1
|
Alharbi HOA, Alshebremi M, Babiker AY, Rahmani AH. The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities. Biomolecules 2025; 15:151. [PMID: 39858545 PMCID: PMC11763763 DOI: 10.3390/biom15010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Quercetin, a flavonoid found in vegetables and fruits, has been extensively studied for its health benefits and disease management. Its role in the prevention of various pathogenesis has been well-documented, primarily through its ability to inhibit oxidative stress, inflammation, and enhance the endogenous antioxidant defense mechanisms. Electronic databases such as Google Scholar, Scopus, PubMed, Medline, and Web of Science were searched for information regarding quercetin and its role in various pathogeneses. The included literature comprised experimental studies, randomized controlled trials, and epidemiological studies related to quercetin, while editorials, case analyses, theses, and letters were excluded. It has been reported to have a wide range of health benefits including hepatoprotective, antidiabetic, anti-obesity, neuroprotective, cardioprotective, wound healing, antimicrobial, and immunomodulatory effects, achieved through the modulation of various biological activities. Additionally, numerous in vitro and in vivo studies have shown that quercetin's efficacies in cancer management involve inhibiting cell signaling pathways, such as inflammation, cell cycle, and angiogenesis, activating cell signaling pathways including tumor suppressor genes, and inducing apoptosis. This review aims to provide a comprehensive understanding of the health benefits of quercetin in various pathogeneses. Additionally, this review outlines the sources of quercetin, nanoformulations, and its applications in health management, along with key findings from important clinical trial studies. Limited clinical data regarding quercetin's safety and mechanism of action are available. It is important to conduct more clinical trials to gain a deeper understanding of the disease-preventive potential, mechanisms of action, safety, and optimal therapeutic dosages. Furthermore, more research based on nanoformulations should be performed to minimize/overcome the hindrance associated with bioavailability, rapid degradation, and toxicity.
Collapse
Affiliation(s)
| | | | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Pham ND, Nguyen THN, Vu NBD, Tran TNM, Pham BN, Le HS, Vo KH, Le XC, Tran LBH, Nguyen MH. Comparison of the radioprotective effects of the liposomal forms of five natural radioprotectants in alleviating the adverse effects of ionising irradiation on human lymphocytes and skin cells in radiotherapy. J Microencapsul 2023; 40:613-629. [PMID: 37815151 DOI: 10.1080/02652048.2023.2268705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
This study aims to evaluate the radioprotective effects of liposomes encapsulating curcumin (Lip-CUR), silibinin (Lip-SIL), α-tocopherol (Lip-TOC), quercetin (Lip-QUE) and resveratrol (Lip-RES) in alleviating the adverse effects of ionising irradiation on human lymphoctyes and skin cells in radiotherapy. Liposomes encapsulating the above natural radioprotectants (Lip-NRPs) were prepared by the film hydration method combined with sonication. Their radioprotective effects for the cells against X-irradiation was evaluated using trypan-blue assay and γ-H2AX assay. All prepared Lip-NRPs had a mean diameter less than 240 nm, polydispersity index less than 0.32, and zeta potential more than -23 mV. Among them, the radioprotective effect of Lip-RES was lowest, while that of Lip-QUE was highest. Lip-SIL also exhibited a high radioprotective effect despite its low DPPH-radical scavenging activity (12.9%). The radioprotective effects of Lip-NRPs do not solely depend on the free radical scavenging activity of NRPs but also on their ability to activate cellular mechanisms.
Collapse
Affiliation(s)
- Ngoc-Duy Pham
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | | | - Ngoc-Bich-Dao Vu
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Thi-Ngoc-Mai Tran
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Bao-Ngoc Pham
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Hoang-Sinh Le
- VN-UK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | - Kim-Hai Vo
- Department of Health of Lam-Dong Province, Da Lat, Vietnam
| | - Xuan-Cuong Le
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| | - Le-Bao-Ha Tran
- Laboratory of Tissue Engineering and Biomedical Materials, University of Science, Ho Chi Minh City, Vietnam
| | - Minh-Hiep Nguyen
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Da Lat, Vietnam
| |
Collapse
|
3
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Synowiec E, Sliwinski T, Stela M, Bijak M. DNA Damage Induced by T-2 Mycotoxin in Human Skin Fibroblast Cell Line-Hs68. Int J Mol Sci 2023; 24:14458. [PMID: 37833905 PMCID: PMC10572149 DOI: 10.3390/ijms241914458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin's unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast-Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 μM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes-LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| |
Collapse
|
4
|
Mitochondrial Damage Induced by T-2 Mycotoxin on Human Skin-Fibroblast Hs68 Cell Line. Molecules 2023; 28:molecules28052408. [PMID: 36903658 PMCID: PMC10005480 DOI: 10.3390/molecules28052408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.
