1
|
Bryant D, Smith L, Rogers-Broadway KR, Karydis L, Woo J, Blunt MD, Forconi F, Stevenson FK, Goodnow C, Russell A, Humburg P, Packham G, Steele AJ, Strefford JC. Network analysis reveals a major role for 14q32 cluster miRNAs in determining transcriptional differences between IGHV-mutated and unmutated CLL. Leukemia 2023; 37:1454-1463. [PMID: 37169950 PMCID: PMC10317834 DOI: 10.1038/s41375-023-01918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) cells can express unmutated (U-CLL) or mutated (M-CLL) immunoglobulin heavy chain (IGHV) genes with differing clinical behaviours, variable B cell receptor (BCR) signalling capacity and distinct transcriptional profiles. As it remains unclear how these differences reflect the tumour cells' innate pre/post germinal centre origin or their BCR signalling competence, we applied mRNA/miRNA sequencing to 38 CLL cases categorised into three subsets by IGHV mutational status and BCR signalling capacity. We identified 492 mRNAs and 38 miRNAs differentially expressed between U-CLL and M-CLL, but only 9 mRNAs and 0 miRNAs associated with BCR competence within M-CLL. Of the IGHV-associated miRNAs, (14/38 (37%)) derived from chr14q32 clusters where all miRNAs were co-expressed with the MEG3 lncRNA from a cancer associated imprinted locus. Integrative analysis of miRNA/mRNA data revealed pronounced regulatory potential for the 14q32 miRNAs, potentially accounting for up to 25% of the IGHV-related transcriptome signature. GAB1, a positive regulator of BCR signalling, was potentially regulated by five 14q32 miRNAs and we confirmed that two of these (miR-409-3p and miR-411-3p) significantly repressed activity of the GAB1 3'UTR. Our analysis demonstrates a potential key role of the 14q32 miRNA locus in the regulation of CLL-related gene regulation.
Collapse
Affiliation(s)
- Dean Bryant
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lindsay Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Laura Karydis
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeongmin Woo
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew D Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Freda K Stevenson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Christopher Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Amanda Russell
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Peter Humburg
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Graham Packham
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew J Steele
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan C Strefford
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Atre R, Sharma R, Vadim G, Solanki K, Wadhonkar K, Singh N, Patidar P, Khabiya R, Samaur H, Banerjee S, Baig MS. The indispensability of macrophage adaptor proteins in chronic inflammatory diseases. Int Immunopharmacol 2023; 119:110176. [PMID: 37104916 DOI: 10.1016/j.intimp.2023.110176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Gaponenko Vadim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Neha Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India; School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
3
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
4
|
Nardella C, Malagrinò F, Pagano L, Rinaldo S, Gianni S, Toto A. Determining folding and binding properties of the C-terminal SH2 domain of SHP2. Protein Sci 2021; 30:2385-2395. [PMID: 34605082 PMCID: PMC8605372 DOI: 10.1002/pro.4201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023]
Abstract
SH2 domains are a class of protein–protein interaction modules with the function to recognize and bind sequences characterized by the presence of a phosphorylated tyrosine. SHP2 is a protein phosphatase involved in the Ras‐ERK1/2 signaling pathway that possess two SH2 domains, namely, N‐SH2 and C‐SH2, that mediate the interaction of SHP2 with various partners and determine the regulation of its catalytic activity. One of the main interactors of the SH2 domains of SHP2 is Gab2, a scaffolding protein with critical role in determining cell differentiation. Despite their key biological role and the importance of a correct native fold to ensure it, the mechanism of binding of SH2 domains with their ligands and the determinants of their stability have been poorly characterized. In this article, we present a comprehensive kinetic study of the folding of the C‐SH2 domain and the binding mechanism with a peptide mimicking a region of Gab2. Our data, obtained at different pH and ionic strength conditions and supported by site‐directed mutagenesis, highlight the role of electrostatic interactions in the early events of recognition. Interestingly, our results suggest a key role of a highly conserved histidine residue among SH2 family in the interaction with negative charges carried by the phosphotyrosine of Gab2. Moreover, the analysis of the equilibrium and kinetic folding data of C‐SH2 describes a complex mechanism implying a change in rate‐limiting step at high denaturant concentrations. Our data are discussed under the light of previous works on N‐SH2 domain of SHP2 and other SH2 domains.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Serena Rinaldo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
5
|
Kondreddy V, Magisetty J, Keshava S, Rao LVM, Pendurthi UR. Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1987-2005. [PMID: 33827252 PMCID: PMC8147699 DOI: 10.1161/atvbaha.121.316153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
6
|
Pair FS, Yacoubian TA. 14-3-3 Proteins: Novel Pharmacological Targets in Neurodegenerative Diseases. Trends Pharmacol Sci 2021; 42:226-238. [PMID: 33518287 PMCID: PMC8011313 DOI: 10.1016/j.tips.2021.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
14-3-3 proteins are a family of proteins expressed throughout the body and implicated in many diseases, from cancer to neurodegenerative disorders. While these proteins do not have direct enzymatic activity, they form a hub for many signaling pathways via protein-protein interactions (PPIs). 14-3-3 interactions have proven difficult to target with traditional pharmacological methods due to the unique nature of their binding. However, recent advances in compound development utilizing a range of tools, from thermodynamic binding site analysis to computational molecular modeling techniques, have opened the door to targeting these interactions. Compounds are already being developed targeting 14-3-3 interactions with potential therapeutic implication for neurodegenerative disorders, but challenges still remain in optimizing specificity and target engagement to avoid unintended negative consequences arising from targeting 14-3-3 signaling networks.
Collapse
Affiliation(s)
- F Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Abstract
IL-6 is involved both in immune responses and in inflammation, hematopoiesis, bone metabolism and embryonic development. IL-6 plays roles in chronic inflammation (closely related to chronic inflammatory diseases, autoimmune diseases and cancer) and even in the cytokine storm of corona virus disease 2019 (COVID-19). Acute inflammation during the immune response and wound healing is a well-controlled response, whereas chronic inflammation and the cytokine storm are uncontrolled inflammatory responses. Non-immune and immune cells, cytokines such as IL-1β, IL-6 and tumor necrosis factor alpha (TNFα) and transcription factors nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play central roles in inflammation. Synergistic interactions between NF-κB and STAT3 induce the hyper-activation of NF-κB followed by the production of various inflammatory cytokines. Because IL-6 is an NF-κB target, simultaneous activation of NF-κB and STAT3 in non-immune cells triggers a positive feedback loop of NF-κB activation by the IL-6-STAT3 axis. This positive feedback loop is called the IL-6 amplifier (IL-6 Amp) and is a key player in the local initiation model, which states that local initiators, such as senescence, obesity, stressors, infection, injury and smoking, trigger diseases by promoting interactions between non-immune cells and immune cells. This model counters dogma that holds that autoimmunity and oncogenesis are triggered by the breakdown of tissue-specific immune tolerance and oncogenic mutations, respectively. The IL-6 Amp is activated by a variety of local initiators, demonstrating that the IL-6-STAT3 axis is a critical target for treating diseases.
Collapse
Affiliation(s)
- Toshio Hirano
- National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Potential physio-pathological effects of branched fatty acid esters of hydroxy fatty acids. Biochimie 2021; 182:13-22. [PMID: 33412159 DOI: 10.1016/j.biochi.2020.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) are a new endogenous lipid class with recently uncovered interesting biological effects and which have been detected in food of plant and animal origins. Some FAHFAs can improve glucose tolerance and insulin sensitivity, stimulate insulin secretion, and exert anti-inflammatory effects. Other beneficial health effects have also been suggested, in particular against some cancers. FAHFAs could therefore be a potential therapeutic target for the treatment of numerous metabolic disorders such as type II diabetes, hepatic steatosis, cardiovascular diseases and various cancers. Their recent discovery has generated a great interest in the field of human health. This short review aims at bringing together the information available to date in the literature concerning their chemical synthesis, biosynthesis and degradation pathways as well as their potential physio-pathological beneficial effects.
