistance in TNBC. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06127-5.
Collapse
|
11
|
Abdullah A, Akhand SS, Paez JSP, Brown W, Pan L, Libring S, Badamy M, Dykuizen E, Solorio L, Andy Tao W, Wendt MK. Epigenetic targeting of neuropilin-1 prevents bypass signaling in drug-resistant breast cancer. Oncogene 2021; 40:322-333. [PMID: 33128042 PMCID: PMC7808937 DOI: 10.1038/s41388-020-01530-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-amplified breast cancers are treated using targeted antibodies and kinase inhibitors, but resistance to these therapies leads to systemic tumor recurrence of metastatic disease. Herein, we conducted gene expression analyses of HER2 kinase inhibitor-resistant cell lines as compared to their drug-sensitive counterparts. These data demonstrate the induction of epithelial-mesenchymal transition (EMT), which included enhanced expression of fibroblast growth factor receptor 1 (FGFR1) and axonal guidance molecules known as neuropilins (NRPs). Immunoprecipitation of FGFR1 coupled with mass spectroscopy indicated that FGFR1 forms a physical complex with NRPs, which is enhanced upon induction of EMT. Confocal imaging revealed that FGFR1 and NRP1 predominantly interact throughout the cytoplasm. Along these lines, short hairpin RNA-mediated depletion of NRP1, but not the use of NRP1-blocking antibodies, inhibited FGFR signaling and reduced tumor cell growth in vitro and in vivo. Our results further indicate that NRP1 upregulation during EMT is mediated via binding of the chromatin reader protein, bromodomain containing 4 (BRD4) in the NRP1 proximal promoter region. Pharmacological inhibition of BRD4 decreased NRP1 expression and ablated FGF-mediated tumor cell growth. Overall, our studies indicate that NRPs facilitate aberrant growth factor signaling during EMT-associated drug resistance and metastasis. Pharmacological combination of epigenetic modulators with FGFR-targeted kinase inhibitors may provide improved outcomes for breast cancer patients with drug-resistant metastatic disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ammara Abdullah
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Saeed Salehin Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Sebastian Paez Paez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Wells Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Pan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Badamy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Emily Dykuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Roles of ABCC1 and ABCC4 in Proliferation and Migration of Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21207664. [PMID: 33081264 PMCID: PMC7589126 DOI: 10.3390/ijms21207664] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
ABCC1 and ABCC4 utilize energy from ATP hydrolysis to transport many different molecules, including drugs, out of the cell and, as such, have been implicated in causing drug resistance. However recently, because of their ability to transport signaling molecules and inflammatory mediators, it has been proposed that ABCC1 and ABCC4 may play a role in the hallmarks of cancer development and progression, independent of their drug efflux capabilities. Breast cancer is the most common cancer affecting women. In this study, the aim was to investigate whether ABCC1 or ABCC4 play a role in the proliferation or migration of breast cancer cell lines MCF-7 (luminal-type, receptor-positive) and MDA-MB-231 (basal-type, triple-negative). The effects of small molecule inhibitors or siRNA-mediated knockdown of ABCC1 or ABCCC4 were measured. Colony formation assays were used to assess the clonogenic capacity, MTT assays to measure the proliferation, and scratch assays and Transwell assays to monitor the cellular migration. The results showed a role for ABCC1 in cellular proliferation, whilst ABCC4 appeared to be more important for cellular migration. ELISA studies implicated cAMP and/or sphingosine-1-phosphate efflux in the mechanism by which these transporters mediate their effects. However, this needs to be investigated further, as it is key to understand the mechanisms before they can be considered as targets for treatment.
Collapse
|
13
|
Ye S, Xu Y, Wang L, Zhou K, He J, Lu J, Huang Q, Sun P, Wang T. Estrogen-Related Receptor α (ERRα) and G Protein-Coupled Estrogen Receptor (GPER) Synergistically Indicate Poor Prognosis in Patients with Triple-Negative Breast Cancer. Onco Targets Ther 2020; 13:8887-8899. [PMID: 33061416 PMCID: PMC7520096 DOI: 10.2147/ott.s265372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose The present study aims to demonstrate the correlation between estrogen-related receptor α (ERRα) and G protein-coupled estrogen receptor (GPER) expression and its predictive role in the prognosis of patients with triple-negative breast cancer (TNBC). Methods A retrospective review of 199 cases of TNBC was conducted to assess the GPER and ERRα expression, and its clinicopathologic and prognostic implications. Subsequently, the effects of ERRα and GPER on cell viability, migration, and invasion induced by estrogen were also investigated in vitro. Results Compared to TNBCs with ERRα low expression, ERRα-high patients exhibited higher nuclear grade, more frequent lymph nodal metastasis, a higher rate of local recurrence, and distant metastasis. Survival analyses revealed that ERRα-high patients had decreased overall survival (OS), local recurrence-free survival (LRFS), and distant disease-free survival (DDFS) than ERRα-low patients. The GPER expression level positively correlated with ERRα (R=0.167, P=0.18), and TNBCs with ERRα-low/GPER-low demonstrated the best survival outcomes among groups. In vitro, E2 significantly enhanced cell viability, migration, and invasion in BT-549 and MDA-MB-231 cell lines, which was associated with the increased expression of ERRα. Moreover, the overexpression of ERRα induced by estrogen and G1 (GPER agonist) was reversed by knocking down of GPER and blocking the MAPK signaling with PD98059 in both cell lines. Conclusion Our findings suggest that ERRα and GPER synergistically predict unfavorable prognosis in TNBCs. Mechanically, GPER mediates the upregulation expression of ERRα induced by estrogen and promotes cell viability, migration, and invasion.
Collapse
Affiliation(s)
- Shuang Ye
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Yuanyuan Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Ling Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Jiehua He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Jiabin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Qitao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
14
|
Kriegsmann K, Flechtenmacher C, Heil J, Kriegsmann J, Mechtersheimer G, Aulmann S, Weichert W, Sinn HP, Kriegsmann M. Immunohistological Expression of SOX-10 in Triple-Negative Breast Cancer: A Descriptive Analysis of 113 Samples. Int J Mol Sci 2020; 21:ijms21176407. [PMID: 32899175 PMCID: PMC7503807 DOI: 10.3390/ijms21176407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Background: SRY-related HMG-box 10 (SOX-10) is commonly expressed in triple negative breast cancer (TNBC). However, data on the biological significance of SOX-10 expression is limited. Therefore, we investigated immunhistological SOX-10 expression in TNBC and correlated the results with genetic alterations and clinical data. Methods: A tissue microarray including 113 TNBC cases was stained by SOX-10. Immunohistological data of AR, BCL2, CD117, p53 and Vimentin was available from a previous study. Semiconductor-based panel sequencing data including commonly altered breast cancer genes was also available from a previous investigation. SOX-10 expression was correlated with clinicopathological, immunohistochemical and genetic data. Results: SOX-10 was significantly associated with CD117 and Vimentin, but not with AR expression. An association of SOX-10 with BCL2, EGFR or p53 staining was not observed. SOX-10-positive tumors harbored more often TP53 mutations but less frequent mutations of PIK3CA or alterations of the PIK3K pathway. SOX-10 expression had no prognostic impact either on disease-free, distant disease-free, or overall survival. Conclusions: While there might be a value of SOX-10 as a differential diagnostic marker to identify metastases of TNBC, its biological role remains to be investigated.
Collapse
Affiliation(s)
- Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Christa Flechtenmacher
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.F.); (G.M.); (H.-P.S.)
| | - Jörg Heil
- Breast Unit, Women’s Hospital, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Jörg Kriegsmann
- Institute of Pathology, Cytology and Molecular Pathology, 54296 Trier, Germany;
- Danube Private University Krems, 3500 Krems, Austria
| | - Gunhild Mechtersheimer
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.F.); (G.M.); (H.-P.S.)
| | | | - Wilko Weichert
- Institute of Pathology, TU Munich, 81675 Munich, Germany;
| | - Hans-Peter Sinn
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.F.); (G.M.); (H.-P.S.)