Collapse
|
5
|
Remigante A, Spinelli S, Straface E, Gambardella L, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. Antioxidant Activity of Quercetin in a H2O2-Induced Oxidative Stress Model in Red Blood Cells: Functional Role of Band 3 Protein. Int J Mol Sci 2022; 23:ijms231910991. [PMID: 36232293 PMCID: PMC9569818 DOI: 10.3390/ijms231910991] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022] Open
Abstract
During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 μM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42− uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 μM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology, Papardo Hospital, 98122 Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology, Papardo Hospital, 98122 Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Correspondence:
| |
Collapse
|
6
|
Oxidation Stress as a Mechanism of Aging in Human Erythrocytes: Protective Effect of Quercetin. Int J Mol Sci 2022; 23:ijms23147781. [PMID: 35887126 PMCID: PMC9323120 DOI: 10.3390/ijms23147781] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
Aging is a multi-factorial process developing through a complex net of interactions between biological and cellular mechanisms and it involves oxidative stress (OS) as well as protein glycation. The aim of the present work was to verify the protective role of Quercetin (Q), a polyphenolic flavonoid compound, in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. The anion-exchange capability through the Band 3 protein (B3p) measured by the rate constant of the SO42− uptake, thiobarbituric acid reactive substances (TBARS) levels—a marker of lipid peroxidation—total sulfhydryl (-SH) groups, glycated hemoglobin (A1c), and a reduced glutathione/oxidized glutathione (GSH-GSSG) ratio were determined following the exposure of erythrocytes to 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µM Q. The results confirmed that d-Gal activated OS pathways in human erythrocytes, affecting both membrane lipids and proteins, as denoted by increased TBARS levels and decreased total sulfhydryl groups, respectively. In addition, d-Gal led to an acceleration of the rate constant of the SO42− uptake through the B3p. Both the alteration of the B3p function and oxidative damage have been improved by pre-treatment with Q, which preferentially ameliorated lipid peroxidation rather than protein oxidation. Moreover, Q prevented glycated A1c formation, while no protective effect on the endogenous antioxidant system (GSH-GSSG) was observed. These findings suggest that the B3p could be a novel potential target of antioxidant treatments to counteract aging-related disturbances. Further studies are needed to confirm the possible role of Q in pharmacological strategies against aging.
Collapse
|
7
|
Janik-Karpinska E, Ceremuga M, Wieckowska M, Szyposzynska M, Niemcewicz M, Synowiec E, Sliwinski T, Bijak M. Direct T-2 Toxicity on Human Skin-Fibroblast Hs68 Cell Line-In Vitro Study. Int J Mol Sci 2022; 23:ijms23094929. [PMID: 35563320 PMCID: PMC9105691 DOI: 10.3390/ijms23094929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
T-2 toxin is produced by different Fusarium species, and it can infect crops such as wheat, barley, and corn. It is known that the T-2 toxin induces various forms of toxicity such as hepatotoxicity, nephrotoxicity, immunotoxicity, and neurotoxicity. In addition, T-2 toxin possesses a strong dermal irritation effect and can be absorbed even through intact skin. As a dermal irritant agent, it is estimated to be 400 times more toxic than sulfur mustard. Toxic effects can include redness, blistering, and necrosis, but the molecular mechanism of these effects still remains unknown. This in vitro study focused on the direct toxicity of T-2 toxin on human skin-fibroblast Hs68 cell line. As a result, the level of toxicity of T-2 toxin and its cytotoxic mechanism of action was determined. In cytotoxicity assays, the dose and time-dependent cytotoxic effect of T-2 on a cell line was observed. Bioluminometry results showed that relative levels of ATP in treated cells were decreased. Further analysis of the toxin's impact on the induction of apoptosis and necrosis processes showed the significant predominance of PI-stained cells, lack of caspase 3/7 activity, and increased concentration of released Human Cytokeratin 18 in treated cells, which indicates the necrosis process. In conclusion, the results of an in vitro human skin fibroblast model revealed for the first time that the T-2 toxin induces necrosis as a toxicity effect. These results provide new insight into the toxic T-2 mechanism on the skin.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Magdalena Wieckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
- Correspondence:
| |
Collapse
|
8
|