Collapse
|
9
|
Zhao X, Kawano SI, Masuda J, Murakami H. G-CSF-dependent neutrophil differentiation requires downregulation of MAPK activities through the Gab2 signaling pathway. Cell Biol Int 2020; 44:1919-1933. [PMID: 32437087 DOI: 10.1002/cbin.11398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) stimulation of myeloid cells induced tyrosine-phosphorylation of cellular proteins. One of the tyrosine-phosphorylated proteins was found to be a scaffold protein, Grb2-associated binding protein 2 (Gab2). Another member of Gab family protein, Gab3, was exogenously overexpressed in neutrophil progenitor cells to make the Gab3 protein to compete with the endogenous Gab2 for the G-CSF-dependent signaling. In Gab3-overexpressed cells, the level of tyrosine phosphorylation of endogenous Gab2 by G-CSF stimulation was markedly downregulated, while the phosphorylation of Gab3 was significantly enhanced. The Gab3-overexpressed cells continuously proliferated in the medium containing G-CSF and lost the ability to differentiate to the mature neutrophil, characterized by the lobulated nucleus. The G-CSF stimulation-dependent tyrosine phosphorylation of Gab3, the association of SHP2 to Gab3 and the following mitogen-activated protein kinase (MAPK) activation were prolonged in the Gab3-overexpressed cells, compared to the parental cells, where the binding of SHP2 to Gab2 protein and thereby the activation of MAPK were not sustained after G-CSF stimulation. Inhibition of MAPK by pharmaceutical inhibitor restored the Gab3-overexpressed cells to the ability to differentiate to mature neutrophil. Therefore, G-CSF-dependent Gab2 phosphorylation and following its downregulation led the short-term MAPK activation. The downregulation of MAPK after transient Gab2 phosphorylation was necessary for the consequent neutrophil differentiation induced by G-CSF stimulation.
Collapse
Affiliation(s)
- Xianglin Zhao
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shun-Ichiro Kawano
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Junko Masuda
- Department of Interdisciplinary Science and Engineering in Health Systems, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hiroshi Murakami
- Department of Interdisciplinary Science and Engineering in Health Systems, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|
11
|
Wang Z, Vaughan TY, Zhu W, Chen Y, Fu G, Medrzycki M, Nishio H, Bunting ST, Hankey-Giblin PA, Nusrat A, Parkos CA, Wang D, Wen R, Bunting KD. Gab2 and Gab3 Redundantly Suppress Colitis by Modulating Macrophage and CD8 + T-Cell Activation. Front Immunol 2019; 10:486. [PMID: 30936879 PMCID: PMC6431666 DOI: 10.3389/fimmu.2019.00486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multi-factorial chronic inflammation of the gastrointestinal tract prognostically linked to CD8+ T-cells, but little is known about their mechanism of activation during initiation of colitis. Here, Grb2-associated binding 2/3 adaptor protein double knockout mice (Gab2/3−/−) were generated. Gab2/3−/− mice, but not single knockout mice, developed spontaneous colitis. To analyze the cellular mechanism, reciprocal bone marrow (BM) transplantation demonstrated a Gab2/3−/− hematopoietic disease-initiating process. Adoptive transfer showed individual roles for macrophages and T-cells in promoting colitis development in vivo. In spontaneous disease, intestinal intraepithelial CD8+ but much fewer CD4+, T-cells from Gab2/3−/− mice with rectal prolapse were more proliferative. To analyze the molecular mechanism, reduced PI3-kinase/Akt/mTORC1 was observed in macrophages and T-cells, with interleukin (IL)-2 stimulated T-cells showing increased pSTAT5. These results illustrate the importance of Gab2/3 collectively in signaling responses required to control macrophage and CD8+ T-cell activation and suppress chronic colitis.
Collapse
Affiliation(s)
- Zhengqi Wang
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Tamisha Y Vaughan
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Wandi Zhu
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Yuhong Chen
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Guoping Fu
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Magdalena Medrzycki
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Hikaru Nishio
- Department of Pathology, Emory University, Atlanta, GA, United States
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Pamela A Hankey-Giblin
- Department of Veterinary Science, Pennsylvania State University, University Park, PA, United States
| | - Asma Nusrat
- Department of Pathology, Emory University, Atlanta, GA, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Charles A Parkos
- Department of Pathology, Emory University, Atlanta, GA, United States.,Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Demin Wang
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Renren Wen
- BloodCenter of Wisconsin, Milwaukee, WI, United States
| | - Kevin D Bunting
- Division of Hem/Onc/BMT, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
12
|
Genomic evidence for shared common ancestry of East African hunting-gathering populations and insights into local adaptation. Proc Natl Acad Sci U S A 2019; 116:4166-4175. [PMID: 30782801 DOI: 10.1073/pnas.1817678116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Anatomically modern humans arose in Africa ∼300,000 years ago, but the demographic and adaptive histories of African populations are not well-characterized. Here, we have generated a genome-wide dataset from 840 Africans, residing in western, eastern, southern, and northern Africa, belonging to 50 ethnicities, and speaking languages belonging to four language families. In addition to agriculturalists and pastoralists, our study includes 16 populations that practice, or until recently have practiced, a hunting-gathering (HG) lifestyle. We observe that genetic structure in Africa is broadly correlated not only with geography, but to a lesser extent, with linguistic affiliation and subsistence strategy. Four East African HG (EHG) populations that are geographically distant from each other show evidence of common ancestry: the Hadza and Sandawe in Tanzania, who speak languages with clicks classified as Khoisan; the Dahalo in Kenya, whose language has remnant clicks; and the Sabue in Ethiopia, who speak an unclassified language. Additionally, we observed common ancestry between central African rainforest HGs and southern African San, the latter of whom speak languages with clicks classified as Khoisan. With the exception of the EHG, central African rainforest HGs, and San, other HG groups in Africa appear genetically similar to neighboring agriculturalist or pastoralist populations. We additionally demonstrate that infectious disease, immune response, and diet have played important roles in the adaptive landscape of African history. However, while the broad biological processes involved in recent human adaptation in Africa are often consistent across populations, the specific loci affected by selective pressures more often vary across populations.
Collapse
|
13
|
Zhang X, Dong Z, Zhang C, Ung CY, He S, Tao T, Oliveira AM, Meves A, Ji B, Look AT, Li H, Neel BG, Zhu S. Critical Role for GAB2 in Neuroblastoma Pathogenesis through the Promotion of SHP2/MYCN Cooperation. Cell Rep 2017; 18:2932-2942. [PMID: 28329685 DOI: 10.1016/j.celrep.2017.02.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 11/26/2022] Open
Abstract
Growing evidence suggests a major role for Src-homology-2-domain-containing phosphatase 2 (SHP2/PTPN11) in MYCN-driven high-risk neuroblastoma, although biologic confirmation and a plausible mechanism for this contribution are lacking. Using a zebrafish model of MYCN-overexpressing neuroblastoma, we demonstrate that mutant ptpn11 expression in the adrenal gland analog of MYCN transgenic fish promotes the proliferation of hyperplastic neuroblasts, accelerates neuroblastomagenesis, and increases tumor penetrance. We identify a similar mechanism in tumors with wild-type ptpn11 and dysregulated Gab2, which encodes a Shp2 activator that is overexpressed in human neuroblastomas. In MYCN transgenic fish, Gab2 overexpression activated the Shp2-Ras-Erk pathway, enhanced neuroblastoma induction, and increased tumor penetrance. We conclude that MYCN cooperates with either GAB2-activated or mutant SHP2 in human neuroblastomagenesis. Our findings further suggest that combined inhibition of MYCN and the SHP2-RAS-ERK pathway could provide effective targeted therapy for high-risk neuroblastoma patients with MYCN amplification and aberrant SHP2 activation.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, MN 55902, USA
| | - Zhiwei Dong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, MN 55902, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, MN 55902, USA
| | - Baoan Ji
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, MN 55902, USA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, MN 55902, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| |
Collapse
|
14