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (C.F.); (G.M.); (H.-P.S.)
- Correspondence: ; Tel.: +49-6221-56-36930
| |
Collapse
|
15
|
Lai H, Wang R, Li S, Shi Q, Cai Z, Li Y, Liu Y. LIN9 confers paclitaxel resistance in triple negative breast cancer cells by upregulating CCSAP. SCIENCE CHINA-LIFE SCIENCES 2019; 63:419-428. [DOI: 10.1007/s11427-019-9581-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022]
|
16
|
Pang S, Xu Y, Chen J, Li G, Huang J, Wu X. Knockdown of cell division cycle-associated protein 4 expression inhibits proliferation of triple negative breast cancer MDA-MB-231 cells in vitro and in vivo. Oncol Lett 2019; 17:4393-4400. [PMID: 30944632 PMCID: PMC6444385 DOI: 10.3892/ol.2019.10077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cell division cycle-associated protein 4 (CDCA4), also known as SEI-3/hematopoietic progenitor protein, is a target gene of transcription factor E2F and represses E2F-dependent transcriptional activation and cell proliferation. The present study investigated the effects of CDCA4 knockdown on the regulation of triple negative breast cancer (TNBC) cell proliferation in vitro and in vivo. Human TNBC MDA-MB-231 cells were subjected to CDCA4 expression knockdown using a lentiviral vector carrying CDCA4 or a negative control short hairpin RNA, and reverse transcription-quantitative polymerase chain reaction, MTT cell viability, cell growth, flow cytometric apoptosis, cell cycle and nude mouse tumorigenesis assays were conducted. The knockdown of CDCA4 expression effectively inhibited the growth of MDA-MB-231 cells by promoting apoptosis in vitro. Additionally, CDCA4 expression knockdown suppressed nude mouse tumor cell xenograft formation and growth in vivo. In conclusion, the data from the present study supported the hypothesis that CDCA4 may be involved in regulating human TNBC progression, and that targeting CDCA4 expression could be useful as a novel strategy in future TNBC treatment.
Collapse
Affiliation(s)
- Sen Pang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuju Xu
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Chen
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guibin Li
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jingle Huang
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xianghua Wu
- Department of Gastrointestinal and Gland Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
17
|
Beltrán-Anaya FO, Romero-Córdoba S, Rebollar-Vega R, Arrieta O, Bautista-Piña V, Dominguez-Reyes C, Villegas-Carlos F, Tenorio-Torres A, Alfaro-Riuz L, Jiménez-Morales S, Cedro-Tanda A, Ríos-Romero M, Reyes-Grajeda JP, Tagliabue E, Iorio MV, Hidalgo-Miranda A. Expression of long non-coding RNA ENSG00000226738 (LncKLHDC7B) is enriched in the immunomodulatory triple-negative breast cancer subtype and its alteration promotes cell migration, invasion, and resistance to cell death. Mol Oncol 2019; 13:909-927. [PMID: 30648789 PMCID: PMC6441920 DOI: 10.1002/1878-0261.12446] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/29/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) represents an aggressive phenotype with poor prognosis compared with ER, PR, and HER2‐positive tumors. TNBC is a heterogeneous disease, and gene expression analysis has identified seven molecular subtypes. Accumulating evidence demonstrates that long non‐coding RNA (lncRNA) are involved in regulation of gene expression and cancer biology, contributing to essential cancer cell functions. In this study, we analyzed the expression profile of lncRNA in TNBC subtypes from 156 TNBC samples, and then characterized the functional role of LncKLHDC7B (ENSG00000226738). A total of 710 lncRNA were found to be differentially expressed between TNBC subtypes, and a subset of these altered lncRNA were independently validated. We discovered that LncKLHDC7B (ENSG00000226738) acts as a transcriptional modulator of its neighboring coding gene KLHDC7B in the immunomodulatory subtype. Furthermore, LncKLHDC7B knockdown enhanced migration and invasion, and promoted resistance to cellular death. Our findings confirmed the contribution of LncKLHDC7B to induction of apoptosis and inhibition of cell migration and invasion, suggesting that TNBC tumors with enrichment of LncKLHDC7B may exhibit distinct regulatory activity, or that this may be a generalized process in breast cancer. Additionally, in silico analysis confirmed for the first time that the low expression of KLHDC7B and LncKLHDC7B is associated with poor prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Fredy Omar Beltrán-Anaya
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Sandra Romero-Córdoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Department of Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosa Rebollar-Vega
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | | | | | | | - Luis Alfaro-Riuz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magdalena Ríos-Romero
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Elda Tagliabue
- Department of Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Marilena V Iorio
- Department of Experimental Oncology and Molecular Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
18
|
Robert M, Patsouris A, Frenel JS, Gourmelon C, Augereau P, Campone M. Emerging PARP inhibitors for treating breast cancer. Expert Opin Emerg Drugs 2018; 23:211-221. [DOI: 10.1080/14728214.2018.1527900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Marie Robert
- René Gauducheau, Institut de Cancérologie de l’Ouest, St Herblain, France
| | - Anne Patsouris
- Paul Papin, Institut de Cancérologie de l’Ouest, Angers, France
| | | | - Carole Gourmelon
- René Gauducheau, Institut de Cancérologie de l’Ouest, St Herblain, France
| | - Paule Augereau
- Paul Papin, Institut de Cancérologie de l’Ouest, Angers, France
| | - Mario Campone
- René Gauducheau, Institut de Cancérologie de l’Ouest, St Herblain, France
- Medical oncology, Centre de Recherche en Cancérologie Nantes-Angers (CRNA), Saint-Herblain, France
| |
Collapse
|
19
|
Haxho F, Neufeld RJ, Szewczuk MR. Neuraminidase-1: a novel therapeutic target in multistage tumorigenesis. Oncotarget 2018; 7:40860-40881. [PMID: 27029067 PMCID: PMC5130050 DOI: 10.18632/oncotarget.8396] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Several of the growth factors and their receptor tyrosine kinases (RTK) such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and insulin are promising candidate targets for cancer therapy. Indeed, tyrosine kinase inhibitors (TKI) have been developed to target these growth factors and their receptors, and have demonstrated dramatic initial responses in cancer therapy. Yet, most patients ultimately develop TKI drug resistance and relapse. It is essential in the clinical setting that the targeted therapies are to circumvent multistage tumorigenesis, including genetic mutations at the different growth factor receptors, tumor neovascularization, chemoresistance of tumors, immune-mediated tumorigenesis and the development of tissue invasion and metastasis. Here, we identify a novel receptor signaling platform linked to EGF, NGF, insulin and TOLL-like receptor (TLR) activations, all of which are known to play major roles in tumorigenesis. The importance of these findings signify an innovative and promising entirely new targeted therapy for cancer. The role of mammalian neuraminidase-1 (Neu1) in complex with matrix metalloproteinase-9 and G protein-coupled receptor tethered to RTKs and TLRs is identified as a major target in multistage tumorigenesis. Evidence exposing the link connecting growth factor-binding and immune-mediated tumorigenesis to this novel receptor-signaling paradigm will be reviewed in its current relationship to cancer.
