1
|
Gao E, Sun X, Thorne RF, Zhang XD, Li J, Shao F, Ma J, Wu M. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J Transl Med 2023; 21:401. [PMID: 37340421 DOI: 10.1186/s12967-023-04232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Although the executive pathways of senescence are known, the underlying control mechanisms are diverse and not fully understood, particularly how cancer cells avoid triggering senescence despite experiencing exacerbated stress conditions within the tumor microenvironment. METHODS Mass spectrometry (MS)-based proteomic screening was used to identify differentially regulated genes in serum-starved hepatocellular carcinoma cells and RNAi employed to determine knockdown phenotypes of prioritized genes. Thereafter, gene function was investigated using cell proliferation assays (colony-formation, CCK-8, Edu incorporation and cell cycle) together with cellular senescence assays (SA-β-gal, SAHF and SASP). Gene overexpression and knockdown techniques were applied to examine mRNA and protein regulation in combination with luciferase reporter and proteasome degradation assays, respectively. Flow cytometry was applied to detect changes in cellular reactive oxygen species (ROS) and in vivo gene function examined using a xenograft model. RESULTS Among the genes induced by serum deprivation, NIPSNAP1 was selected for investigation. Subsequent experiments revealed that NIPSNAP1 promotes cancer cell proliferation and inhibits P27-dependent induction of senescence via dual mechanisms. Firstly, NIPSNAP1 maintains the levels of c-Myc by sequestering the E3 ubiquitin ligase FBXL14 to prevent the proteasome-mediated turnover of c-Myc. Intriguingly, NIPSNAP1 levels are restrained by transcriptional repression mediated by c-Myc-Miz1, with repression lifted in response to serum withdrawal, thus identifying feedback regulation between NIPSNAP1 and c-Myc. Secondly, NIPSNAP1 was shown to modulate ROS levels by promoting interactions between the deacetylase SIRT3 and superoxide dismutase 2 (SOD2). Consequent activation of SOD2 serves to maintain cellular ROS levels below the critical levels required to induce cell cycle arrest and senescence. Importantly, the actions of NIPSNAP1 in promoting cancer cell proliferation and preventing senescence were recapitulated in vivo using xenograft models. CONCLUSIONS Together, these findings reveal NIPSNAP1 as an important mediator of c-Myc function and a negative regulator of cellular senescence. These findings also provide a theoretical basis for cancer therapy where targeting NIPSNAP1 invokes cellular senescence.
Collapse
Affiliation(s)
- Enyi Gao
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiaoya Sun
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Rick Francis Thorne
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Xu Dong Zhang
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Jinming Li
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Fengmin Shao
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China.
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Garipler G, Lu C, Morrissey A, Lopez-Zepeda LS, Pei Y, Vidal SE, Zen Petisco Fiore AP, Aydin B, Stadtfeld M, Ohler U, Mahony S, Sanjana NE, Mazzoni EO. The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing pro-differentiation genes. Cell Rep 2022; 38:110524. [PMID: 35294876 PMCID: PMC8972945 DOI: 10.1016/j.celrep.2022.110524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/21/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
In pluripotent cells, a delicate activation-repression balance maintains pro-differentiation genes ready for rapid activation. The identity of transcription factors (TFs) that specifically repress pro-differentiation genes remains obscure. By targeting ∼1,700 TFs with CRISPR loss-of-function screen, we found that ZBTB11 and ZFP131 are required for embryonic stem cell (ESC) pluripotency. ESCs without ZBTB11 or ZFP131 lose colony morphology, reduce proliferation rate, and upregulate transcription of genes associated with three germ layers. ZBTB11 and ZFP131 bind proximally to pro-differentiation genes. ZBTB11 or ZFP131 loss leads to an increase in H3K4me3, negative elongation factor (NELF) complex release, and concomitant transcription at associated genes. Together, our results suggest that ZBTB11 and ZFP131 maintain pluripotency by preventing premature expression of pro-differentiation genes and present a generalizable framework to maintain cellular potency.
Collapse
Affiliation(s)
- Görkem Garipler
- Department of Biology, New York University, New York, NY 10003, USA
| | - Congyi Lu
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lorena S Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Yingzhen Pei
- Department of Biology, New York University, New York, NY 10003, USA
| | - Simon E Vidal
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Begüm Aydin
- Department of Biology, New York University, New York, NY 10003, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA.