|
Li X, Li X, Ren Y, Yin Z, Quan X, Xue X, Zhou B. Polymorphisms of rs1347093 and rs1397529 are associated with lung cancer risk in northeast Chinese population. Oncotarget 2017; 8:94862-94871. [PMID: 29212272 PMCID: PMC5706918 DOI: 10.18632/oncotarget.22030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is one of the malignant tumors with the highest morbidity and mortality all over the world. Here we researched the association between two SNPs (rs1347093 in MIR217HG and rs1397529 in Gab1) and the risk of lung cancer in northeast Chinese population, including 825 cases and 766 controls. We carried out χ2 test, unconditional logistic regression analysis and crossover analysis to estimate the relationship between SNPs and lung cancer risk and the interaction between SNPs and smoking on susceptibility to lung cancer. The results indicated that rs1347093, rs1397529 polymorphisms were associated with lung cancer risk, especially with adenocarcinoma risk. Dominant genetic model of the rs1347093 was associated with reduced risk of lung cancer compared to CC genotype (AC+AA vs. CC: adjusted OR = 0.599, 95%CI = 0.418-0.858, P=0.005). For rs1347093, the similar result was found. Dominant genetic model of the rs1397529 was associated with reduced risk of lung cancer compared to AA genotype (AC+CC vs. AA: adjusted OR = 0.664, 95%CI = 0.491-0.897, P=0.008). There is no significant interaction between rs1347093, rs1397529 polymorphism and smoking on susceptibility to lung cancer. Our study might demonstrate that rs1347093 in MIR217HG and rs1397529 in Gab1 could be meaningful as the novel biomarker for lung cancer risk.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - XueLian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| | - Xiaoxia Xue
- The Third Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Department of Education, Liaoning, China
| |
Collapse
|
15
|
Toto A, Bonetti D, De Simone A, Gianni S. Understanding the mechanism of binding between Gab2 and the C terminal SH3 domain from Grb2. Oncotarget 2017; 8:82344-82351. [PMID: 29137268 PMCID: PMC5669894 DOI: 10.18632/oncotarget.19323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Gab2 is a large disordered protein that regulates several cellular signalling pathways and is overexpressed in different forms of cancer. Because of its disordered nature, a detailed characterization of the mechanisms of recognition between Gab2 and its physiological partners is particularly difficult. Here we provide a detailed kinetic characterization of the binding reaction between Gab2 and the C-terminal SH3 domain of the growth factor receptor-bound protein 2 (Grb2). We demonstrate that Gab2 folds upon binding following an induced fit type mechanism, whereby recognition is characterized by the formation of an intermediate, in which Gab2 is primarily disordered. In this scenario, folding of Gab2 into the bound conformation occurs only after binding. However, an alanine scanning of the proline residues of Gab2 suggests that the intermediate contains some degree of native-like structure, which might play a role for the recognition event to take place. The results, which represent a fundamental step forward in the understanding of this functional protein-protein interaction, are discussed on the light of previous structural works on these proteins.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| |
Collapse
|
16
|
Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3. Eur J Med Chem 2017; 136:573-584. [PMID: 28549334 DOI: 10.1016/j.ejmech.2017.04.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
Abstract
The 14-3-3 protein family is implicated in several diseases and biological processes. Several recent reviews have summarised knowledge on certain aspects of 14-3-3 proteins, ranging from a historic overview to the structure, function and regulation. This review focuses on the structures and molecular recognition of the modulators by the 14-3-3 proteins, and small modifications of certain modulators are proposed where cocrystal structures have been reported. Our analysis opens up possibilities for the optimisation of the reported compounds. It is very timely to analyse the current status of recently developed modulators given that the field has seen a lot of activity in recent years. This review provides an overview combined with a critical analysis of each class of modulators, keeping their suitability for future development in mind.
Collapse
|
17
|
Yasui T, Masaki T, Arita Y, Ishibashi T, Inagaki T, Okazawa M, Oka T, Shioyama W, Yamauchi-Takihara K, Komuro I, Sakata Y, Nakaoka Y. Molecular Characterization of Striated Muscle-Specific Gab1 Isoform as a Critical Signal Transducer for Neuregulin-1/ErbB Signaling in Cardiomyocytes. PLoS One 2016; 11:e0166710. [PMID: 27861634 PMCID: PMC5115770 DOI: 10.1371/journal.pone.0166710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023] Open
Abstract
Grb2-associated binder (Gab) docking proteins regulate signals downstream of a variety of growth factors and receptor tyrosine kinases. Neuregulin-1 (NRG-1), a member of epidermal growth factor family, plays a critical role for cardiomyocyte proliferation and prevention of heart failure via ErbB receptors. We previously reported that Gab1 and Gab2 in the myocardium are essential for maintenance of myocardial function in the postnatal heart via transmission of NRG-1/ErbB-signaling through analysis of Gab1/Gab2 cardiomyocyte-specific double knockout mice. In that study, we also found that there is an unknown high-molecular weight (high-MW) Gab1 isoform (120 kDa) expressed exclusively in the heart, in addition to the ubiquitously expressed low-MW (100 kDa) Gab1. However, the high-MW Gab1 has been molecularly ill-defined to date. Here, we identified the high-MW Gab1 as a striated muscle-specific isoform. The high-MW Gab1 has an extra exon encoding 27 amino acid residues between the already-known 3rd and 4th exons of the ubiquitously expressed low-MW Gab1. Expression analysis by RT-PCR and immunostaining with the antibody specific for the high-MW Gab1 demonstrate that the high-MW Gab1 isoform is exclusively expressed in striated muscle including heart and skeletal muscle. The ratio of high-MW Gab1/ total Gab1 mRNAs increased along with heart development. The high-MW Gab1 isoform in heart underwent tyrosine-phosphorylation exclusively after intravenous administration of NRG-1, among several growth factors. Adenovirus-mediated overexpression of the high-MW Gab1 induces more sustained activation of AKT after stimulation with NRG-1 in cardiomyocytes compared with that of β-galactosidase. On the contrary, siRNA-mediated knockdown of the high-MW Gab1 significantly attenuated AKT activation after stimulation with NRG-1 in cardiomyocytes. Taken together, these findings suggest that the striated muscle-specific high-MW isoform of Gab1 has a crucial role for NRG-1/ErbB signaling in cardiomyocytes.
Collapse
Affiliation(s)
- Taku Yasui
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoh Arita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Toru Oka
- Department of Cardiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Wataru Shioyama
- Department of Cardiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Keiko Yamauchi-Takihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
- * E-mail:
| |
Collapse
|
18
|
Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes. Sci Rep 2016; 6:23530. [PMID: 27025927 PMCID: PMC4812247 DOI: 10.1038/srep23530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
Interleukin-2 (IL-2) stimulation results in T-cell growth as a consequence of activation of highly sophisticated and fine-tuned signaling pathways. Despite lacking intrinsic enzymatic activity, scaffold proteins such as Gab2, play a pivotal role in IL-2-triggered signal transduction integrating, diversifying and amplifying the signal by serving as a platform for the assembly of effectors proteins. Traditionally, Gab2-mediated protein recruitment was believed to solely depend on cytokine-induced phosphotyrosine moieties. At present, phosphorylation on serine/threonine residues is also emerging as a key mediator of Gab2-dependent signal regulation. Despite its relevance, IL-2-triggered regulation on Gab2 phosphorylation is yet poorly understood. Combining antibody- and TiO2-based enrichment of the scaffold protein with SILAC quantitative mass spectrometry we disclose the prominent regulation IL-2 exerts on Gab2 serine/threonine phosphorylation by showing that at least 18 serines and 1 threonine, including previously non-reported ones, become phosphorylated in response to cytokine stimulation. Additionally, we decipher the interactome of the docking protein in resting and cytokine-treated T-lymphocytes and besides well-known Gab2 interactors we discover three novel cytokine-inducible Gab2-binding proteins. Thus, our data provide novel insights and a wealth of candidates for future studies that will shed light into the role of Gab2 in IL-2-initiated signal transduction.