Collapse
Affiliation(s)
- Fiona Haxho
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Myron R Szewczuk
- Departments of Biomedical and Molecular Sciences, Kingston, Ontario, Canada
| |
Collapse
|
20
|
Lee A, Djamgoz MBA. Triple negative breast cancer: Emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 2017; 62:110-122. [PMID: 29202431 DOI: 10.1016/j.ctrv.2017.11.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
Triple negative breast cancer (TNBC) is a complex and aggressive subtype of breast cancer which lacks oestrogen receptors, progesterone receptors and HER2 amplification, thereby making it difficult to target therapeutically. In addition, TNBC has the highest rates of metastatic disease and the poorest overall survival of all breast cancer subtypes. Resultantly, development of targeted therapies for TNBC is urgently needed. Recent efforts aimed at molecular characterisation of TNBCs have revealed various emerging therapeutic targets including PARP1, receptor and non-receptor tyrosine kinases, immune-checkpoints, androgen receptor and epigenetic proteins. Key successes include that of the PARP inhibitor, olaparib, which prolonged progression-free survival in a trial of BRCA-mutated breast cancer and for which clinical approval (in this setting) appears imminent. Nevertheless, the heterogeneity of TNBC has limited the clinical benefits of many trialled therapies in 'unselected' patients. Further, drug resistance develops following use of many targeted monotherapies due to upregulation of compensatory signalling pathways. In this review, we evaluate the current status of investigational targeted treatments and present evidence for the role of novel biomarkers and combination therapies in increasing response rates and circumventing drug-induced resistance. Additionally, we discuss promising novel targets in metastatic TNBC identified through preclinical and/or epidemiological studies.
Collapse
Affiliation(s)
- Alice Lee
- Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Neuroscience Solution to Cancer Research Group, Department of Life Sciences, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
21
|
Wang C, Kar S, Lai X, Cai W, Arfuso F, Sethi G, Lobie PE, Goh BC, Lim LHK, Hartman M, Chan CW, Lee SC, Tan SH, Kumar AP. Triple negative breast cancer in Asia: An insider's view. Cancer Treat Rev 2017; 62:29-38. [PMID: 29154023 DOI: 10.1016/j.ctrv.2017.10.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
While tremendous improvement has been made for the treatment of breast cancers, the treatment of triple negative breast cancer (TNBC) still remains a challenge due to its aggressive characteristics and limited treatment options. Most of the studies on TNBC were conducted in Western population and TNBC is reported to be more frequent in the African women. This review encapsulates the studies conducted on TNBC patients in Asian population and elucidates the similarities and differences between these two regions. The current treatment of TNBC includes surgery, radiotherapy and chemotherapy. In addition to the current chemotherapies, which mainly include cytotoxic agents, such as taxanes and anthracyclines, many clinical trials are investigating the potential use of other chemotherapy drugs, targeted therapeutics and combinational therapies to treat TNBC. Moreover, this review also integrates the studies involving novel markers, which will help us to dissect the pathologic process of TNBC and in turn facilitate the development of better treatment strategies to combat TNBC.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shreya Kar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xianning Lai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Peter E Lobie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School at Shenzhen, Shenzhen, China
| | - Boon C Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore; National University Cancer Institute, National University Health System, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; NUS Immunology Program, National University of Singapore, Singapore
| | - Mikael Hartman
- Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore; Department of Surgery, National University Cancer Institute, National University Health System, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Ching W Chan
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore
| | - Soo C Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore; National University Cancer Institute, National University Health System, Singapore
| | - Sing H Tan
- Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore; National University Cancer Institute, National University Health System, Singapore; OncoCare Cancer Centre, Gleneagles Medical Centre, Singapore.
| | - Alan P Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
22
|
WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance. Sci Rep 2017; 7:43517. [PMID: 28262781 PMCID: PMC5338009 DOI: 10.1038/srep43517] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance.
Collapse
|
23
|
Purrington KS, Visscher DW, Wang C, Yannoukakos D, Hamann U, Nevanlinna H, Cox A, Giles GG, Eckel-Passow JE, Lakis S, Kotoula V, Fountzilas G, Kabisch M, Rüdiger T, Heikkilä P, Blomqvist C, Cross SS, Southey MC, Olson JE, Gilbert J, Deming-Halverson S, Kosma VM, Clarke C, Scott R, Jones JL, Zheng W, Mannermaa A, Eccles DM, Vachon CM, Couch FJ. Genes associated with histopathologic features of triple negative breast tumors predict molecular subtypes. Breast Cancer Res Treat 2016; 157:117-31. [PMID: 27083182 DOI: 10.1007/s10549-016-3775-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/30/2016] [Indexed: 01/07/2023]
Abstract
Distinct subtypes of triple negative (TN) breast cancer have been identified by tumor expression profiling. However, little is known about the relationship between histopathologic features of TN tumors, which reflect aspects of both tumor behavior and tumor microenvironment, and molecular TN subtypes. The histopathologic features of TN tumors were assessed by central review and 593 TN tumors were subjected to whole genome expression profiling using the Illumina Whole Genome DASL array. TN molecular subtypes were defined based on gene expression data associated with histopathologic features of TN tumors. Gene expression analysis yielded signatures for four TN subtypes (basal-like, androgen receptor positive, immune, and stromal) consistent with previous studies. Expression analysis also identified genes significantly associated with the 12 histological features of TN tumors. Development of signatures using these markers of histopathological features resulted in six distinct TN subtype signatures, including an additional basal-like and stromal signature. The additional basal-like subtype was distinguished by elevated expression of cell motility and glucose metabolism genes and reduced expression of immune signaling genes, whereas the additional stromal subtype was distinguished by elevated expression of immunomodulatory pathway genes. Histopathologic features that reflect heterogeneity in tumor architecture, cell structure, and tumor microenvironment are related to TN subtype. Accounting for histopathologic features in the development of gene expression signatures, six major subtypes of TN breast cancer were identified.
Collapse
Affiliation(s)
- Kristen S Purrington
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, USA.,Department of Health Sciences Research, Mayo Clinic, Stabile 2-42, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Stabile 2-42, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory INRASTES, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - Graham G Giles
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Jeanette E Eckel-Passow
- Department of Health Sciences Research, Mayo Clinic, Stabile 2-42, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sotiris Lakis
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Rüdiger
- Institute of Pathology, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Simon S Cross
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Stabile 2-42, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Judy Gilbert
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
| | - Sandra Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Veli-Matti Kosma
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
| | - Christine Clarke
- Centre for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, Australia
| | - Rodney Scott
- Division of Genetics, Hunter Area Pathology Service and University of Newcastle, Newcastle, Australia
| | - J Louise Jones
- Barts Cancer Research Institute, Queen Mary University of London, London, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, USA
| | - Arto Mannermaa
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
| | | | - Diana M Eccles
- Faculty of Medicine and NIHR/CRUK Clinical Trials Unit, University of Southampton, Southampton, UK
| | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Stabile 2-42, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Fergus J Couch
- Department of Health Sciences Research, Mayo Clinic, Stabile 2-42, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA.
| |
Collapse
|
24
|
The Role of Forkhead Box Protein M1 in Breast Cancer Progression and Resistance to Therapy. Int J Breast Cancer 2016; 2016:9768183. [PMID: 26942015 PMCID: PMC4752991 DOI: 10.1155/2016/9768183] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/10/2016] [Indexed: 01/30/2023] Open
Abstract
The Forkhead box M1 (FOXM1) is a transcription factor that has been implicated in normal cell growth and proliferation through control of cell cycle transition and mitotic spindle. It is implicated in carcinogenesis of various malignancies where it is activated by either amplification, increased stability, enhanced transcription, dysfunction of regulatory pathways, or activation of PI3K/AKT, epidermal growth factor receptor, Raf/MEK/MAPK, and Hedgehog pathways. This review describes the role of FOXM1 in breast cancer. This includes how FOXM1 impacts on different subtypes of breast cancer, that is, luminal/estrogen receptor positive (ER+), expressing human epidermal growth factor receptor 2 (HER2), basal-like breast cancer (BBC), and triple negative breast cancer (TNBC). The review also describes different tested preclinical therapeutic strategies targeting FOXM1. Developing clinically applicable therapies that specifically inhibit FOXM1 activity is a logical next step in biomarker-driven approaches against breast cancer but will not be without its challenges due to the unique properties of this transcription factor.