López-Canizales AM, Angulo-Molina A, Garibay-Escobar A, Silva-Campa E, Mendez-Rojas MA, Santacruz-Gómez K, Acosta-Elías M, Castañeda-Medina B, Soto-Puebla D, Álvarez-Bajo O, Burgara-Estrella A, Pedroza-Montero M. Nanoscale Changes on RBC Membrane Induced by Storage and Ionizing Radiation: A Mini-Review. Front Physiol 2021; 12:669455. [PMID: 34149450 PMCID: PMC8213202 DOI: 10.3389/fphys.2021.669455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
The storage lesions and the irradiation of blood cellular components for medical procedures in blood banks are events that may induce nanochanges in the membrane of red blood cells (RBCs). Alterations, such as the formation of pores and vesicles, reduce flexibility and compromise the overall erythrocyte integrity. This review discusses the alterations on erythrocytic lipid membrane bilayer through their characterization by confocal scanning microscopy, Raman, scanning electron microscopy, and atomic force microscopy techniques. The interrelated experimental results may address and shed light on the correlation of biomechanical and biochemical transformations induced in the membrane and cytoskeleton of stored and gamma-irradiated RBC. To highlight the main advantages of combining these experimental techniques simultaneously or sequentially, we discuss how those outcomes observed at micro- and nanoscale cell levels are useful as biomarkers of cell aging and storage damage.
Collapse
Affiliation(s)
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Miguel A. Mendez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas, Puebla, Mexico
| | | | - Mónica Acosta-Elías
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | - Diego Soto-Puebla
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | - Osiris Álvarez-Bajo
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | |
Collapse
|
9
|
Voitenko GN, Kalashnikov AA, Kurdil NV, Savytskyi VL, Ustinova LA, Lutsenko OG. PROSPECTS FOR CREATION OF RADIOPROTECTIVE MEANS BASED ON NATURAL POLYPHENOLS AND POLYSACCHARIDES. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:309-320. [PMID: 33361843 DOI: 10.33145/2304-8336-2020-25-309-320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Indexed: 11/10/2022]
Abstract
The high level of nuclear radiation threats in the modern world determines the need to find new means of pharmacological protection of the health of military personnel and civilians from the effects of ionizing radiation. Of particular scientific interest in this aspect are natural polyphenols as a promising basis for the development of newdrugs, radiomodifiers. OBJECTIVE Justification of the prospects of creating radioprotective agents based on compositions of plantpolyphenolic substances (PPS) and polysaccharides. MATERIAL AND METHODS The experiments were performed on 130 laboratory white rats-male of Wistar line sexually mature weighting 180-240 g. Animals once received a total X-ray dose equivalent to 4.25 Gy. The effects ofquercetin and patulaten to the processes of reparative regeneration under conditions of X-ray irradiation andagainst the background of butadione suppression were investigated. Indicators in the study groups were compared using the Student's t-test for independent samples; the differences were considered statistically significantat p < 0.05. RESULTS The various biological properties of quercetin, in particular, the ability to bind hydroxyl radicals, is thepotential for developing radioprotective agents based on it. At the first stage of the study, the effect of PPS andtheir compositions with polysaccharides on reparative regeneration was studied against the background of its suppression in intact and irradiated animals. With the oral administration of PPS and their compositions with pectin towhite rats, 30 minutes before the administration of butadion, an increase in the processes of reparative regeneration in the cells of the covering epitheliumof the esophagus was observed. At the same time, quercetin granulescaused the most expressive effect, which increased the statistically significant value of the mitotic index by 78.5 %in relation to the group of animals injected with butadion. At the second stage of the study, the effect of polyphenolic substances and their compositions with pectin on the processes of reparative regeneration in intact and irradiated white rats was studied on a model of linear skin wounds. The prophylactic administration of quercetin granules and the treatment of wounds with 20 % sterile quercetin gel significantly accelerated the healing process.Experimental data indicate that quercetin granules have the ability to stimulate the processes of reparative regeneration, quercetin showed the greatest efficiency with simultaneous use inside and topically. CONCLUSIONS The research results indicate the promise of developing radioprotective drugs that can stimulatereparative regeneration processes based on compositions of plant polyphenolic substances and polysaccharides invarious qualitative and quantitative ratios.
