1
|
New-Aaron M, Koganti SS, Ganesan M, Kanika S, Kumar V, Wang W, Makarov E, Kharbanda KK, Poluektova LY, Osna NA. Hepatocyte-Specific Triggering of Hepatic Stellate Cell Profibrotic Activation by Apoptotic Bodies: The Role of Hepatoma-Derived Growth Factor, HIV, and Ethanol. Int J Mol Sci 2023; 24:5346. [PMID: 36982417 PMCID: PMC10049507 DOI: 10.3390/ijms24065346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Liver disease is one of the leading comorbidities in HIV infection. The risk of liver fibrosis development is potentiated by alcohol abuse. In our previous studies, we reported that hepatocytes exposed to HIV and acetaldehyde undergo significant apoptosis, and the engulfment of apoptotic bodies (ABs) by hepatic stellate cells (HSC) potentiates their pro-fibrotic activation. However, in addition to hepatocytes, under the same conditions, ABs can be generated from liver-infiltrating immune cells. The goal of this study is to explore whether lymphocyte-derived ABs trigger HSC profibrotic activation as strongly as hepatocyte-derived ABs. ABs were generated from Huh7.5-CYP2E1 (RLW) cells and Jurkat cells treated with HIV+acetaldehyde and co-culture with HSC to induce their pro-fibrotic activation. ABs cargo was analyzed by proteomics. ABs generated from RLW, but not from Jurkat cells activated fibrogenic genes in HSC. This was driven by the expression of hepatocyte-specific proteins in ABs cargo. One of these proteins is Hepatocyte-Derived Growth Factor, for which suppression attenuates pro-fibrotic activation of HSC. In mice humanized with only immune cells but not human hepatocytes, infected with HIV and fed ethanol, liver fibrosis was not observed. We conclude that HIV+ABs of hepatocyte origin promote HSC activation, which potentially may lead to liver fibrosis progression.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Siva Sankar Koganti
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Sharma Kanika
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Vikas Kumar
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Weimin Wang
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Edward Makarov
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
2
|
Wang K, Qin S, Liang Z, Zhang Y, Xu Y, Chen A, Guo X, Cheng H, Zhang X, Ke Y. Epithelial disruption of Gab1 perturbs surfactant homeostasis and predisposes mice to lung injuries. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1149-L1159. [PMID: 27793798 DOI: 10.1152/ajplung.00107.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
GRB2-associated-binding protein 1 (Gab1) belongs to Gab adaptor family, which integrates multiple signals in response to the epithelial growth factors. Recent genetic studies identified genetic variants of human Gab1 gene as potential risk factors of asthmatic inflammation. However, the functions of Gab1 in lungs remain largely unknown. Alveolar type-II cells (AT-IIs) are responsible for surfactant homeostasis and essentially regulate lung inflammation following various injuries (3). In this study, in vitro knockdown of Gab1 was shown to decrease the surfactant proteins (SPs) levels in AT-IIs. We further examined in vivo Gab1 functions through alveolar epithelium-specific Gab1 knockout mice (Gab1Δ/Δ). In vivo Gab1 deficiency leads to a decrease in SP synthesis and the appearance of disorganized lamellar bodies. Histological analysis of the lung sections in Gab1Δ/Δ mice shows no apparent pathological alterations or inflammation. However, Gab1Δ/Δ mice demonstrate inflammatory responses during the LPS-induced acute lung injury. Similarly, in mice challenged with bleomycin, fibrotic lesions were found to be aggravated in Gab1Δ/Δ These observations suggest that the abolishment of Gab1 in AT-IIs impairs SP homeostasis, predisposing mice to lung injuries. In addition, we observed that the production of surfactants in AT-IIs overexpressing Gab1 mutants, in which Shp2 phosphatase and PI3K kinase binding sites have been mutated (Gab1ΔShp2, Gab1ΔPI3K), has been considerably attenuated. Together, these findings provide the direct evidence about the roles of docking protein Gab1 in lungs, adding to our understanding of acute and interstitial lung diseases caused by the disruption of alveolar SP homeostasis.
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenlu Qin
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyu Liang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchun Xu
- Department of Pulmonary Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and
| | - An Chen
- Department of Neonatal, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China;
| |
Collapse
|