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
Degani N, Lubelsky Y, Perry RBT, Ainbinder E, Ulitsky I. Highly conserved and cis-acting lncRNAs produced from paralogous regions in the center of HOXA and HOXB clusters in the endoderm lineage. PLoS Genet 2021; 17:e1009681. [PMID: 34280202 PMCID: PMC8330917 DOI: 10.1371/journal.pgen.1009681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/03/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in gene regulatory networks acting in early development. There has been rapid turnover of lncRNA loci during vertebrate evolution, with few human lncRNAs conserved beyond mammals. The sequences of these rare deeply conserved lncRNAs are typically not similar to each other. Here, we characterize HOXA-AS3 and HOXB-AS3, lncRNAs produced from the central regions of the HOXA and HOXB clusters. Sequence-similar orthologs of both lncRNAs are found in multiple vertebrate species and there is evident sequence similarity between their promoters, suggesting that the production of these lncRNAs predates the duplication of the HOX clusters at the root of the vertebrate lineage. This conservation extends to similar expression patterns of the two lncRNAs, in particular in cells transiently arising during early development or in the adult colon. Functionally, the RNA products of HOXA-AS3 and HOXB-AS3 regulate the expression of their overlapping HOX5-7 genes both in HT-29 cells and during differentiation of human embryonic stem cells. Beyond production of paralogous protein-coding and microRNA genes, the regulatory program in the HOX clusters therefore also relies on paralogous lncRNAs acting in restricted spatial and temporal windows of embryonic development and cell differentiation.
Collapse
Affiliation(s)
- Neta Degani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilites, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
4
|
Whitlock NC, Trostel SY, Wilkinson S, Terrigino NT, Hennigan ST, Lake R, Carrabba NV, Atway R, Walton ED, Gryder BE, Capaldo BJ, Ye H, Sowalsky AG. MEIS1 down-regulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Oncogene 2020; 39:5663-5674. [PMID: 32681068 PMCID: PMC7441006 DOI: 10.1038/s41388-020-01389-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Localized prostate cancer develops very slowly in most men, with the androgen receptor (AR) and MYC transcription factors amongst the most well-characterized drivers of prostate tumorigenesis. Canonically, MYC up-regulation in luminal prostate cancer cells functions to oppose the terminally differentiating effects of AR. However, the effects of MYC up-regulation are pleiotropic and inconsistent with a poorly proliferative phenotype. Here we show that increased MYC expression and activity are associated with the down-regulation of MEIS1, a HOX-family transcription factor. Using RNA-seq to profile a series of human prostate cancer specimens laser capture microdissected on the basis of MYC immunohistochemistry, MYC activity, and MEIS1 expression were inversely correlated. Knockdown of MYC expression in prostate cancer cells increased the expression of MEIS1 and increased the occupancy of MYC at the MEIS1 locus. Finally, we show in laser capture microdissected human prostate cancer samples and the prostate TCGA cohort that MEIS1 expression is inversely proportional to AR activity as well as HOXB13, a known interacting protein of both AR and MEIS1. Collectively, our data demonstrate that elevated MYC in a subset of primary prostate cancers functions in a negative role in regulating MEIS1 expression, and that this down-regulation may contribute to MYC-driven development and progression.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicholas T Terrigino
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - S Thomas Hennigan
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nicole V Carrabba
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Rayann Atway
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Elizabeth D Walton
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.,Department of Pathology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Park DE, Cheng J, McGrath JP, Lim MY, Cushman C, Swanson SK, Tillgren ML, Paulo JA, Gokhale PC, Florens L, Washburn MP, Trojer P, DeCaprio JA. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat Cell Biol 2020; 22:603-615. [PMID: 32284543 PMCID: PMC7336275 DOI: 10.1038/s41556-020-0503-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma (MCC), a neuroendocrine cancer of the skin, is caused by integration of Merkel cell polyomavirus (MCV) and persistent expression of Large T antigen (LT) and Small T antigen (ST). We report that ST in complex with MYCL and the EP400 complex activates expression of LSD1 (KDM1A), RCOR2, and INSM1 to repress gene expression by the lineage transcription factor ATOH1. LSD1 inhibition reduces growth of MCC in vitro and in vivo. Through a forward-genetics CRISPR-Cas9 screen, we identified an antagonistic relationship between LSD1 and the non-canonical BAF (ncBAF) chromatin remodeling complex. Changes in gene expression and chromatin accessibility caused by LSD1 inhibition could be partially rescued by BRD9 inhibition, revealing that LSD1 and ncBAF antagonistically regulate an overlapping set of genes. Our work provides mechanistic insight into the dependence of MCC on LSD1 and a tumor suppressor role for ncBAF in cancer.