Collapse
Affiliation(s)
- G N Voitenko
- L. I. Medved's Scientific Center for Preventive Toxicology, Food and Chemical Safety of the Ministry of Health of Ukraine, Institute of Experimental Toxicology and Biomedical Research, 6 Heroiv Oborony St., Kyiv, 03680, Ukraine
| | - A A Kalashnikov
- L. I. Medved's Scientific Center for Preventive Toxicology, Food and Chemical Safety of the Ministry of Health of Ukraine, Institute of Experimental Toxicology and Biomedical Research, 6 Heroiv Oborony St., Kyiv, 03680, Ukraine
| | - N V Kurdil
- L. I. Medved's Scientific Center for Preventive Toxicology, Food and Chemical Safety of the Ministry of Health of Ukraine, Institute of Experimental Toxicology and Biomedical Research, 6 Heroiv Oborony St., Kyiv, 03680, Ukraine
| | - V L Savytskyi
- Ukrainian Military Medical Academy, Department of Military Toxicology, Radiology and Medical
| | - L A Ustinova
- Ukrainian Military Medical Academy, Department of Military Toxicology, Radiology and Medical
| | - O G Lutsenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|
10
|
Melittin-A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cells. Biomolecules 2020; 10:biom10020247. [PMID: 32041197 PMCID: PMC7072249 DOI: 10.3390/biom10020247] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Bee venom is a very complex mixture produced and secreted by the honeybee (Apis mellifera). Melittin is a major component of bee venom that accounts for about 52% of its dry mass. A vast number of studies have been dedicated to the effects of melittin’s regulation of apoptosis and to the factors that induce apoptosis in various types of cancer such as breast, ovarian, prostate, lung. The latest evidence indicates its potential as a therapeutic agent in the treatment of leukaemia. The aim of our present study is to evaluate melittin’s ability to induce apoptosis in leukaemia cell lines of different origin acute lymphoblastic leukaemia (CCRF-CEM) and chronic myelogenous leukaemia (K-562). We demonstrated that melittin strongly reduced cell viability in both leukaemia cell lines but not in physiological peripheral blood mononuclear cells (PMBCs). Subsequent estimated parameters (mitochondrial membrane potential, Annexin V binding and Caspases 3/7 activity) clearly demonstrated that melittin induced apoptosis in leukaemia cells. This is a very important step for research into the development of new potential anti-leukaemia as well as anticancer therapies. Further analyses on the molecular level have been also planned (analysis of proapoptotic genes expression and DNA damages) for our next research project, which will also focus on melittin.
Collapse
|
11
|
Safety of Aqueous Extract of Calea ternifolia Used in Mexican Traditional Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:7478152. [PMID: 31949470 PMCID: PMC6944969 DOI: 10.1155/2019/7478152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022]
Abstract
There is a trend to use medicinal plants for primary medical care or as dietary supplements; however, the safety of many of these plants has not been studied. The objective of this work was to determine the toxic effect of the aqueous extract of Calea ternifolia (C. zacatechichi), known popularly as “dream herb” in vivo and in vitro in order to validate its safety. In vivo, the extract had moderate toxicity on A. salina. In vitro, the extract induced eryptosis of 73% at a concentration of 100 μg·mL−1 and it inhibited CYP3A by 99% at a concentration of 375 μg/mL. After administering 8.5 mg/kg of C. ternifolia to rats, we found a reduction in platelets and leukocytes and an increase in urea and the liver enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Histological analysis showed spongiform changes in the proximal tubules of renal tissue and a lymphoid infiltrate in liver tissue. This plant is used in the treatment of diabetes, and it is commercialized as a dietary supplement in several countries. Our results show renal and hepatic toxicity; therefore, more profound research on the toxicity of this plant is needed.