Collapse
|
19
|
Bier D, Bartel M, Sies K, Halbach S, Higuchi Y, Haranosono Y, Brummer T, Kato N, Ottmann C. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface. ChemMedChem 2015; 11:911-8. [DOI: 10.1002/cmdc.201500484] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 02/06/2023]
Affiliation(s)
- David Bier
- Department of Chemistry; University of Duisburg-Essen; Universitätstr. 7 45141 Essen Germany
| | - Maria Bartel
- Department of Biomedical Engineering; Institute for Complex Molecular, Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Katharina Sies
- Institute of Molecular Medicine & Cell Research (IMMZ); Faculty of Medicine; University of Freiburg; Stefan-Meier-Str. 17 79104 Freiburg Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine & Cell Research (IMMZ); Faculty of Medicine; University of Freiburg; Stefan-Meier-Str. 17 79104 Freiburg Germany
- Faculty of Biology; University of Freiburg; Schänzlestr. 1 79104 Freiburg Germany
- Spemann Graduate School of Biology & Medicine; University of Freiburg; Albertstr. 19A 79104 Freiburg Germany
| | - Yusuke Higuchi
- The Institute of Scientific & Industrial Research; Osaka University; Osaka 567-0047 Japan
| | - Yu Haranosono
- The Institute of Scientific & Industrial Research; Osaka University; Osaka 567-0047 Japan
| | - Tilman Brummer
- Institute of Molecular Medicine & Cell Research (IMMZ); Faculty of Medicine; University of Freiburg; Stefan-Meier-Str. 17 79104 Freiburg Germany
- BIOSS: Centre for Biological Signaling Studies; University of Freiburg; Schänzlestr. 18 79104 Freiburg Germany
| | - Nobuo Kato
- The Institute of Scientific & Industrial Research; Osaka University; Osaka 567-0047 Japan
| | - Christian Ottmann
- Department of Chemistry; University of Duisburg-Essen; Universitätstr. 7 45141 Essen Germany
- Department of Biomedical Engineering; Institute for Complex Molecular, Systems; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
20
|
Zhao J, Yin M, Deng H, Jin FQ, Xu S, Lu Y, Mastrangelo MA, Luo H, Jin ZG. Cardiac Gab1 deletion leads to dilated cardiomyopathy associated with mitochondrial damage and cardiomyocyte apoptosis. Cell Death Differ 2015; 23:695-706. [PMID: 26517531 DOI: 10.1038/cdd.2015.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
A vital step in the development of heart failure is the transition from compensatory cardiac hypertrophy to decompensated dilated cardiomyopathy (DCM) during cardiac remodeling under mechanical or pathological stress. However, the molecular mechanisms underlying the development of DCM and heart failure remain incompletely understood. In the present study, we investigate whether Gab1, a scaffolding adaptor protein, protects against hemodynamic stress-induced DCM and heat failure. We first observed that the protein levels of Gab1 were markedly reduced in hearts from human patients with DCM and from mice with experimental viral myocarditis in which DCM developed. Next, we generated cardiac-specific Gab1 knockout mice (Gab1-cKO) and found that Gab-cKO mice developed DCM in hemodynamic stress-dependent and age-dependent manners. Under transverse aorta constriction (TAC), Gab1-cKO mice rapidly developed decompensated DCM and heart failure, whereas Gab1 wild-type littermates exhibited adaptive left ventricular hypertrophy without changes in cardiac function. Mechanistically, we showed that Gab1-cKO mouse hearts displayed severe mitochondrial damages and increased cardiomyocyte apoptosis. Loss of cardiac Gab1 in mice impaired Gab1 downstream MAPK signaling pathways in the heart under TAC. Gene profiles further revealed that ablation of Gab1 in heart disrupts the balance of anti- and pro-apoptotic genes in cardiomyocytes. These results demonstrate that cardiomyocyte Gab1 is a critical regulator of the compensatory cardiac response to aging and hemodynamic stress. These findings may provide new mechanistic insights and potential therapeutic target for DCM and heart failure.
Collapse
Affiliation(s)
- J Zhao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - H Deng
- Center for Heart Lung Innovation/Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - F Q Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Y Lu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M A Mastrangelo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - H Luo
- Center for Heart Lung Innovation/Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Z G Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
21
|
Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep 2015; 12:4007-4014. [PMID: 26095858 PMCID: PMC4526075 DOI: 10.3892/mmr.2015.3951] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/19/2015] [Indexed: 12/30/2022] Open
Abstract
The docking proteins of the Grb-associated binder (Gab) family transduce cellular signals between receptors and intracellular downstream effectors, and provide a platform for protein-protein interactions. Gab2, a key member of the Gab family of proteins, is involved in the amplification and integration of signal transduction, evoked by a variety of extracellular stimuli, including growth factors, cytokines and antigen receptors. Gab2 protein lacks intrinsic catalytic activity; however, when phosphorylated by protein-tyrosine kinases (PTKs), Gab2 recruits several Src homology-2 (SH2) domain-containing proteins, including the SH2-containing protein tyrosine phosphatase 2 (SHP2), the p85 subunit of phosphoinositide-3 kinase (PI3K), phospholipase C-γ (PLCγ)1, Crk, and GC-GAP. Through these interactions, the Gab2 protein triggers various downstream signal effectors, including SHP2/rat sarcoma viral oncogene/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and PI3K/AKT, involved in cell growth, differentiation, migration and apoptosis. It has been previously reported that aberrant Gab2 and/or Gab2 signaling is closely associated with human tumorigenesis, particularly in breast cancer, leukemia and melanoma. The present review aimed to focus on the structure and effector function of Gab2, its role in cancer and its potential for use as an effective therapeutic target.
Collapse
Affiliation(s)
- Chen-Bo Ding
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Wei-Na Yu
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Ji-Hong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Jun-Min Luo
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| |
Collapse
|
22
|
Krieger JM, Fusco G, Lewitzky M, Simister PC, Marchant J, Camilloni C, Feller SM, De Simone A. Conformational recognition of an intrinsically disordered protein. Biophys J 2014; 106:1771-9. [PMID: 24739176 DOI: 10.1016/j.bpj.2014.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/02/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022] Open
Abstract
There is a growing interest in understanding the properties of intrinsically disordered proteins (IDPs); however, the characterization of these states remains an open challenge. IDPs appear to have functional roles that diverge from those of folded proteins and revolve around their ability to act as hubs for protein-protein interactions. To gain a better understanding of the modes of binding of IDPs, we combined statistical mechanics, calorimetry, and NMR spectroscopy to investigate the recognition and binding of a fragment from the disordered protein Gab2 by the growth factor receptor-bound protein 2 (Grb2), a key interaction for normal cell signaling and cancer development. Structural ensemble refinement by NMR chemical shifts, thermodynamics measurements, and analysis of point mutations indicated that the population of preexisting bound conformations in the free-state ensemble of Gab2 is an essential determinant for recognition and binding by Grb2. A key role was found for transient polyproline II (PPII) structures and extended conformations. Our findings are likely to have very general implications for the biological behavior of IDPs in light of the evidence that a large fraction of these proteins possess a specific propensity to form PPII and to adopt conformations that are more extended than the typical random-coil states.
Collapse
Affiliation(s)
- James M Krieger
- Department of Life Sciences, Imperial College London, London, UK
| | - Giuliana Fusco
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marc Lewitzky
- Department of Oncology, University of Oxford, Oxford, UK; Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Jan Marchant
- Department of Life Sciences, Imperial College London, London, UK
| | - Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Stephan M Feller
- Department of Oncology, University of Oxford, Oxford, UK; Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
23
|
Hu S, Zhang Y, Yu Y, Jin D, Zhang X, Gu S, Jia H, Chen X, Zhang Z, Jin Q, Ke Y, Liu H. Growth factor receptor bound protein 2-associated binder 2, a scaffolding adaptor protein, negatively regulates host immunity against tuberculosis. Am J Respir Cell Mol Biol 2014; 51:575-85. [PMID: 24805943 DOI: 10.1165/rcmb.2013-0329oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell-mediated immunity is indispensable for host protection against tuberculosis (TB). Growth factor receptor bound protein 2-associated binder (Gab) 2, a scaffolding adaptor protein, negatively regulates signaling pathways critical for T cell-mediated immunity. We sought to investigate the clinical significance and immunological role of Gab2 in Mycobacterium tuberculosis infection. We evaluated Gab2 protein and messenger RNA (mRNA) expression in human patients with pulmonary TB and determined the correlation of the mRNA expression pattern with antigen-specific IFN-γ secretion. Subsequently, we carried out M. tuberculosis infection in Gab2-deficient and wild-type control mice to explore the immunological role of Gab2 by examining bacterial load, histological changes, cytokine secretion, and gene expression of immune-associated transcription factors. mRNA levels of Gab2 and its correlated family member, Gab1, were markedly decreased in untreated patients with pulmonary TB compared with healthy control subjects. Importantly, this decreased Gab2 expression to normal levels after bacterial load in the patient's sputum became undetectable under the standard anti-TB treatment, which negatively correlated with the level of M. tuberculosis antigen-specific IFN-γ secretion. In the M. tuberculosis infection mouse model, infected Gab2-deficient mice exhibited decreased bacterial load and milder lung pathological damage compared with infected wild-type mice, accompanied by decreased production of IL-2, IL-6, and granulocyte/macrophage colony-stimulating factor proinflammatory cytokines, and an increased T-cell-specific T-box transcription factor/GATA binding protein 3 expression ratio. Overall, our study indicates that down-regulation of Gab2 relates to a protective function during M. tuberculosis infection, revealing a potential negative regulatory role for Gab2 in immunity to TB.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Bacterial Load
- Case-Control Studies
- Disease Models, Animal
- GATA3 Transcription Factor/metabolism
- Host-Pathogen Interactions
- Humans
- Immunity, Cellular
- Inflammation Mediators/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung/virology
- Mice
- Mice, Knockout
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Messenger/metabolism
- TCF Transcription Factors/metabolism
- Time Factors
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Tuberculosis, Pulmonary/virology
Collapse
Affiliation(s)
- Shizong Hu
- 1 Ministry of Health (MOH) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 2014; 94:193-205. [PMID: 25080849 DOI: 10.1111/ejh.12427] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.