Collapse
Affiliation(s)
- Donglim Esther Park
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Matthew Y Lim
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Camille Cushman
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michelle L Tillgren
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - James A DeCaprio
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Seruggia D, Oti M, Tripathi P, Canver MC, LeBlanc L, Di Giammartino DC, Bullen MJ, Nefzger CM, Sun YBY, Farouni R, Polo JM, Pinello L, Apostolou E, Kim J, Orkin SH, Das PP. TAF5L and TAF6L Maintain Self-Renewal of Embryonic Stem Cells via the MYC Regulatory Network. Mol Cell 2019; 74:1148-1163.e7. [PMID: 31005419 DOI: 10.1016/j.molcel.2019.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/24/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Self-renewal and pluripotency of the embryonic stem cell (ESC) state are established and maintained by multiple regulatory networks that comprise transcription factors and epigenetic regulators. While much has been learned regarding transcription factors, the function of epigenetic regulators in these networks is less well defined. We conducted a CRISPR-Cas9-mediated loss-of-function genetic screen that identified two epigenetic regulators, TAF5L and TAF6L, components or co-activators of the GNAT-HAT complexes for the mouse ESC (mESC) state. Detailed molecular studies demonstrate that TAF5L/TAF6L transcriptionally activate c-Myc and Oct4 and their corresponding MYC and CORE regulatory networks. Besides, TAF5L/TAF6L predominantly regulate their target genes through H3K9ac deposition and c-MYC recruitment that eventually activate the MYC regulatory network for self-renewal of mESCs. Thus, our findings uncover a role of TAF5L/TAF6L in directing the MYC regulatory network that orchestrates gene expression programs to control self-renewal for the maintenance of mESC state.
Collapse
Affiliation(s)
- Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Oti
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lucy LeBlanc
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dafne C Di Giammartino
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Michael J Bullen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yu Bo Yang Sun
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Rick Farouni
- Molecular Pathology & Cancer Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Luca Pinello
- Molecular Pathology & Cancer Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute (DFCI), Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Partha Pratim Das
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia.
| |
Collapse
|
7
|
Somanath P, Herndon Klein R, Knoepfler PS. CRISPR-mediated HDAC2 disruption identifies two distinct classes of target genes in human cells. PLoS One 2017; 12:e0185627. [PMID: 28982113 PMCID: PMC5628847 DOI: 10.1371/journal.pone.0185627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022] Open
Abstract
The transcriptional functions of the class I histone deacetylases (HDACs) HDAC1 and HDAC2 are mainly viewed as both repressive and redundant based on murine knockout studies, but they may have additional independent roles and their physiological functions in human cells are not as clearly defined. To address the individual epigenomic functions of HDAC2, here we utilized CRISPR-Cas9 to disrupt HDAC2 in human cells. We find that while HDAC2 null cells exhibited signs of cross-regulation between HDAC1 and HDAC2, specific epigenomic phenotypes were still apparent using RNA-seq and ChIP assays. We identified specific targets of HDAC2 repression, and defined a novel class of genes that are actively expressed in a partially HDAC2-dependent manner. While HDAC2 was required for the recruitment of HDAC1 to repressed HDAC2-gene targets, HDAC2 was dispensable for HDAC1 binding to HDAC2-activated targets, supporting the notion of distinct classes of targets. Both active and repressed classes of gene targets demonstrated enhanced histone acetylation and methylation in HDAC2-null cells. Binding of the HDAC1/2-associated SIN3A corepressor was altered at most HDAC2-targets, but without a clear pattern. Overall, our study defines two classes of HDAC2 targets in human cells, with a dependence of HDAC1 on HDAC2 at one class of targets, and distinguishes unique functions for HDAC2.
Collapse
Affiliation(s)
- Priyanka Somanath
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, United States of America
| | - Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, United States of America
| | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Bellio MA, Pinto MT, Florea V, Barrios PA, Taylor CN, Brown AB, Lamondin C, Hare JM, Schulman IH, Rodrigues CO. Hypoxic Stress Decreases c-Myc Protein Stability in Cardiac Progenitor Cells Inducing Quiescence and Compromising Their Proliferative and Vasculogenic Potential. Sci Rep 2017; 7:9702. [PMID: 28851980 PMCID: PMC5575078 DOI: 10.1038/s41598-017-09813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Cardiac progenitor cells (CPCs) have been shown to promote cardiac regeneration and improve heart function. However, evidence suggests that their regenerative capacity may be limited in conditions of severe hypoxia. Elucidating the mechanisms involved in CPC protection against hypoxic stress is essential to maximize their cardioprotective and therapeutic potential. We investigated the effects of hypoxic stress on CPCs and found significant reduction in proliferation and impairment of vasculogenesis, which were associated with induction of quiescence, as indicated by accumulation of cells in the G0-phase of the cell cycle and growth recovery when cells were returned to normoxia. Induction of quiescence was associated with a decrease in the expression of c-Myc through mechanisms involving protein degradation and upregulation of p21. Inhibition of c-Myc mimicked the effects of severe hypoxia on CPC proliferation, also triggering quiescence. Surprisingly, these effects did not involve changes in p21 expression, indicating that other hypoxia-activated factors may induce p21 in CPCs. Our results suggest that hypoxic stress compromises CPC function by inducing quiescence in part through downregulation of c-Myc. In addition, we found that c-Myc is required to preserve CPC growth, suggesting that modulation of pathways downstream of it may re-activate CPC regenerative potential under ischemic conditions.