Collapse
|
25
|
Law J, Salla M, Zare A, Wong Y, Luong L, Volodko N, Svystun O, Flood K, Lim J, Sung M, Dyck JRB, Tan CT, Su YC, Yu VC, Mackey J, Baksh S. Modulator of apoptosis 1 (MOAP-1) is a tumor suppressor protein linked to the RASSF1A protein. J Biol Chem 2015; 290:24100-18. [PMID: 26269600 PMCID: PMC4591801 DOI: 10.1074/jbc.m115.648345] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 01/21/2023] Open
Abstract
Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Yoke Wong
- From the Departments of Biochemistry and
| | - Le Luong
- From the Departments of Biochemistry and
| | | | | | | | | | - Miranda Sung
- Pediatrics, Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jason R B Dyck
- Pediatrics, Cardiovascular Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chong Teik Tan
- the Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yu-Chin Su
- the Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Victor C Yu
- the Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - John Mackey
- the Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada, and
| | - Shairaz Baksh
- From the Departments of Biochemistry and Pediatrics, the Department of Experimental Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada, and the Cancer Research Institute of Northern Alberta, Edmonton, Alberta T6G 1Z2, Canada, the Alberta IBD Consortium, Edmonton, Alberta T6G 2X8, Canada, and the Women and Children's Health Research Institute, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
26
|
Chen SM, Chou WC, Hu LY, Hsiung CN, Chu HW, Huang YL, Hsu HM, Yu JC, Shen CY. The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity. PLoS One 2015; 10:e0128472. [PMID: 26115122 PMCID: PMC4482746 DOI: 10.1371/journal.pone.0128472] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play critical roles in regulating various physiological processes, including growth and development. Previous studies have shown that microRNA-124 (miR-124) participates not only in regulation of early neurogenesis but also in suppression of tumorigenesis. In the present study, we found that overexpression of miR-124 was associated with reduced DNA repair capacity in cultured cancer cells and increased sensitivity of cells to DNA-damaging anti-tumor drugs, specifically those that cause the formation of DNA strand-breaks (SBs). We then examined which DNA repair–related genes, particularly the genes of SB repair, were regulated by miR-124. Two SB repair–related genes, encoding ATM interactor (ATMIN) and poly (ADP-ribose) polymerase 1 (PARP1), were strongly affected by miR-124 overexpression, by binding of miR-124 to the 3¢-untranslated region of their mRNAs. As a result, the capacity of cells to repair DNA SBs, such as those resulting from homologous recombination, was significantly reduced upon miR-124 overexpression. A particularly important therapeutic implication of this finding is that overexpression of miR-124 enhanced cell sensitivity to multiple DNA-damaging agents via ATMIN- and PARP1-mediated mechanisms. The translational relevance of this role of miR-124 in anti-tumor drug sensitivity is suggested by the finding that increased miR-124 expression correlates with better breast cancer prognosis, specifically in patients receiving chemotherapy. These findings suggest that miR-124 could potentially be used as a therapeutic agent to improve the efficacy of chemotherapy with DNA-damaging agents.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ling-Yueh Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ling Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Ming Hsu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- College of Public Health, China Medical University, Taichong, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Willis S, De P, Dey N, Long B, Young B, Sparano JA, Wang V, Davidson NE, Leyland-Jones BR. Enriched transcription factor signatures in triple negative breast cancer indicates possible targeted therapies with existing drugs. Meta Gene 2015; 4:129-41. [PMID: 26005638 PMCID: PMC4436509 DOI: 10.1016/j.mgene.2015.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Triple negative (TN) breast cancers which lack expression of the estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2) receptors convey a poor prognosis due in part to a lack of targeted therapies. METHODS To identify viable targets for the treatment of TN disease, we have conducted a gene set enrichment analysis (GSEA) on seven different breast cancer whole genome gene expression cohorts comparing TN vs. ER + HER2 - to identify consistently enriched genes that share a common promoter motif. The seven cohorts were profiled on three different genome expression platforms (Affymetrix, Illumina and RNAseq) consisting in total of 2088 samples with IHC metadata. RESULTS GSEA identified enriched gene expression patterns in TN samples that share common promoter motifs associated with SOX9, E2F1, HIF1A, HMGA1, MYC BACH2, CEBPB, and GCNF/NR6A1. Unexpectedly, NR6A1 an orphan nuclear receptor normally expressed in germ cells of gonads is highly expressed in TN and ER + HER2 - samples making it an ideal drug target. CONCLUSION With the increasing number of large sample size breast cancer cohorts, an exploratory analysis of genes that are consistently enriched in TN sharing common promoter motifs allows for the identification of possible therapeutic targets with extensive validation in patient derived data sets.
Collapse
Affiliation(s)
| | - Pradip De
- Avera Cancer Institute, Sioux Falls, SD, United States
| | - Nandini Dey
- Avera Cancer Institute, Sioux Falls, SD, United States
| | - Bradley Long
- The Scripps Research Institute, Jupiter, FL, United States
| | - Brandon Young
- Avera Cancer Institute, Sioux Falls, SD, United States
| | | | - Victoria Wang
- Dana Farber Cancer Institute, Boston, MA, United States
| | - Nancy E Davidson
- University of Pittsburgh Cancer Institute and UPMC Cancer Center, Pittsburgh, PA, United States
| | | |
Collapse
|
28
|
Gromova I, Gromov P, Honma N, Kumar S, Rimm D, Talman MLM, Wielenga VT, Moreira JMA. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol Oncol 2015; 9:1636-54. [PMID: 26026368 DOI: 10.1016/j.molonc.2015.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/14/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022] Open
Abstract
We have previously reported the 2D PAGE-based proteomic profiling of a prospective cohort of 78 triple negative breast cancer (TNBC) patients, and the establishment of a cumulative TNBC protein database. Analysis of this database identified a number of proteins as being specifically overexpressed in TNBC samples. One such protein was D-3-phosphoglycerate dehydrogenase (Phgdh), a candidate oncogene. We analysed expression of Phgdh in normal and TNBC mammary tissue samples by 2D gel-based proteomics and immunohistochemistry (IHC), and show here that high-level expression of Phgdh in mammary epithelial cells is primarily associated with cell lineage, as we found that Phgdh expression was predominant in CK5-positive cells, normal as well as malignant, thus identifying an association of this protein with the basal phenotype. Quantitative IHC analysis of Phgdh expression in normal breast tissue showed high-level expression of Phgdh in normal CK5-positive mammary epithelial cells, indicating that expression of this protein was not associated with malignancy, but rather with cell lineage. However, proteomic profiling of Phgdh showed it to be expressed in two major protein forms, and that the ratio of expression between these variants was associated with malignancy. Overexpression of Phgdh in CK5-positive cell lineages, and differential protein isoform expression, was additionally found in other tissues and cancer types, suggesting that overexpression of Phgdh is generally associated with CK5 cells, and that oncogenic function may be determined by isoform expression.