Collapse
Affiliation(s)
- Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
25
|
Kumar L, Chou J, Yee CSK, Borzutzky A, Vollmann EH, von Andrian UH, Park SY, Hollander G, Manis JP, Poliani PL, Geha RS. Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. ACTA ACUST UNITED AC 2014; 211:929-42. [PMID: 24752297 PMCID: PMC4010910 DOI: 10.1084/jem.20131379] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Lrrc8a is a ubiquitously expressed gene that encodes a leucine-rich repeat (LRR)-containing protein detected at higher levels on the surface of thymocytes than on other immune cells. We generated Lrrc8a(-/-) mice to investigate the role of LRRC8A in lymphocyte development and function. Lrrc8a(-/-) mice had increased prenatal and postnatal mortality, growth retardation, and multiple tissue abnormalities. Lrrc8a(-/-) mice displayed a modest block in B cell development but intact intrinsic B cell function. In contrast, both Lrrc8a(-/-) mice and Lrrc8a(-/-)→Rag2(-/-) bone marrow chimeras exhibited a severe cell-intrinsic block in early thymic development, with decreased proliferation and increased apoptosis of thymocytes, and impaired peripheral T cell function. Thymic epithelial cells expressed an LRRC8A ligand that was critical for double-negative to double-positive thymocyte differentiation and survival in vitro. LRRC8A constitutively associated with the GRB2-GAB2 complex and lymphocyte-specific protein tyrosine kinase (LCK) in thymocytes. LRRC8A ligation activated AKT via the LCK-ZAP-70-GAB2-PI3K pathway, and AKT phosphorylation was markedly reduced in the thymus of Lrrc8a(-/-) mice. These findings reveal an essential role for LRRC8A in T cell development, survival, and function.
Collapse
Affiliation(s)
- Lalit Kumar
- Division of Immunology and 2 Joint Program in Transfusion Medicine, Division of Laboratory Medicine, Boston Children's Hospital; and 3 Department of Pediatrics, 4 Department of Microbiology and Immunobiology, and 5 Department of Pathology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Witsenburg JJ, Glauner H, Müller JP, Groenewoud JMM, Roth G, Böhmer FD, Adjobo-Hermans MJW, Brock R. A quantitative assessment of costimulation and phosphatase activity on microclusters in early T cell signaling. PLoS One 2013; 8:e79277. [PMID: 24205378 PMCID: PMC3813591 DOI: 10.1371/journal.pone.0079277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/27/2013] [Indexed: 01/15/2023] Open
Abstract
T cell signaling is triggered through stimulation of the T cell receptor and costimulatory receptors. Receptor activation leads to the formation of membrane-proximal protein microclusters. These clusters undergo tyrosine phosphorylation and organize multiprotein complexes thereby acting as molecular signaling platforms. Little is known about how the quantity and phosphorylation levels of microclusters are affected by costimulatory signals and the activity of specific signaling proteins. We combined micrometer-sized, microcontact printed, striped patterns of different stimuli and simultaneous analysis of different cell strains with image processing protocols to address this problem. First, we validated the stimulation protocol by showing that high expression levels CD28 result in increased cell spreading. Subsequently, we addressed the role of costimulation and a specific phosphotyrosine phosphatase in cluster formation by including a SHP2 knock-down strain in our system. Distinguishing cell strains using carboxyfluorescein succinimidyl ester enabled a comparison within single samples. SHP2 exerted its effect by lowering phosphorylation levels of individual clusters while CD28 costimulation mainly increased the number of signaling clusters and cell spreading. These effects were observed for general tyrosine phosphorylation of clusters and for phosphorylated PLCγ1. Our analysis enables a clear distinction between factors determining the number of microclusters and those that act on these signaling platforms.
Collapse
Affiliation(s)
- J. Joris Witsenburg
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Heike Glauner
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jörg P. Müller
- Institute for Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Johannes M. M. Groenewoud
- Department of Medical Technology Assessment, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Günter Roth
- Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK), Albert Ludwigs University, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University, Freiburg, Germany
| | | | - Merel J. W. Adjobo-Hermans
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Gab docking proteins in cardiovascular disease, cancer, and inflammation. Int J Inflam 2013; 2013:141068. [PMID: 23431498 PMCID: PMC3566608 DOI: 10.1155/2013/141068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
The docking proteins of the Grb2-associated binder (Gab) family have emerged as crucial signaling compartments in metazoans. In mammals, the Gab proteins, consisting of Gab1, Gab2, and Gab3, are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including growth factors, cytokines, antigens, and other molecules. Gab proteins lack the enzymatic activity themselves; however, when phosphorylated on tyrosine residues, they provide binding sites for multiple Src homology-2 (SH2) domain-containing proteins, such as SH2-containing protein tyrosine phosphatase 2 (SHP2), phosphatidylinositol 3-kinase regulatory subunit p85, phospholipase Cγ, Crk, and GC-GAP. Through these interactions, the Gab proteins transduce signals from activated receptors into pathways with distinct biological functions, thereby contributing to signal diversification. They are known to play crucial roles in numerous physiological processes through their associations with SHP2 and p85. In addition, abnormal Gab protein signaling has been linked to human diseases including cancer, cardiovascular disease, and inflammatory disorders. In this paper, we provide an overview of the structure, effector functions, and regulation of the Gab docking proteins, with a special focus on their associations with cardiovascular disease, cancer, and inflammation.
Collapse
|
28
|
Kupsa T, Milos Horacek J, Jebavy L. The role of cytokines in acute myeloid leukemia: A systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:291-301. [DOI: 10.5507/bp.2012.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022] Open
|
29
|
PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci U S A 2012; 109:E2979-88. [PMID: 23045700 DOI: 10.1073/pnas.1205661109] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Controlled maturation of ovarian follicles is necessary for fertility. Follicles are restrained at an immature stage until stimulated by FSH secreted by pituitary gonadotropes. FSH acts on granulosa cells within the immature follicle to inhibit apoptosis, promote proliferation, stimulate production of steroid and protein hormones, and induce ligand receptors and signaling intermediates. The phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway is a pivotal signaling corridor necessary for transducing the FSH signal. We report that protein kinase A (PKA) mediates the actions of FSH by signaling through multiple targets to activate PI3K/AKT. PKA uses a route that promotes phosphorylation of insulin receptor substrate-1 (IRS-1) on Tyr(989), a canonical binding site for the 85-kDa regulatory subunit of PI3K that allosterically activates the catalytic subunit. PI3K activation leads to activation of AKT through phosphorylation of AKT on Thr(308) and Ser(473). The adaptor growth factor receptor bound protein 2-associated binding protein 2 (GAB2) is present in a preformed complex with PI3K heterodimer and IRS-1, it is an A-kinase anchoring protein that binds the type I regulatory subunit of PKA, and it is phosphorylated by PKA on Ser(159). Overexpression of GAB2 enhances FSH-stimulated AKT phosphorylation. GAB2, thus, seems to coordinate signals from the FSH-stimulated rise in cAMP that leads to activation of PI3K/AKT. The ability of PKA to commandeer IRS-1 and GAB2, adaptors that normally integrate receptor/nonreceptor tyrosine kinase signaling into PI3K/AKT, reveals a previously unrecognized route for PKA to activate a pathway that promotes proliferation, inhibits apoptosis, enhances translation, and initiates differentiation of granulosa cells.