Collapse
Affiliation(s)
- Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mariana T Pinto
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paola A Barrios
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Christy N Taylor
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ariel B Brown
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Courtney Lamondin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Cardiovascular Division, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Claudia O Rodrigues
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
| |
Collapse
|
9
|
Fagnocchi L, Zippo A. Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Front Cell Dev Biol 2017; 5:7. [PMID: 28217689 PMCID: PMC5289991 DOI: 10.3389/fcell.2017.00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSCs) are defined by their self-renewal potential, which permits their unlimited propagation, and their pluripotency, being able to generate cell of the three embryonic lineages. These properties render PSCs a valuable tool for both basic and medical research. To induce and stabilize the pluripotent state, complex circuitries involving signaling pathways, transcription regulators and epigenetic mechanisms converge on a core transcriptional regulatory network of PSCs, thus determining their cell identity. Among the transcription factors, MYC represents a central hub, which modulates and integrates multiple mechanisms involved both in the maintenance of pluripotency and in cell reprogramming. Indeed, it instructs the PSC-specific cell cycle, metabolism and epigenetic landscape, contributes to limit exit from pluripotency and modulates signaling cascades affecting the PSC identity. Moreover, MYC extends its regulation on pluripotency by controlling PSC-specific non-coding RNAs. In this report, we review the MYC-controlled networks, which support the pluripotent state and discuss how their perturbation could affect cell identity. We further discuss recent finding demonstrating a central role of MYC in triggering epigenetic memory in PSCs, which depends on the establishment of a WNT-centered self-reinforcing circuit. Finally, we comment on the therapeutic implications of the role of MYC in affecting PSCs. Indeed, PSCs are used for both disease and cancer modeling and to derive cells for regenerative medicine. For these reasons, unraveling the MYC-mediated mechanism in those cells is fundamental to exploit their full potential and to identify therapeutic targets.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| | - Alessio Zippo
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM)Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilan, Italy
| |
Collapse
|
10
|
Holien T, Misund K, Olsen OE, Baranowska KA, Buene G, Børset M, Waage A, Sundan A. MYC amplifications in myeloma cell lines: correlation with MYC-inhibitor efficacy. Oncotarget 2016; 6:22698-705. [PMID: 26087190 PMCID: PMC4673192 DOI: 10.18632/oncotarget.4245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 12/29/2022] Open
Abstract
In multiple myeloma, elevated MYC expression is related to disease initiation and progression. We found that in myeloma cell lines, MYC gene amplifications were common and correlated with MYC mRNA and protein. In primary cell samples MYC mRNA levels were also relatively high; however gene copy number alterations were uncommon. Elevated levels of MYC in primary myeloma cells have been reported to arise from complex genetic aberrations and are more common than previously thought. Thus, elevated MYC expression is achieved differently in myeloma cell lines and primary cells. Sensitivity of myeloma cell lines to the MYC inhibitor 10058-F4 correlated with MYC expression, supporting that the activity of 10058-F4 was through specific inhibition of MYC.