Collapse
Affiliation(s)
- Irina Gromova
- Cancer Proteomics, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark
| | - Pavel Gromov
- Cancer Proteomics, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark
| | - Naoko Honma
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Sudha Kumar
- Department of Pathology, Yale University Medical School, New Haven, USA
| | - David Rimm
- Department of Pathology, Yale University Medical School, New Haven, USA
| | - Maj-Lis Møller Talman
- Department of Pathology, The Centre of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - Vera Timmermans Wielenga
- Department of Pathology, The Centre of Diagnostic Investigations, Copenhagen University Hospital, Denmark
| | - José M A Moreira
- Danish Centre for Translational Breast Cancer Research (DCTB), Copenhagen, Denmark; Section for Molecular Disease Biology and Sino-Danish Breast Cancer Research Centre, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
29
|
Liu J, Xiao Y, Wei W, Guo JX, Liu YC, Huang XH, Zhang RX, Wu YJ, Zhou J. Clinical efficacy of administering oxaliplatin combined with S-1 in the treatment of advanced triple-negative breast cancer. Exp Ther Med 2015; 10:379-385. [PMID: 26170966 DOI: 10.3892/etm.2015.2489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/01/2015] [Indexed: 01/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not amenable to current targeted therapies and carries a poor prognosis; however, a specific systemic regimen cannot yet be recommended. The optimal duration of oxaliplatin (OXA) and S-1 combinatorial chemotherapy in patients with advanced breast cancer is not currently known and is likely to be patient-specific based on efficacy and toxicity. In the present study, 52 patients with advanced TNBC received OXA and S-1 chemotherapy. The efficacy and toxicity were observed. The results showed that the median number of regimens was 4 (range 2-6). The therapeutic efficacy was evaluated in all patients. The complete response, partial response, overall response and disease control rates were 3.8, 30.8, 34.6 and 69.2%, respectively. Four patients were lost to follow-up, and the median follow-up time was 13.7 months. The median progression-free survival time was 6.7 months [95% confidence interval (CI), 4.5-9.0] and the median overall survival (OS) time was 13.3 months (95% CI, 9.1-17.5). From the subgroup analysis, it was found that the median OS time of patients with stage IV disease and ≥2 metastases was significantly shorter than that of patients with stage IIIC disease and only 1 metastasis [11.3 vs. 22.7 months, P=0.010 (stage IV vs. stage IIC); 11.3 vs. 15.7 months, P=0.048 (≥2 vs. 1 metastasis)]. The main grade 3/4 toxic effects were neutropenia (11.5%), nausea (7.7%) and nerve toxicity (3.8%). The other toxic effects were mainly of grades 1-2 and included diarrhea, liver dysfunction, stomatitis, anemia and hand-foot syndrome. In conclusion, OXA combined with S-1 is an effective and tolerable regimen for the treatment of patients with advanced TNBC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Yang Xiao
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Wei Wei
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Jian-Xiong Guo
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Yang-Chen Liu
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Xiao-Hong Huang
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Rong-Xia Zhang
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Yi-Jia Wu
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Juan Zhou
- Department of Oncology, Taixing People's Hospital, Medical School of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| |
Collapse
|
30
|
Hill JJ, Tremblay TL, Fauteux F, Li J, Wang E, Aguilar-Mahecha A, Basik M, O'Connor-McCourt M. Glycoproteomic comparison of clinical triple-negative and luminal breast tumors. J Proteome Res 2015; 14:1376-88. [PMID: 25658377 DOI: 10.1021/pr500987r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triple-negative (TN) breast cancer accounts for ∼ 15% of breast cancers and is characterized by a high likelihood of relapse and a lack of targeted therapies. In contrast, luminal-type tumors that express the estrogen and progesterone receptors (ER+/PR+) and lack expression of human epidermal growth factor receptor 2 (Her2-) are treated with targeted hormonal therapy and carry a better prognosis. To identify potential targets for the development of future therapeutics aimed specifically at TN breast cancers, we have used a hydrazide-based glycoproteomic workflow to compare protein expression in clinical tumors from nine TN (Her2-/ER-/PR-) and nine luminal (Her2-/ER+/PR+) patients. Using a label-free LC-MS based approach, we identified and quantified 2264 proteins. Of these, 90 proteins were more highly expressed and 86 proteins were underexpressed in the TN tumors relative to the luminal tumors. The expression level of four of these potential targets was verified in the original set of tumors by Western blot and correlated well with our mass-spectrometry-based quantification. Furthermore, 30% of the proteins differentially expressed between luminal and TN tumors were validated in a larger cohort of 406 TN and 469 luminal tumors through corresponding differences in their mRNA expression in publically available microarray data. A group of 29 of these differentially expressed proteins was shown to correctly classify 88% of TN and luminal tumors using microarray data of their associated mRNA levels. Interestingly, even within a group of TN breast cancer patients, the expression levels of these same mRNAs were able to significantly predict patient survival, suggesting that these proteins play a role in the aggressiveness seen in TN tumors. This study provides a comprehensive list of potential targets for the development of diagnostic and therapeutic agents specifically aimed at treating TN breast cancer and demonstrates the utility of using publicly available microarray data to further prioritize potential targets.
Collapse
Affiliation(s)
- Jennifer J Hill
- Human Health Therapeutics, National Research Council Canada , 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Karagoz K, Sinha R, Arga KY. Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:115-30. [PMID: 25611337 DOI: 10.1089/omi.2014.0135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Triple negative breast cancer (TNBC) represents approximately 15% of breast cancers and is characterized by lack of expression of both estrogen receptor (ER) and progesterone receptor (PR), together with absence of human epidermal growth factor 2 (HER2). TNBC has attracted considerable attention due to its aggressiveness such as large tumor size, high proliferation rate, and metastasis. The absence of clinically efficient molecular targets is of great concern in treatment of patients with TNBC. In light of the complexity of TNBC, we applied a systematic and integrative transcriptomics and interactomics approach utilizing transcriptional regulatory and protein-protein interaction networks to discover putative transcriptional control mechanisms of TNBC. To this end, we identified TNBC-driven molecular pathways such as the Janus kinase-signal transducers, and activators of transcription (JAK-STAT) and tumor necrosis factor (TNF) signaling pathways. The multi-omics molecular target and biomarker discovery approach presented here can offer ways forward on novel diagnostics and potentially help to design personalized therapeutics for TNBC in the future.
Collapse
Affiliation(s)
- Kubra Karagoz
- 1 Department of Bioengineering, Marmara University , Istanbul, Turkey
| | | | | |
Collapse
|
32
|
Abstract
In 2007, three scientists, Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies, received the Nobel Prize in Physiology or Medicine for their contributions of introducing specific gene modifications into mice. This technology, commonly referred to as gene targeting or knockout, has proven to be a powerful means for precisely manipulating the mammalian genome and has generated great impacts on virtually all phases of mammalian biology and basic biomedical research. Of note, germline mutations of many genes, especially tumor suppressors, often result in lethality during embryonic development or at developmental stages before tumor formation. This obstacle has been effectively overcome by the use of conditional knockout technology in conjunction with Cre-LoxP- or Flp-Frt-mediated temporal and/or spatial systems to generate genetic switches for precise DNA recombination. Currently, numerous conditional knockout mouse models have been successfully generated and applied in studying tumor initiation, progression, and metastasis. This review summarizes some conditional mutant mouse models that are widely used in cancer research and our understanding of the possible mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
33
|
Koletsa T, Stavridi F, Bobos M, Kostopoulos I, Kotoula V, Eleftheraki AG, Konstantopoulou I, Papadimitriou C, Batistatou A, Gogas H, Koutras A, Skarlos DV, Pentheroudakis G, Efstratiou I, Pectasides D, Fountzilas G. alphaB-crystallin is a marker of aggressive breast cancer behavior but does not independently predict for patient outcome: a combined analysis of two randomized studies. BMC Clin Pathol 2014; 14:28. [PMID: 24987308 PMCID: PMC4077639 DOI: 10.1186/1472-6890-14-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 06/12/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND alphaB-crystallin is a small heat shock protein that has recently been characterized as an oncoprotein correlating with the basal core phenotype and with negative prognostic factors in breast carcinomas. The purpose of this study was to evaluate alphaB-crystallin with respect to clinicopathological parameters and the outcome of patients with operable high-risk breast cancer. METHODS A total of 940 tumors were examined, derived from an equal number of patients who had participated in two randomized clinical trials (paclitaxel-containing regimen in 793 cases). Immunohistochemistry for ER, PgR, HER2, Ki67, CK5, CK14, CK17, EGFR, alphaB-crystallin, BRCA1 and p53 was performed. BRCA1 mutation data were available in 89 cases. RESULTS alphaβ-crystallin was expressed in 170 cases (18.1%) and more frequently in triple-negative breast carcinomas (TNBC) (45% vs. 14.5% non-TNBC, p < 0.001). alphaB-crystallin protein expression was significantly associated with high Ki67 (Pearson chi-square test, p < 0.001), p53 (p = 0.002) and basal cytokeratin protein expression (p < 0.001), BRCA1 mutations (p = 0.045) and negative ER (p < 0.001) and PgR (p < 0.001). Its overexpression, defined as >30% positive neoplastic cells, was associated with adverse overall survival (Wald's p = 0.046). However, alphaB-crystallin was not an independent prognostic factor upon multivariate analysis. No interaction between taxane-based therapy and aβ-crystallin expression was observed. CONCLUSIONS In operable high-risk breast cancer, alphaB-crystallin protein expression is associated with poor prognostic features indicating aggressive tumor behavior, but it does not seem to have an independent impact on patient survival or to interfere with taxane-based therapy. TRIAL REGISTRATIONS ACTRN12611000506998 (HE10/97 trial) and ACTRN12609001036202 (HE10/00 trial).