Collapse
|
12
|
Mashhadi Akbar Boojar M. An Overview of the Cellular Mechanisms of Flavonoids Radioprotective Effects. Adv Pharm Bull 2019; 10:13-19. [PMID: 32002357 PMCID: PMC6983988 DOI: 10.15171/apb.2020.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
Considering the remarkable application of radiotherapy in the treatment and diagnosis of various diseases and even nuclear war, it is important to protect healthy tissues and people at risk from the radiation. Currently, there is no ideal and safe radioprotective agent available and we are seeing a great effort to find these agents from natural sources. Phenolic compounds, as well as flavonoid, are presented widely as the second metabolite in plants and they have been considered for investigation according to their benefits for human health, healing and preventing many disorders. The major bioactive benefits of flavonoids include antioxidant, anti-inflammatory, anti-tumor, anti-aging, anti-bacterial and viral, neuroprotection and radioprotective effects. Their lower toxicity and oral administration have made it suitable for radiotherapy patient, radiation, military forces, and even the general public. This review attempts to provide a summary of the main molecular mechanisms involved in flavonoid radio-protective effects. Data of these studies will provide a comprehensive perspective to flavonoids and can help to optimize their effects in radioprotection procedures.
Collapse
Affiliation(s)
- Mahdi Mashhadi Akbar Boojar
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bijak M, Szelenberger R, Dziedzic A, Saluk-Bijak J. Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets. Molecules 2018; 23:molecules23020374. [PMID: 29439388 PMCID: PMC6017715 DOI: 10.3390/molecules23020374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022] Open
Abstract
Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly reduces the risk of peripheral artery disease, myocardial infarction, ischemic stroke, and vascular death. Recent studies demonstrated the inhibition of ADP-induced blood platelet activation by three major compounds of the flavonolignans group: silybin, silychristin, and silydianin. For this reason, the aim of the current work was to verify the effects of silybin, silychristin, and silydianin on ADP-induced physiological platelets responses, as well as mechanisms of P2Y12-dependent intracellular signal transduction. We evaluated the effect of tested flavonolignans on ADP-induced blood platelets’ aggregation in platelet-rich plasma (PRP) (using light transmission aggregometry), adhesion to fibrinogen (using the static method), and the secretion of PF-4 (using the ELISA method). Additionally, using the double labeled flow cytometry method, we estimated platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation. We demonstrated a dose-dependent reduction of blood platelets’ ability to perform ADP-induced aggregation, adhere to fibrinogen, and secrete PF-4 in samples treated with flavonolignans. Additionally, we observed that all of the tested flavonolignans were able to increase VASP phosphorylation in blood platelets samples, which is correlated with P2Y12 receptor inhibition. All of these analyses show that silychristin and silybin have the strongest inhibitory effect on blood platelet activation by ADP, while silydianin also inhibits the ADP pathway, but to a lesser extent. The results obtained in this study clearly demonstrate that silybin, silychristin, and silydianin have inhibitory properties against the P2Y12 receptor and block ADP-induced blood platelet activation.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Rafal Szelenberger
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
14
|
Bijak M, Synowiec E, Sitarek P, Sliwiński T, Saluk-Bijak J. Evaluation of the Cytotoxicity and Genotoxicity of Flavonolignans in Different Cellular Models. Nutrients 2017; 9:E1356. [PMID: 29240674 PMCID: PMC5748806 DOI: 10.3390/nu9121356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonolignans are the main components of silymarin, which represents 1.5-3% of the dry fruit weight of Milk thistle (Silybum marianum L. Gaernt.). In ancient Greece and Romania, physicians and herbalists used the Silybum marianum to treat a range of liver diseases. Besides their hepatoprotective action, silymarin flavonolignans have many other healthy properties, such as anti-platelet and anti-inflammatory actions. The aim of this study was to evaluate the toxic effect of flavonolignans on blood platelets, peripheral blood mononuclear cells (PBMCs) and human lung cancer cell line-A549-using different molecular techniques. We established that three major flavonolignans: silybin, silychristin and silydianin, in concentrations of up to 100 µM, have neither a cytotoxic nor genotoxic effect on blood platelets, PMBCs and A549. We also saw that silybin and silychristin have a protective effect on cellular mitochondria, observed as a reduction of spontaneous mitochondrial DNA (mtDNA) damage in A549, measured as mtDNA copies, and mtDNA lesions in ND1 and ND5 genes. Additionally, we observed that flavonolignans increase the blood platelets' mitochondrial membrane potential and reduce the generation of reactive oxygen species in blood platelets. Our current findings show for the first time that the three major flavonolignans, silybin, silychristin and silydianin, do not have any cytotoxicity and genotoxicity in various cellular models, and that they actually protect cellular mitochondria. This proves that the antiplatelet and anti-inflammatory effect of these compounds is part of our molecular health mechanisms.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Tomasz Sliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