Collapse
|
30
|
Fischer D, Leibinger M. Promoting optic nerve regeneration. Prog Retin Eye Res 2012; 31:688-701. [PMID: 22781340 DOI: 10.1016/j.preteyeres.2012.06.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Vision is the most important sense for humans and it is irreversibly impaired by axonal damage of retinal ganglion cells (RGCs) in the optic nerve due to the lack of axonal regeneration. The failure of regeneration is partially attributable to factors located in the inhibitory environment of the forming glial scar and myelin as well as an insufficient intrinsic ability for axonal regrowth. Moreover, RGCs undergo apoptotic cell death after optic nerve injury, eliminating any chance for regeneration. In this review, we discuss the different aspects that cause regenerative failure in the optic nerve. Moreover, we describe discoveries of the last two decades demonstrating that under certain circumstances mature RGCs can be transformed into an active regenerative state allowing these neurons to survive axotomy and to regenerate axons in the injured optic nerve. In this context we focus on the role of the cytokines ciliary neutrophic factor (CNTF) and leukemia inhibitory factor (LIF), their receptors and the downstream signaling pathways. Furthermore, we discuss strategies to overcome inhibitory signaling induced by molecules associated with optic nerve myelin and the glial scar as well as the regenerative outcome after combinatorial treatments. These findings are encouraging and may open the possibility that clinically meaningful regeneration may become achievable one day in the future.
Collapse
Affiliation(s)
- Dietmar Fischer
- Department of Neurology, Experimental Neurology, Heinrich Heine University Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
31
|
Kaplan D, Kaye N, Liu F, Fu P, Margevicius S, Meyerson HJ, Lazarus HM. The functional duality of HoxB4 in hematopoietic reconstituting cells. Cytometry A 2012; 83:127-33. [DOI: 10.1002/cyto.a.22059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 01/30/2023]
|
32
|
Gab adapter proteins as therapeutic targets for hematologic disease. Adv Hematol 2011; 2012:380635. [PMID: 22216034 PMCID: PMC3246295 DOI: 10.1155/2012/380635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/19/2022] Open
Abstract
The Grb-2 associated binder (Gab) family of scaffolding/adaptor/docking proteins is a group of three molecules with significant roles in cytokine receptor signaling. Gabs possess structural motifs for phosphorylation-dependent receptor recruitment, Grb2 binding, and activation of downstream signaling pathways through p85 and SHP-2. In addition, Gabs participate in hematopoiesis and regulation of immune response which can be aberrantly activated in cancer and inflammation. The multifunctionality of Gab adapters might suggest that they would be too difficult to consider as candidates for “targeted” therapy. However, the one drug/one target approach is giving way to the concept of one drug/multiple target approach since few cancers are addicted to a single signaling molecule for survival and combination drug therapies can be problematic. In this paper, we cover recent findings on Gab multi-functionality, binding partners, and their role in hematological malignancy and examine the concept of Gab-targeted therapy.
Collapse
|
33
|
Nishida K, Yamasaki S, Hasegawa A, Iwamatsu A, Koseki H, Hirano T. Gab2, via PI-3K, Regulates ARF1 in FcεRI-Mediated Granule Translocation and Mast Cell Degranulation. THE JOURNAL OF IMMUNOLOGY 2011; 187:932-41. [DOI: 10.4049/jimmunol.1100360] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 2011; 121:381-96. [PMID: 21267586 DOI: 10.1007/s00401-011-0800-8] [Citation(s) in RCA: 391] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 12/17/2022]
Abstract
Medulloblastoma is heterogeneous, being characterized by molecular subgroups that demonstrate distinct gene expression profiles. Activation of the WNT or SHH signaling pathway characterizes two of these molecular subgroups, the former associated with low-risk disease and the latter potentially targeted by novel SHH pathway inhibitors. This manuscript reports the validation of a novel diagnostic immunohistochemical method to distinguish SHH, WNT, and non-SHH/WNT tumors and details their associations with clinical, pathological and cytogenetic variables. A cohort (n = 235) of medulloblastomas from patients aged 0.4-52 years was studied for expression of four immunohistochemical markers: GAB1, β-catenin, filamin A, and YAP1. Immunoreactivity (IR) for GAB1 characterizes only SHH tumors and nuclear IR for β-catenin only WNT tumors. IRs for filamin A and YAP1 identify SHH and WNT tumors. SHH, WNT, and non-SHH/WNT tumors contributed 31, 14, and 55% to the series. All desmoplastic/nodular (D/N) medulloblastomas were SHH tumors, while most WNT tumors (94%) had a classic phenotype. Monosomy 6 was strongly associated with WNT tumors, while PTCH1 loss occurred almost exclusively among SHH tumors. MYC or MYCN amplification and chromosome 17 imbalance occurred predominantly among non-SHH/WNT tumors. Among patients aged 3-16 years and entered onto the SIOP PNET3 trial, outcome was significantly better for children with WNT tumors, when compared to SHH or non-SHH/WNT tumors, which showed similar survival curves. However, high-risk factors (M+ disease, LC/A pathology, MYC amplification) significantly influenced survival in both SHH and non-SHH/WNT groups. We describe a robust method for detecting SHH, WNT, and non-SHH/WNT molecular subgroups in formalin-fixed medulloblastoma samples. In corroborating other studies that indicate the value of combining clinical, pathological, and molecular variables in therapeutic stratification schemes for medulloblastoma, we also provide the first outcome data based on a clinical trial cohort and novel data on how molecular subgroups are distributed across the range of disease.
Collapse
|
35
|
The immunohistochemical staining pattern of Gab2 correlates with distinct stages of chronic myeloid leukemia. Hum Pathol 2011; 42:719-26. [PMID: 21292300 DOI: 10.1016/j.humpath.2010.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 01/05/2023]
Abstract
Grb2-associated binder 2 protein (Gab2) is a member of scaffold proteins, playing crucial roles in (receptor-) tyrosine kinase and cytokine signaling. Chronic myeloid leukemia cells with t(9;22)(q34;q11) express the Bcr/Abl fusion protein, which interacts with Grb2 and Gab2 signaling, thereby triggering hematopoietic cell proliferation. The aim of this study was to examine in detail the total and subcellular Gab2 protein expression in myeloid cells in bone marrow biopsies of patients with chronic myeloid leukemia in different disease stages. The study included 50 fixed bone marrow biopsies of controls (unaffected hematopoiesis, n = 11) and Bcr/Abl-positive chronic myeloid leukemia cases (n = 39) of different stages (chronic phase, n = 13; accelerated phase, n = 4; blast crisis, n = 11; complete remission, n = 11). Immunohistochemistry and quantitative evaluation of Gab2 staining in 600 myeloid cells/bone marrow biopsy were performed before statistical analyses. Immunohistochemistry revealed Gab2 expression in hematopoietic cells. Gab2-positive myeloid cells occurred significantly more frequent in chronic myeloid leukemia cases than in controls (P < .001) and appeared to markedly increase from chronic phase to accelerated phase to blast crisis. Importantly, within the distinct stages of chronic myeloid leukemia, a significant switch of Gab2-positive myeloid cells with cytoplasmic or nuclear/perinuclear Gab2 staining occurred: Nuclear/perinuclear Gab2-positive myeloid cells significantly increased from chronic phase to accelerated phase (P = .001) and from chronic phase to blast crisis (P < .001). Still, an overlap and, hence, a wider range of Gab2 staining patterns were seen between and within chronic myeloid leukemia stages, most likely reflecting a high plasticity of Grb2-associated binder 2 functions in the progression of chronic myeloid leukemia. In summary, the present study, for the first time, analyzed Grb2-associated binder 2 protein expression in bone marrow biopsies of patients with chronic myeloid leukemia in detail, demonstrating a novel and distinct Grb2-associated binder 2 staining pattern in normal and chronic myeloid leukemia bone marrow biopsies as well as in distinct chronic myeloid leukemia stages. Grb2-associated binder 2 immunohistochemistry may provide a valuable supplementary tool to routine histopathology and standard immunohistochemistry for classification and staging of (borderline) chronic myeloid leukemia bone marrow biopsies and hence improved therapeutic disease management.