Collapse
Affiliation(s)
- Triantafyllia Koletsa
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, University Campus, 54124 Thessaloniki, Greece
| | - Flora Stavridi
- Third Department of Medical Oncology, "Hygeia" Hospital, Athens, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Ioannis Kostopoulos
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, University Campus, 54124 Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, University Campus, 54124 Thessaloniki, Greece ; Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | | | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research NCSR Demokritos, Athens, Greece
| | - Christos Papadimitriou
- Department of Clinical Therapeutics, "Alexandra" Hospital, University of Athens School of Medicine, Athens, Greece
| | - Anna Batistatou
- Department of Pathology, Ioannina University Hospital, Ioannina, Greece
| | - Helen Gogas
- First Department of Medicine, "Laiko" General Hospital, University of Athens, Medical School, Athens, Greece
| | - Angelos Koutras
- Department of Medicine, Division of Oncology, University Hospital, University of Patras Medical School, Patras, Greece
| | | | | | | | - Dimitrios Pectasides
- Second Department of Internal Medicine, Oncology Section, "Hippokration" Hospital, Athens, Greece
| | - George Fountzilas
- Department of Medical Oncology, "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| |
Collapse
|
34
|
Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, Flouriot G. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol 2014; 390:34-44. [PMID: 24721635 DOI: 10.1016/j.mce.2014.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alpha (ERα) is generally considered to be a good prognostic marker because almost 70% of ERα-positive tumors respond to anti-hormone therapies. Unfortunately, during cancer progression, mammary tumors can escape from estrogen control, resulting in resistance to treatment. In this study, we demonstrate that activation of the actin/megakaryoblastic leukemia 1 (MKL1) signaling pathway promotes the hormonal escape of estrogen-sensitive breast cancer cell lines. The actin/MKL1 signaling pathway is silenced in differentiated ERα-positive breast cancer MCF-7 and T47D cell lines and active in ERα-negative HMT-3522 T4-2 and MDA-MB-231 breast cancer cells, which have undergone epithelial-mesenchymal transition. We showed that MKL1 activation in MCF-7 cells, either by modulating actin dynamics or using MKL1 mutants, down-regulates ERα expression and abolishes E2-dependent cell growth. Interestingly, the constitutively active form of MKL1 represses PR and HER2 expression in these cells and increases the expression of HB-EGF, TGFβ, and amphiregulin growth factors in an E2-independent manner. The resulting expression profile (ER-, PR-, HER2-) typically corresponds to the triple-negative breast cancer expression profile.
Collapse
MESH Headings
- Actins/metabolism
- Antineoplastic Agents, Hormonal/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Estradiol/physiology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Humans
- MCF-7 Cells
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/metabolism
- Oncogene Proteins, Fusion/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Signal Transduction
- Tamoxifen/pharmacology
- Trans-Activators
- Transcription, Genetic
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Antoine Boudot
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Denis Habauzit
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Frederic Percevault
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Florence Demay
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Farzad Pakdel
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France
| | - Gilles Flouriot
- University of Rennes 1, Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Rennes, France.
| |
Collapse
|
35
|
Abstract
Germline mutations of human breast cancer-associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. In mice, over 20 distinct mutations, including null, hypomorphic, isoform, conditional, and point mutations, have been created to study functions of Brca1 in mammary development and tumorigenesis. Analyses using these mutant mice have yielded an enormous amount of information that greatly facilitates our understanding of the gender- and tissue-specific tumor suppressor functions of BRCA1, as well as enriches our insights into applying these preclinical models of disease to breast cancer research. Here, we review features of these mutant mice and their applications to cancer prevention and therapeutic treatment.
Collapse
|
36
|
Increase in ezrin expression from benign to malignant breast tumours. Cell Oncol (Dordr) 2013; 36:485-91. [DOI: 10.1007/s13402-013-0153-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 10/26/2022] Open
|
37
|
Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, Phipps C, Kopparam J, Oh M, Basu S, Kohandel M, Sengupta S. Sequential application of a cytotoxic nanoparticle and a PI3K inhibitor enhances antitumor efficacy. Cancer Res 2013; 74:675-685. [PMID: 24121494 DOI: 10.1158/0008-5472.can-12-3783] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanomedicines that preferentially deploy cytotoxic agents to tumors and molecular targeted therapeutics that inhibit specific aberrant oncogenic drivers are emerging as the new paradigm for the management of cancer. While combination therapies are a mainstay of cancer chemotherapy, few studies have addressed the combination of nanomedicines and molecular targeted therapeutics. Furthermore, limited knowledge exists on the impact of sequencing of such therapeutics and nanomedicines on the antitumor outcome. Here, we engineered a supramolecular cis-platinum nanoparticle, which induced apoptosis in breast cancer cells but also elicited prosurvival signaling via an EGF receptor/phosphoinositide 3-kinase (PI3K) pathway. A combination of mathematical modeling and in vitro and in vivo validation using a pharmacologic inhibitor of PI3K, PI828, demonstrate that administration of PI828 following treatment with the supramolecular cis-platinum nanoparticle results in enhanced antitumor efficacy in breast cancer as compared with when the sequence is reversed or when the two treatments are administered simultaneously. This study addresses, for the first time, the impact of drug sequencing in the case of a combination of a nanomedicine and a targeted therapeutic. Furthermore, our results indicate that a rational combination of cis-platinum nanoparticles and a PI3K-targeted therapeutic can emerge as a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Ambarish Pandey
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Ashish Kulkarni
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Bhaskar Roy
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Aaron Goldman
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Sasmit Sarangi
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Poulomi Sengupta
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Colin Phipps
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jawahar Kopparam
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Michael Oh
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Sudipta Basu
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.,Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, ON, M5T 3J1, Canada
| | - Shiladitya Sengupta
- Laboratory for Nanomedicine, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital. Department of Medicine, Harvard Medical School. Boston, MA, USA
| |
Collapse
|
38
|
Survival Analysis Based on Clinicopathological Data from a Single Institution: Chemotherapy Intensity Would Be Enhanced in Patients with Positive Hormone Receptors and Positive HER2 in China Who Cannot Afford the Target Therapy. ISRN ONCOLOGY 2013; 2013:606398. [PMID: 23984097 PMCID: PMC3747482 DOI: 10.1155/2013/606398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022]
Abstract
Background. Immunohistochemical markers were often used to classify breast cancer into subtypes. The aim of this study was to estimate death and tumor progression for patients with the major subtypes of breast cancer as classified using immunohistochemical assay and to investigate the patterns of benefit from the therapies over the past years. Methods. The study population included primary, operable 199 invasive ductal breast cancer patients, with the median age of 51.1 years old. All patients underwent local and/or systemic treatments. The clinicopathological characteristics and clinical outcomes were retrospectively reviewed. The expression of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and Ki67 was analyzed by immunohistochemistry. All patients were classified into the following categories: luminal A, luminal B, HER2 overexpression, and triple-negative subtypes.