15
|
Bijak M, Dziedzic A, Saluk-Bijak J. Flavonolignans reduce the response of blood platelet to collagen. Int J Biol Macromol 2017; 106:878-884. [PMID: 28842200 DOI: 10.1016/j.ijbiomac.2017.08.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 01/25/2023]
Abstract
The primary biological function of platelets is to form hemostatic thrombi that prevent blood loss and maintain vascular integrity. These multi-responding cells are activated by different endogenous, physiological agonists due to the vast number of receptors present on the surface of the platelets. Collagen represents up to 40% of the total protein presented in the vessel wall and is the major activator of the platelets' response after tissue injury, and is the only matrix protein which supports both platelet adhesion and complete activation. The aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on collagen-induced blood platelets' activation, adhesion, aggregation and secretion of PF-4. We observed that depending on the dose, silychristin and silybin have anti-platelet properties observed as inhibition of collagen-induced activation (formation of blood platelet aggregates and microparticles, as well as decreased expression of P-selectin and activation of integrin αIIbβ3), aggregation, adhesion and secretion of PF-4. These effects highlight the potential of silybin and silychristin as supplementation to prevent primary and secondary thrombotic events wherein excessive blood platelet response to a physiological agonist is observed.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
16
|
Bijak M, Saluk-Bijak J. Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:396. [PMID: 28797264 PMCID: PMC5553656 DOI: 10.1186/s12906-017-1897-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Arachidonic acid metabolism by cyclooxygenase (COX) is a major pathway for blood platelets' activation, which is associated with pro-thrombotic platelet activity and the production of pro-inflammatory mediators. Inhibition of COX activity is one of the major means of anti-platelet pharmacotherapy preventing arterial thrombosis and reducing the incidence of cardiovascular events. Recent studies have presented that a silymarin (standardized extract of Milk thistle (Silybum marianum)) can inhibit the COX pathway. Accordingly, the aim of our study was to determine the effects of three major flavonolignans (silybin, silychristin and silydianin) on COX pathway activity in blood platelets. METHODS We determined the effect of flavonolignans on arachidonic acid induced blood platelet aggregation, COX pathway metabolites formation, as well as COX activity in platelets. Additionally, we analysed the potential mechanism of this interaction using the bioinformatic ligand docking method. RESULTS We observed that tested compounds decrease the platelet aggregation level, both thromboxane A2 and malondialdehyde formation, as well as inhibit the COX activity. The strongest effect was observed for silychristin and silybin. In our in silico study we showed that silychristin and silybin have conformations which interact with the active COX site as competitive inhibitors, blocking the possibility of substrate binding. CONCLUSIONS The results obtained from this study clearly present the potential of flavonolignans as novel antiplatelet and anti-inflammatory agents.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
17
|
Flavonolignans inhibit ADP induced blood platelets activation and aggregation in whole blood. Int J Biol Macromol 2016; 95:682-688. [PMID: 27923566 DOI: 10.1016/j.ijbiomac.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/26/2016] [Accepted: 12/03/2016] [Indexed: 02/03/2023]
Abstract
Flavonolignans are a group of active chemical compounds presented in the silymarin - a standardized extract obtained from fruits and seeds of Milk thistle (Silybum marianum L. Gaernt.). Since the 70s of the last century, flavonolignans have been regarded to the official medicine as a substances having hepatoprotective properties. However many researches performed in recent years have demonstrated that flavonolignans posses many other healthy properties including modulation of variety cell-signaling pathways. The aim of our study was to examine the effects of three major flavonolignans (silybin, silychristin and silydianin) on ADP-induced blood platelet activation using the flow cytometry analysis as well as determine the mechanism of this interaction by bioinformatic ligand docking method. We observed that all tested flavonolignans in dose-dependent manner inhibit formation of blood platelet aggregates and microparticles as well as decrease expression of P-selectin and activation of integrin αIIbβ3. Our computer-generated models confirm the flow cytometry analysis. We observed that all tested flavonolignans have conformations which are able to bind to the extracellular domain of P2Y12 receptor and probably block interaction with ADP. Our studies may help in the development of a new potential anti-platelet agent, which might be an alternative to the current using drugs.