Collapse
|
36
|
Fleuren EDG, O'Toole S, Millar EK, McNeil C, Lopez-Knowles E, Boulghourjian A, Croucher DR, Schramek D, Brummer T, Penninger JM, Sutherland RL, Daly RJ. Overexpression of the oncogenic signal transducer Gab2 occurs early in breast cancer development. Int J Cancer 2010; 127:1486-92. [PMID: 20087860 DOI: 10.1002/ijc.25172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gab2, a docking-type signaling protein with demonstrated oncogenic potential, is overexpressed in breast cancer, but its prognostic significance and role in disease evolution remain unclear. Immunohistochemical detection of Gab2 in a large cohort of primary human breast cancers of known outcome revealed that while Gab2 expression was positively correlated with increased tumor grade, it did not correlate with disease recurrence or breast cancer-related death in the total cohort or in patients stratified according to lymph node, estrogen receptor (ER) or HER2 status. Interestingly, analysis of a "progression series" that included premalignant and preinvasive breast lesions as well as samples of metastatic disease revealed that Gab2 expression was significantly enhanced in the earliest lesion examined, usual ductal hyperplasia, with a further increase detected in ductal carcinoma in situ (DCIS). Furthermore, expression was less in invasive cancers and lymph node metastases than in DCIS, but still higher than in normal breast. These findings indicate that while Gab2 expression is not prognostic in breast cancer, its role in early disease evolution warrants further analysis, as Gab2 and its effectors may provide targets for novel strategies aimed at preventing breast cancer development.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li G, Miskimen KL, Wang Z, Xie XY, Tse W, Gouilleux F, Moriggl R, Bunting KD. Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin. Leukemia 2010; 24:1397-405. [PMID: 20535152 PMCID: PMC2921023 DOI: 10.1038/leu.2010.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Signal transducer and activator of transcription-5 (STAT5) is a critical transcription factor for normal hematopoiesis and its sustained activation is associated with hematologic malignancy. A persistently active mutant of STAT5 (STAT5aS711F) associates with Grb2 associated binding protein 2 (Gab2) in myeloid leukemias and promotes growth in vitro through AKT activation. Here we have retrovirally transduced wild-type or Gab2−/− mouse bone marrow cells expressing STAT5aS711F and transplanted into irradiated recipient mice to test an in vivo myeloproliferative disease (MPD) model. To target Gab2-independent AKT/mTOR activation, wild-type mice were treated separately with rapamycin. In either case, mice lacking Gab2 or treated with rapamycin displayed attenuated myeloid hyperplasia and modestly improved survival, but the effects were not cytotoxic and were reversible. To improve upon this approach, in vitro targeting of STAT5-mediated AKT/mTOR using rapamycin was combined with inhibition of the STAT5 direct target genes bcl-2 and bcl-XL using ABT-737. Striking synergy with both drugs was observed in mouse BaF3 cells expressing STAT5aS711F, TEL-JAK2, or BCR-ABL and in the relatively single agent-resistant human BCR-ABL positive K562 cell line. Therefore, targeting distinct STAT5 mediated survival signals, e.g. bcl-2/bcl-XL and AKT/mTOR may be an effective therapeutic approach for human myeloproliferative neoplasms.
Collapse
Affiliation(s)
- G Li
- Division of Hematology-Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chan PC, Sudhakar JN, Lai CC, Chen HC. Differential phosphorylation of the docking protein Gab1 by c-Src and the hepatocyte growth factor receptor regulates different aspects of cell functions. Oncogene 2009; 29:698-710. [DOI: 10.1038/onc.2009.363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
The GAB2 signaling scaffold promotes anchorage independence and drives a transcriptional response associated with metastatic progression of breast cancer. Oncogene 2009; 28:4444-55. [PMID: 19838208 DOI: 10.1038/onc.2009.296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acquisition of independence from anchorage to the extracellular matrix is a critical event for onset and progression of solid cancers. To identify and characterize new genes conferring anchorage independence, we transduced MCF10A human normal breast cells with a retroviral cDNA expression library and selected them by growth in suspension. Microarray analysis targeted on library-derived transcripts revealed robust and reproducible enrichment, after selection, of cDNAs encoding the scaffolding adaptor Gab2. Gab2 was confirmed to strongly promote anchorage-independent growth when overexpressed. Interestingly, downregulation by RNA interference of endogenous Gab2 in neoplastic cells did not affect their adherent growth, but abrogated their growth in soft agar. Gab2-driven anchorage independence was found to specifically involve activation of the Src-Stat3 signaling axis. A transcriptional 'signature' of 205 genes was obtained from GAB2-transduced, anchorage-independent MCF10A cells, and found to contain two main functional modules, controlling proliferation and cell adhesion/migration/invasion, respectively. Extensive validation on breast cancer data sets showed that the GAB2 signature provides a robust prognostic classifier for breast cancer metastatic relapse, largely independent from existing clinical and genomic indicators and from estrogen receptor status. This work highlights a pivotal role for GAB2 and its transcriptional targets in anchorage-independent growth and breast cancer metastatic progression.
Collapse
|
40
|
Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells. Cell Signal 2009; 21:1775-83. [PMID: 19665053 DOI: 10.1016/j.cellsig.2009.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 11/23/2022]
Abstract
In this study, we examined the biological functions of Gab1 in erythropoietin receptor (EPOR)-mediated signaling in vivo. Knockdown of Gab1 by the introduction of the Gab1 siRNA expression vector into F-36P human erythroleukemia (F-36P-Gab1-siRNA) cells resulted in a reduction of cell proliferation and survival in response to EPO. EPO-induced activation of Erk1/2 but not of Akt was significantly suppressed in F-36P-Gab1-siRNA cells compared with mock-transfected F-36P cells. The co-immunoprecipitation experiments revealed an EPO-enhanced association of Gab1 with the Grb2-SOS1 complex and SHP-2 in F-36P cells. A selective inhibitor of phosphatidylinositol 3-kinase (PI3K) LY294002 and short interfering RNA (siRNA) duplexes targeting the p85 regulatory subunit of PI3K (p85-siRNA) independently suppressed tyrosine phosphorylation of Gab1; its association with Grb2, SHP-2 and p85; and the activation of Erk in EPO-treated F-36P cells. LY294002 inhibited EPO-induced tyrosine phosphorylation of Gab1 and its association with Grb2 in human primary EPO-sensitive erythroid cells. The co-immunoprecipitation experiments using the Jak inhibitor AG490 or siRNA duplexes targeting Jak2 and in vitro binding experiments demonstrated that Jak2 regulated Gab1-mediated Erk activation through tyrosine phosphorylation of Gab1. Taken together, these results suggest that Gab1 couples PI3K-mediated EPO signals with the Ras/Erk pathway and that Gab1 plays an important role in EPOR-mediated signal transduction involved in the proliferation and survival of erythroid cells.
Collapse
|
41
|
Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21:1717-26. [PMID: 19540337 DOI: 10.1016/j.cellsig.2009.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/01/2023]
Abstract
Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.
Collapse
Affiliation(s)
- Kristina Masson
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Malmö University Hospital, Lund University, 20502 Malmö, Sweden
| | | |
Collapse
|
42
|
Distinct Binding Modes of Two Epitopes in Gab2 that Interact with the SH3C Domain of Grb2. Structure 2009; 17:809-22. [DOI: 10.1016/j.str.2009.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/11/2009] [Accepted: 03/20/2009] [Indexed: 01/11/2023]
|
43
|
Mitomycin C-treated antigen-presenting cells as a tool for control of allograft rejection and autoimmunity: from bench to bedside. Hum Immunol 2009; 70:506-12. [PMID: 19393276 DOI: 10.1016/j.humimm.2009.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/15/2009] [Indexed: 01/09/2023]
Abstract
Cells have been previously used in experimental models for tolerance induction in organ transplantation and autoimmune diseases. One problem with the therapeutic use of cells is standardization of their preparation. We discuss an immunosuppressive strategy relying on cells irreversibly transformed by a chemotherapeutic drug. Dendritic cells (DCs) of transplant donors pretreated with mitomycin C (MMC) strongly prolonged rat heart allograft survival when injected into recipients before transplantation. Likewise, MMC-DCs loaded with myelin basic protein suppressed autoreactive T cells of MS patients in vitro and prevented experimental autoimmune encephalitis in mice. Comprehensive gene microarray analysis identified genes that possibly make up the suppressive phenotype, comprising glucocorticoid leucine zipper, immunoglobulin-like transcript 3, CD80, CD83, CD86, and apoptotic genes. Based on these findings, a hypothetical model of tolerance induction by MMC-treated DCs is delineated. Finally, we describe the first clinical application of MMC-treated monocyte-enriched donor cells in an attempt to control the rejection of a haploidentical stem cell transplant in a sensitized recipient and discuss the pros and cons of using MMC-treated antigen-presenting cells for tolerance induction. Although many questions remain, MMC-treated cells are a promising clinical tool for controlling allograft rejection and deleterious immune responses in autoimmune diseases.