Result. The median follow-up time was 33 months. Luminal A tumors had the lowest rate of tumor progression (0%, P = 0.006), while luminal B, HER2 over-expression, and triple-negative subtypes were associated with an increased risk of tumor progression (15.4, 19.2, 15.4%). Clinicopathological subtypes retained independent prognostic significance (P = 0.008). There were significant differences by Cox model analyzed in age, menopause, lymph node metastasis, and HER2 for the event of death and tumor progression (P < 0.05), and there were significant differences only in chemotherapy for the event, respectively (P < 0.05). Conclusion. Clinicopathological subtypes of breast cancer could robustly identify the risk of death and tumor progression and were significant in making therapeutic decision. HER2 was the important poor indicator. The chemotherapy intensity would be enhanced for patients with luminal B, especially for HER2 over-expression subgroup.
Collapse
|
39
|
P2Y12 receptor inhibition augments cytotoxic effects of cisplatin in breast cancer. Med Oncol 2013; 30:567. [PMID: 23568163 DOI: 10.1007/s12032-013-0567-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/30/2013] [Indexed: 12/11/2022]
Abstract
Expression of P2Y12 receptors has been documented in some cancer cell lines like C6 glioma, renal carcinoma and colon carcinoma. However, its direct role in altering response to chemotherapeutics has not been studied. In this study, we characterize the expression of P2Y12 receptor in breast cancer cell lines and evaluate its role in enhancing the cytotoxic effects of cisplatin. We observed a significant upregulation in P2Y12 expression in 4T1 breast cancer cell line with cisplatin treatment. Co-administration of P2Y12 inhibitor with cisplatin resulted in significantly higher cytotoxic response in 4T1 cancer cell line. This was mediated by HIF1α-dependent upregulation of cellular apoptotic pathways. These findings identify P2Y12 receptor as a potential target to enhance antitumor efficacy of chemotherapeutic agents like cisplatin.
Collapse
|
40
|
Cabezón T, Gromova I, Gromov P, Serizawa R, Timmermans Wielenga V, Kroman N, Celis JE, Moreira JMA. Proteomic profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4 as potential therapeutic target in estrogen receptor negative breast cancer. Mol Cell Proteomics 2012; 12:381-94. [PMID: 23172894 DOI: 10.1074/mcp.m112.019786] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER)(-) and human epidermal growth factor receptor 2 (Her2)-positive breast tumors. However, a significant proportion of primary breast cancers are negative for ER, progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC) group. Women with TNBC have a poor prognosis because of the aggressive nature of these tumors and current lack of suitable targeted therapies. As a consequence, the identification of novel relevant protein targets for this group of patients is of great importance. Using a systematic two dimensional (2D) gel-based proteomic profiling strategy, applied to the analysis of fresh TNBC tissue biopsies, in combination with a three-tier orthogonal technology (two dimensional PAGE/silver staining coupled with MS, two dimensional Western blotting, and immunohistochemistry) approach, we aimed to identify targetable protein markers that were present in a significant fraction of samples and that could define therapy-amenable sub-groups of TNBCs. We present here our results, including a large cumulative database of proteins based on the analysis of 78 TNBCs, and the identification and validation of one specific protein, Mage-A4, which was expressed in a significant fraction of TNBC and Her2-positive/ER negative lesions. The high level expression of Mage-A4 in the tumors studied allowed the detection of the protein in the tumor interstitial fluids as well as in sera. The existence of immunotherapeutics approaches specifically targeting this protein, or Mage-A protein family members, and the fact that we were able to detect its presence in serum suggest novel management options for TNBC and human epidermal growth factor receptor 2 positive/estrogen receptor negative patients bearing Mage-A4 positive tumors.
Collapse
Affiliation(s)
- Teresa Cabezón
- Department of Proteomics in Cancer, Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Craig DW, O'Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, Wong S, Dinh J, Christoforides A, Blum JL, Aitelli CL, Osborne CR, Izatt T, Kurdoglu A, Baker A, Koeman J, Barbacioru C, Sakarya O, De La Vega FM, Siddiqui A, Hoang L, Billings PR, Salhia B, Tolcher AW, Trent JM, Mousses S, Von Hoff D, Carpten JD. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 2012; 12:104-16. [PMID: 23171949 DOI: 10.1158/1535-7163.mct-12-0781] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer.
Collapse
Affiliation(s)
- David W Craig
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hypoxia-induced protein CAIX is associated with somatic loss of BRCA1 protein and pathway activity in triple negative breast cancer. Breast Cancer Res Treat 2012; 136:67-75. [PMID: 22976806 DOI: 10.1007/s10549-012-2232-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/23/2012] [Indexed: 01/03/2023]
Abstract
The purpose of this study is to explore the relationship between tumor hypoxia assessed by CA IX protein expression and loss of BRCA1 function in triple negative breast cancer (TNBC). Protein expression of CA IX and BRCA1 was evaluated by AQUA™ technology on two breast cancer cohorts: an unselected cohort of 637 breast cancer patients and a TNBC cohort of 120 patients. Transcriptional profiling was performed on FFPE samples from the TNBC cohort to evaluate a gene expression signature associated with BRCA1 mutation (van't Veer et al., Nature 415(6871):530-536, 2002). CA IX is expressed in 7 % of the unselected breast cancer cohort and in 25 % of the TNBCs and is significantly associated with the triple negative phenotype. CA IX protein expression and BRCA1 protein expression are inversely correlated in both cohorts. Patients expressing high levels of CA IX show significantly worse overall survival (p = 0.02). Importantly, high CA IX protein expression occurs in patients who show the BRCA1 mutant signature and low levels of BRCA1 protein. These data suggest that elevated CA IX protein in TNBC is associated with a BRCA1 mutant signature and loss of BRCA1 function. CA IX may be a useful biomarker to identify triple negative patients with defective homologous recombination, who might benefit from PARP inhibitor therapy.