Collapse
|
18
|
Zbikowska HM, Szejk M, Saluk J, Pawlaczyk-Graja I, Gancarz R, Olejnik AK. Polyphenolic-polysaccharide conjugates from plants of Rosaceae/Asteraceae family as potential radioprotectors. Int J Biol Macromol 2016; 86:329-37. [PMID: 26848834 DOI: 10.1016/j.ijbiomac.2016.01.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
Abstract
Polyphenolic-polysaccharide macromolecular, water-soluble glycoconjugates, isolated from the selected medicinal plants of Rosaceae/Asteraceae family: from leaves of Fragaria vesca L., Rubus plicatus Whe. et N. E., and from flowering parts of Sanguisorba officinalis L., and Erigeron canadensis L., were investigated for their ability to protect proteins and lipids of human plasma against γ-radiation-induced oxidative damage. Treatment of plasma with plant conjugates (6, 30, 150 μg/ml) prior exposure to 100 Gy radiation resulted in a significant inhibition of lipid peroxidation, evaluated by TBARS levels; conjugates isolated from E. canadensis and R. plicatus and a reference flavonoid quercetin showed similar high potential (approx. 70% inhibition, at 6 μg/ml). The conjugates prevented radiation-induced oxidation of protein thiols and significantly improved plasma total antioxidant capacity, estimated with Ellman's reagent and ABTS(.+) assay, respectively. The results demonstrate by the first time a significant radioprotective capability of the polyphenolic-polysaccharide conjugates isolated from E. canadensis, R. plicatus, S. officinalis and to the less extent from F. vesca. The abilities of these substances to inhibit radiation-induced lipid peroxidation and thiol oxidation in plasma seems to be mediated, but not limited to ROS scavenging activity.
Collapse
Affiliation(s)
- Halina Malgorzata Zbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Magdalena Szejk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Izabela Pawlaczyk-Graja
- Division of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Roman Gancarz
- Division of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Alicja Klaudia Olejnik
- Chemistry Department, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
19
|
Sani M, Sebai H, Ghanem-Boughanmi N, Boughattas NA, Ben-Attia M. Circadian (about 24-hour) variation in malondialdehyde content and catalase activity of mouse erythrocytes. Redox Rep 2015; 20:26-32. [PMID: 25142617 PMCID: PMC6837743 DOI: 10.1179/1351000214y.0000000102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lipid peroxidation is a part of normal metabolism that may cause biological molecule damage leading to the formation of several specific metabolites that include aldehydes of variable chains, such as malondialdehyde (MDA). These biological effects are controlled in vivo by a wide spectrum of enzymatic and non-enzymatic defense mechanisms among which catalase (CAT) is considered as an important regulator of oxidative stress. The present study aimed to investigate the possible relationship between the temporal patterns of the formation of MDA and the activity of CAT in the erythrocytes of mice. Twenty-four-hour studies were performed on male Swiss albino mice, 12 weeks old, synchronized to a 12:12 light: dark cycle for 3 weeks. Different and comparable groups of animals (n = 10) were sacrificed at an interval of 4 hours (1, 5, 9, 13, 17, and 21 hours after light onset (HALO)). The levels of erythrocyte MDA concentration and CAT activity both significantly (analysis of variance: F = 6.4, P < 0.002) varied according to the time of sampling under non-stressed conditions. The characteristics of the waveform describing the temporal patterns differed between the two studied variables, e.g. MDA content showing one peak (≅21 HALO) and CAT activity showing three peaks (≅9, 17, and 21 HALO). Cosinor analysis revealed a significant (adjusted Cosinor: P ≤ 0.018) circadian (τ ≅ 24 hours) rhythm in MDA level and no statistically significant rhythmicity in CAT activity. The differences and the absence of correlation between the curve patterns of erythrocyte MDA content and CAT activity under physiological conditions are hypothesized to explain that variation in lipid peroxidation may depend on several factors. Moreover, the identification of peak/trough levels of MDA accumulation in erythrocytes may reflect the degree of oxidative stress in these blood cells. In addition, the observed significant time-of-day effect suggests that, in both clinical and scientific settings, appropriate comparison of MDA production and CAT activity levels can only be achieved on data obtained at the same time of day.