Collapse
|
44
|
Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol 2009; 5:256. [PMID: 19357636 PMCID: PMC2683723 DOI: 10.1038/msb.2009.19] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 02/23/2009] [Indexed: 01/01/2023] Open
Abstract
Crosstalk mechanisms have not been studied as thoroughly as individual signaling pathways. We exploit experimental and computational approaches to reveal how a concordant interplay between the insulin and epidermal growth factor (EGF) signaling networks can potentiate mitogenic signaling. In HEK293 cells, insulin is a poor activator of the Ras/ERK (extracellular signal-regulated kinase) cascade, yet it enhances ERK activation by low EGF doses. We find that major crosstalk mechanisms that amplify ERK signaling are localized upstream of Ras and at the Ras/Raf level. Computational modeling unveils how critical network nodes, the adaptor proteins GAB1 and insulin receptor substrate (IRS), Src kinase, and phosphatase SHP2, convert insulin-induced increase in the phosphatidylinositol-3,4,5-triphosphate (PIP3) concentration into enhanced Ras/ERK activity. The model predicts and experiments confirm that insulin-induced amplification of mitogenic signaling is abolished by disrupting PIP3-mediated positive feedback via GAB1 and IRS. We demonstrate that GAB1 behaves as a non-linear amplifier of mitogenic responses and insulin endows EGF signaling with robustness to GAB1 suppression. Our results show the feasibility of using computational models to identify key target combinations and predict complex cellular responses to a mixture of external cues.
Collapse
|
45
|
Tristano AG. Tyrosine kinases as targets in rheumatoid arthritis. Int Immunopharmacol 2009; 9:1-9. [PMID: 18848912 DOI: 10.1016/j.intimp.2008.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by the accumulation and proliferation of inflammatory cells in the synovial (joint) lining, resulting in the formation of pannus tissue, which invades and destroys adjacent cartilage and bone. In RA macrophages, B cells, mast cells, fibroblast-like synoviocytes (FLSs) and CD4+ T lymphocytes become activated and contribute to synovial inflammation and joint destruction. It has been showed that different tyrosine kinases participate in the activation of those cells having important participation in the physiopathology of RA. Therefore, the tyrosine kinases inhibitors could be the next step in the treatment of patients with RA. This review focuses on recent advances on the role of tyrosine kinases and their inhibitors in the physiopathology of RA.
Collapse
|
46
|
Maus M, Medgyesi D, Kövesdi D, Csuka D, Koncz G, Sármay G. Grb2 associated binder 2 couples B-cell receptor to cell survival. Cell Signal 2008; 21:220-7. [PMID: 18950707 DOI: 10.1016/j.cellsig.2008.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/22/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
B-cell fate during maturation and the germinal center reaction is regulated through the strength and the duration of the B-cell receptor signal. Signaling pathways discriminating between apoptosis and survival in B cells are keys in understanding adaptive immunity. Gab2 is a member of the Gab/Dos adaptor protein family. It has been shown in several model systems that Gab/Dos family members may regulate both the anti-apoptotic PI3-K/Akt and the mitogenic Ras/MAPK pathways, still their role in B-cells have not been investigated in detail. Here we studied the role of Gab2 in B-cell receptor mediated signaling. We have shown that BCR crosslinking induces the marked phosphorylation of Gab2 through both Lyn and Syk kinases. Subsequently Gab2 recruits p85 regulatory subunit of PI3-K, and SHP-2. Our results revealed that Ig-alpha/Ig-beta, signal transducing unit of the B-cell receptor, may function as scaffold recruiting Gab2 to the signalosome. Overexpression of Gab2 in A20 cells demonstrated that Gab2 is a regulator of the PI3-K/Akt but not that of the Ras/MAPK pathway in B cells. Accordingly to the elevated Akt phosphorylation, overexpression of wild-type Gab2 in A20 cells suppressed Fas-mediated apoptosis, and enhanced BCR-mediated rescue from Fas-induced cell death. Although PH-domain has only a stabilizing effect on membrane recruitment of Gab2, it is indispensable in mediating its anti-apoptotic effect.
Collapse
Affiliation(s)
- Máté Maus
- Department of Immunology at Eötvös Loránd University, Pázmány Péter sétány. 1/c, Budapest, 1117, Hungary
| | | | | | | | | | | |
Collapse
|
47
|
Sun J, Pedersen M, Rönnstrand L. Gab2 Is Involved in Differential Phosphoinositide 3-Kinase Signaling by Two Splice Forms of c-Kit. J Biol Chem 2008; 283:27444-27451. [DOI: 10.1074/jbc.m709703200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Rodrigues MS, Reddy MM, Sattler M. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 2008; 10:1813-48. [PMID: 18593226 DOI: 10.1089/ars.2008.2071] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neoplastic expansion of myeloid cells is associated with specific genetic changes that lead to chronic activation of signaling pathways, as well as altered metabolism. It has become increasingly evident that transformation relies on the interdependency of both events. Among the various genetic changes, the oncogenic BCR-ABL tyrosine kinase in patients with Philadelphia chromosome positive chronic myeloid leukemia (CML) has been a focus of extensive research. Transformation by this oncogene is associated with elevated levels of intracellular reactive oxygen species (ROS). ROS have been implicated in processes that promote viability, cell growth, and regulation of other biological functions such as migration of cells or gene expression. Currently, the BCR-ABL inhibitor imatinib mesylate (Gleevec) is being used as a first-line therapy for the treatment of CML. However, BCR-ABL transformation is associated with genomic instability, and disease progression or resistance to imatinib can occur. Imatinib resistance is not known to cause or significantly alter signaling requirements in transformed cells. Elevated ROS are crucial for transformation, making them an ideal additional target for therapeutic intervention. The underlying mechanisms leading to elevated oxidative stress are reviewed, and signaling mechanisms that may serve as novel targeted approaches to overcome ROS-dependent cell growth are discussed.
Collapse
Affiliation(s)
- Margret S Rodrigues
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
49
|
Koyama T, Nakaoka Y, Fujio Y, Hirota H, Nishida K, Sugiyama S, Okamoto K, Yamauchi-Takihara K, Yoshimura M, Mochizuki S, Hori M, Hirano T, Mochizuki N. Interaction of scaffolding adaptor protein Gab1 with tyrosine phosphatase SHP2 negatively regulates IGF-I-dependent myogenic differentiation via the ERK1/2 signaling pathway. J Biol Chem 2008; 283:24234-44. [PMID: 18577518 DOI: 10.1074/jbc.m803907200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grb2-associated binder 1 (Gab1) coordinates various receptor tyrosine kinase signaling pathways. Although skeletal muscle differentiation is regulated by some growth factors, it remains elusive whether Gab1 coordinates myogenic signals. Here, we examined the molecular mechanism of insulin-like growth factor-I (IGF-I)-mediated myogenic differentiation, focusing on Gab1 and its downstream signaling. Gab1 underwent tyrosine phosphorylation and subsequent complex formation with protein-tyrosine phosphatase SHP2 upon IGF-I stimulation in C2C12 myoblasts. On the other hand, Gab1 constitutively associated with phosphatidylinositol 3-kinase regulatory subunit p85. To delineate the role of Gab1 in IGF-I-dependent signaling, we examined the effect of adenovirus-mediated forced expression of wild-type Gab1 (Gab1(WT)), mutated Gab1 that is unable to bind SHP2 (Gab1(DeltaSHP2)), or mutated Gab1 that is unable to bind p85 (Gab1(Deltap85)), on the differentiation of C2C12 myoblasts. IGF-I-induced myogenic differentiation was enhanced in myoblasts overexpressing Gab1(DeltaSHP2), but inhibited in those overexpressing either Gab1(WT) or Gab1(Deltap85). Conversely, IGF-I-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation was significantly repressed in myoblasts overexpressing Gab1(DeltaSHP2) but enhanced in those overexpressing either Gab1(WT) or Gab1(Deltap85). Furthermore, small interference RNA-mediated Gab1 knockdown enhanced myogenic differentiation. Overexpression of catalytic-inactive SHP2 modulated IGF-I-induced myogenic differentiation and ERK1/2 activation similarly to that of Gab1(DeltaSHP2), suggesting that Gab1-SHP2 complex inhibits IGF-I-dependent myogenesis through ERK1/2. Consistently, the blockade of ERK1/2 pathway reversed the inhibitory effect of Gab1(WT) overexpression on myogenic differentiation, and constitutive activation of the ERK1/2 pathway suppressed the enhanced myogenic differentiation by overexpression of Gab1(DeltaSHP2). Collectively, these data suggest that the Gab1-SHP2-ERK1/2 signaling pathway comprises an inhibitory axis for IGF-I-dependent myogenic differentiation.
Collapse
Affiliation(s)
- Tatsuya Koyama
- Department of Structural Analysis, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|