Collapse
|
43
|
Zhang X, Timmermann B, Samadi AK, Cohen MS. Withaferin a induces proteasome-dependent degradation of breast cancer susceptibility gene 1 and heat shock factor 1 proteins in breast cancer cells. ISRN BIOCHEMISTRY 2012; 2012:707586. [PMID: 25969759 PMCID: PMC4392979 DOI: 10.5402/2012/707586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to examine the regulation of prosurvival factors heat shock factor 1 (HSF1) and breast cancer susceptibility gene 1 (BRCA1) by a natural withanolide withaferin A (WA) in triple negative breast cancer cell lines MDA-MB-231 and BT20. Western analysis was used to examine alternations in HSF1 and BRCA1 protein levels following WA treatment. A protein synthesis inhibitor cycloheximide and a proteasome inhibitor MG132 were used to investigate the mechanisms of HSF1 and BRCA1 regulation by WA. It was found that WA induced a dose-dependent decrease in HSF1 and BRCA1 protein levels. Further analysis showed that levels of HSF1 and BRCA1 proteins decreased rapidly after WA treatment, and this was attributed to WA-induced denaturation of HSF1 and BRCA1 proteins and subsequent degradation via proteasome-dependent, and protein-synthesis dependent mechanism. In summary, WA induces denaturation and proteasomal degradation of HSF1 and BRCA1 proteins. Further studies are warranted to examine the contribution of HSF1 and BRCA1 depletion to the anticancer effects of WA in breast cancer.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Barbara Timmermann
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Abbas K Samadi
- Department of Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Mark S Cohen
- Department of Surgery, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
44
|
The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest New Drugs 2012; 30:1917-25. [PMID: 22821173 DOI: 10.1007/s10637-012-9859-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022]
Abstract
The fungal drug cordycepin (3-deoxyadenosine) is known to exert anti-tumor activities, preferentially by interfering with RNA synthesis. We have investigated the effect of cordycepin on human breast epithelial cell lines, ranging from non-malignant MCF10A cells to highly de-differentiated MDA-MB-435 cancer cells. Treatment of human breast cancer cells with cordycepin caused either apoptosis or persistent cell cycle arrest that was associated with reduced clonal growth of cordycepin-treated breast cancer cells. Highly de-differentiated breast cancer cell lines, such as MDA-MB-231 and MDA-MB-435, reacted more sensitive to cordycepin than less aggressive breast cancer cell lines (MCF7, T47D) or non-malignant breast epithelial cells (MCF10A), which poorly reacted to cordycepin. In cordycepin-sensitive breast cancer cells, a marked induction of the DNA damage response (DDR), including the phosphorylation of ATM, ATR, and histone γH2AX could be observed. These data indicate that cordycepin, which was believed to cause cancer cell death by inhibition of RNA synthesis, induces DNA double strand breaks in breast cancer cells. The genotoxic effect of cordycepin on breast cancer cells indicates a new mechanism of cordycepin-induced cancer cell death, and its activity against highly undifferentiated breast cancer cells provides a new perspective of how cordycepin may be used in the treatment of advanced breast cancer.
Collapse
|
45
|
Schuler M, Awada A, Harter P, Canon JL, Possinger K, Schmidt M, De Grève J, Neven P, Dirix L, Jonat W, Beckmann MW, Schütte J, Fasching PA, Gottschalk N, Besse-Hammer T, Fleischer F, Wind S, Uttenreuther-Fischer M, Piccart M, Harbeck N. A phase II trial to assess efficacy and safety of afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat 2012; 134:1149-59. [PMID: 22763464 PMCID: PMC3409367 DOI: 10.1007/s10549-012-2126-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 11/27/2022]
Abstract
Afatinib (BIBW 2992) is an ErbB-family blocker that irreversibly inhibits signaling from all relevant ErbB-family dimers. Afatinib has demonstrated preclinical activity in human epidermal growth factor receptor HER2 (ErbB2)-positive and triple-negative xenograft models of breast cancer, and clinical activity in phase I studies. This was a multicenter phase II study enrolling patients with HER2-negative metastatic breast cancer progressing following no more than three lines of chemotherapy. No prior epidermal growth factor receptor-targeted therapy was allowed. Patients received 50-mg afatinib once daily until disease progression. Tumor assessment was performed at every other 28-day treatment course. The primary endpoint was clinical benefit (CB) for ≥4 treatment courses in triple-negative (Cohort A) metastatic breast cancer (TNBC) and objective responses measured by Response Evaluation Criteria in Solid Tumors in patients with HER2-negative, estrogen receptor-positive, and/or progesterone receptor-positive breast cancer (Cohort B). Fifty patients received treatment, including 29 patients in Cohort A and 21 patients in Cohort B. No objective responses were observed in either cohort. Median progression-free survival was 7.4 and 7.7 weeks in Cohorts A and B, respectively. Three patients with TNBC had stable disease for ≥4 treatment courses, one of them for 12 courses (median 26.3 weeks; range 18.9–47.9 weeks). The most frequently observed afatinib-associated adverse events (AEs) were gastrointestinal and skin-related side effects, which were manageable by symptomatic treatment and dose reductions. Afatinib pharmacokinetics were comparable to those observed in previously reported phase I trials. In conclusion, afatinib had limited activity in HER2-negative breast cancer. AEs were generally manageable and mainly affected the skin and the gastrointestinal tract.
Collapse
Affiliation(s)
- Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Synthetic lethality of PARP inhibition in BRCA-network disrupted tumor cells is associated with interferon pathway activation and enhanced by interferon-γ. Apoptosis 2012; 17:691-701. [DOI: 10.1007/s10495-012-0707-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Johansson I, Aaltonen KE, Ebbesson A, Grabau D, Wigerup C, Hedenfalk I, Rydén L. Increased gene copy number of KIT and VEGFR2 at 4q12 in primary breast cancer is related to an aggressive phenotype and impaired prognosis. Genes Chromosomes Cancer 2011; 51:375-83. [DOI: 10.1002/gcc.21922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 01/25/2023] Open
|
48
|
Yu T, Bai Y. Improving gene expression data interpretation by finding latent factors that co-regulate gene modules with clinical factors. BMC Genomics 2011; 12:563. [PMID: 22087761 PMCID: PMC3282832 DOI: 10.1186/1471-2164-12-563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/16/2011] [Indexed: 12/31/2022] Open
Abstract
Background In the analysis of high-throughput data with a clinical outcome, researchers mostly focus on genes/proteins that show first-order relations with the clinical outcome. While this approach yields biomarkers and biological mechanisms that are easily interpretable, it may miss information that is important to the understanding of disease mechanism and/or treatment response. Here we test the hypothesis that unobserved factors can be mobilized by the living system to coordinate the response to the clinical factors. Results We developed a computational method named Guided Latent Factor Discovery (GLFD) to identify hidden factors that act in combination with the observed clinical factors to control gene modules. In simulation studies, the method recovered masked factors effectively. Using real microarray data, we demonstrate that the method identifies latent factors that are biologically relevant, and extracts more information than analyzing only the first-order response to the clinical outcome. Conclusions Finding latent factors using GLFD brings extra insight into the mechanisms of the disease/drug response. The R code of the method is available at http://userwww.service.emory.edu/~tyu8/GLFD.
Collapse
Affiliation(s)
- Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
49
|
Eiermann W, Bergh J, Cardoso F, Conte P, Crown J, Curtin NJ, Gligorov J, Gusterson B, Joensuu H, Linderholm BK, Martin M, Penault-Llorca F, Pestalozzi BC, Razis E, Sotiriou C, Tjulandin S, Viale G. Triple negative breast cancer: proposals for a pragmatic definition and implications for patient management and trial design. Breast 2011; 21:20-6. [PMID: 21983489 DOI: 10.1016/j.breast.2011.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/02/2011] [Accepted: 09/04/2011] [Indexed: 12/31/2022] Open
Abstract
In trials in triple negative breast cancer (TNBC), oestrogen and progesterone receptor negativity should be defined as < 1% positive cells. Negativity is a ratio of <2 between Her2 gene copy number and centromere of chromosome 17 or a copy number of 4 or less. In routine practice, immunohistochemistry is acceptable given stringent quality assurance. Triple negativity emerging after neoadjuvant treatment differs from primary TN and such patients should not enter TNBC trials. Patients relapsing with TN metastases should be eligible even if their primary was positive. Rare TN subtypes such as apocrine, adenoid-cystic and low-grade metaplastic tumours should be excluded. TN and basal-like (BL) signatures overlap but are not equivalent. Since the significance of basal cytokeratin or EGFR overexpression is not known and we lack validated assays, these features should not be used to subclassify TN tumours. Tissue collection in trials is mandatory so the effect on outcome of different tumour phenotypes and BRCA mutation can be explored. No prospective studies have established that TN tumours have particular sensitivity or resistance to any specific chemotherapy agent or radiation. TNBC patients should be treated according to tumour and clinical characteristics.
Collapse
Affiliation(s)
- W Eiermann
- Rotkreuzklinikum München GmbH, Frauenklinik, München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|