Collapse
Affiliation(s)
- Mamane Sani
- UMR Biosurveillance et Toxicologie EnvironnementaleDépartement de Biologie, Faculté des Sciences et Techniques deMaradi, Maradi, Niger
| | - Hichem Sebai
- UR Ethnobotanie et Stress Oxydant Département des Sciences de la Vie, Faculté des Sciences de Bizerte, Zarzouna, Tunisia
| | - Néziha Ghanem-Boughanmi
- UR Ethnobotanie et Stress Oxydant Département des Sciences de la Vie, Faculté des Sciences de Bizerte, Zarzouna, Tunisia
| | | | - Mossadok Ben-Attia
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, Zarzouna, Tunisia
| |
Collapse
|
20
|
Huang J, Zhang T, Han S, Cao J, Chen Q, Wang S. The inhibitory effect of piperine from Fructus piperis extract on the degranulation of RBL-2H3 cells. Fitoterapia 2014; 99:218-26. [PMID: 25307563 DOI: 10.1016/j.fitote.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Allergy is an abnormal immune response to an allergen. Type I hypersensitivity is an immunoglobulin (Ig) E-mediated allergic disorder. Fructus piperis is derived from the ripe fruit of the pepper, which is widely used as a spice in human diets and is also administered as a medicine in many countries. Piperine has been shown to have anti-oxidant, anti-depressant, anti-tumor, and anti-inflammatory activities. However, the effect of piperine on IgE-mediated allergic responses has not been reported. Here, the rat basophilic leukemia cells by membrane chromatography (RBL-2H3/CMC) coupled to high performance liquid chromatography/mass spectrometry (HPLC/MS) to discover and identify piperine can bind to RBL-2H3 cell membranes. Piperine inhibited the expression of cytokines, and the release of both β-hexosaminidase and histamine, which could be stimulated by antigen in RBL-2H3 mast cells. We found that the levels of intracellular Ca(2+) also decreased. Furthermore, RT-PCR showed that the mRNA expression levels of IL-4, IL-13, and TNF-α were significantly suppressed by piperine. The inhibitory effect of piperine on IgE-mediated degranulation and cytokine production by RBL-2H3 cells may be caused by the inhibition of IgE-mediated signaling pathways, including the phosphorylation of Lyn, p38, Erk, and Ras. In summary, piperine can inhibit antigen-induced allergic reactions that control degranulation.
Collapse
Affiliation(s)
- Jing Huang
- School of Pharmacy, Heath Science Center Xi'an Jiaotong University, 76#, Yanta Westroad, Xi'an 710061, China
| | - Tao Zhang
- School of Pharmacy, Heath Science Center Xi'an Jiaotong University, 76#, Yanta Westroad, Xi'an 710061, China
| | - Shengli Han
- School of Pharmacy, Heath Science Center Xi'an Jiaotong University, 76#, Yanta Westroad, Xi'an 710061, China
| | - Jingjing Cao
- School of Pharmacy, Heath Science Center Xi'an Jiaotong University, 76#, Yanta Westroad, Xi'an 710061, China
| | - Qinhua Chen
- Institute of Pharmaceutical Analysis and Drug Screening, Hubei University of Medicine, Hubei, Shiyan, 442008, China
| | - Sicen Wang
- School of Pharmacy, Heath Science Center Xi'an Jiaotong University, 76#, Yanta Westroad, Xi'an 710061, China.
| |
Collapse
|
21
|
Zhang T, Han S, Liu Q, Guo Y, He L. Analysis of allergens in tubeimu saponin extracts by using rat basophilic leukemia 2H3 cell-based affinity chromatography coupled to liquid chromatography and mass spectrometry. J Sep Sci 2014; 37:3384-91. [DOI: 10.1002/jssc.201400280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Tao Zhang
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| | - Shengli Han
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| | - Qi Liu
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| | - Ying Guo
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| | - Langchong He
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| |
Collapse
|