Collapse
Affiliation(s)
- Toril Holien
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oddrun Elise Olsen
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katarzyna Anna Baranowska
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Glenn Buene
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magne Børset
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Anders Waage
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olav's University Hospital, Trondheim, Norway
| | - Anders Sundan
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,CEMIR (Centre of Molecular Inflammation Research), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
11
|
Zaidi SK, Boyd JR, Grandy RA, Medina R, Lian JB, Stein GS, Stein JL. Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark. J Cell Physiol 2016; 231:2007-13. [PMID: 26755341 DOI: 10.1002/jcp.25309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 11/05/2022]
Abstract
Embryonic stem cells (ESCs) exhibit unrestricted and indefinite, but stringently controlled, proliferation, and can differentiate into any lineage in the body. In the current study, we test the hypothesis that expression of ribosomal RNA (rRNA) and ribosomal protein genes (RPGs) contribute to the ability of hESCs to proliferate indefinitely. Consistent with the accelerated growth rate of hESCs, we find that hESC lines H1 and H9 both exhibit significantly higher levels of rRNA when compared to a panel of normal and cancer human cell lines. Although many RPGs are expressed at levels that comparable to other human cell lines, a few RPGs also exhibit higher expression levels. In situ nuclear run-on assays reveal that both nucleoli in hESCs actively transcribe nascent rRNA. Employing genome-wide chromatin immunoprecipitation-deep sequencing and bioinformatics approaches, we discovered that, RPGs are dominantly marked by the activating H3K4me3 histone mark in the G1, M, and G2 phases of the cell cycle. Interestingly, the rDNA repeats are marked by the activating H3K4me3 only in the M phase, and repressive H3K27me3 histone mark in all three cell cycle phases. Bioinformatics analyses also reveal that Myc, a known regulator of cell growth and proliferation, occupies both the rRNA genes and RPGs. Functionally, down-regulation of Myc expression by siRNA results in a concomitant decrease in rRNA levels. Together, our results show that expression of rRNA, which is regulated by the Myc pluripotency transcription factor, and of RPGs in hESCs is associated with the activating H3K4me3 modification. J. Cell. Physiol. 231: 2007-2013, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Rodrigo A Grandy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Ricardo Medina
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
12
|
Oricchio E, Papapetrou EP, Lafaille F, Ganat YM, Kriks S, Ortega-Molina A, Mark WH, Teruya-Feldstein J, Huse JT, Reuter V, Sadelain M, Studer L, Wendel HG. A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 2014; 8:1677-1685. [PMID: 25242333 PMCID: PMC4177332 DOI: 10.1016/j.celrep.2014.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/25/2014] [Accepted: 08/16/2014] [Indexed: 11/17/2022] Open
Abstract
The long-term risk of malignancy associated with stem cell therapies is a significant concern in the clinical application of this exciting technology. We report a cancer-selective strategy to enhance the safety of stem cell therapies. Briefly, using a cell engineering approach, we show that aggressive cancers derived from human or murine induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are strikingly sensitive to temporary MYC blockade. On the other hand, differentiated tissues derived from human or mouse iPSCs can readily tolerate temporary MYC inactivation. In cancer cells, endogenous MYC is required to maintain the metabolic and epigenetic functions of the embryonic and cancer-specific pyruvate kinase M2 isoform (PKM2). In summary, our results implicate PKM2 in cancer's increased MYC dependence and indicate dominant MYC inhibition as a cancer-selective fail-safe for stem cell therapies.
Collapse
Affiliation(s)
- Elisa Oricchio
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Eirini P Papapetrou
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Fabien Lafaille
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Yosif M Ganat
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Kriks
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ana Ortega-Molina
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Willie H Mark
- Mouse Genetics Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jason T Huse
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Victor Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenz Studer
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Hans-Guido Wendel
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
13
|
Beck S, Lee BK, Kim J. Multi-layered global gene regulation in mouse embryonic stem cells. Cell Mol Life Sci 2014; 72:199-216. [PMID: 25227241 PMCID: PMC4284393 DOI: 10.1007/s00018-014-1734-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 02/05/2023]
Abstract
Embryonic stem (ES) cells derived from the inner cell mass of developing embryos have tremendous potential in regenerative medicine due to their unique properties: ES cells can be maintained for a prolonged time without changes in their cellular characteristics in vitro (self-renewal), while sustaining the capacity to give rise to all cell types of adult organisms (pluripotency). In addition to the development of protocols to manipulate ES cells for therapeutic applications, understanding how such unique properties are maintained has been one of the key questions in stem cell research. During the past decade, advances in high-throughput technologies have enabled us to systematically monitor multiple layers of gene regulatory mechanisms in ES cells. In this review, we briefly summarize recent findings on global gene regulatory modes in ES cells, mainly focusing on the regulatory factors responsible for transcriptional and epigenetic regulations as well as their modular regulatory patterns throughout the genome.
Collapse
Affiliation(s)
- Samuel Beck
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | | |
Collapse
|
14
|
Barrilleaux BL, Burow D, Lockwood SH, Yu A, Segal DJ, Knoepfler PS. Miz-1 activates gene expression via a novel consensus DNA binding motif. PLoS One 2014; 9:e101151. [PMID: 24983942 PMCID: PMC4077741 DOI: 10.1371/journal.pone.0101151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/03/2014] [Indexed: 01/22/2023] Open
Abstract
The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences—ATCGGTAATC and ATCGAT (Mizm1 and Mizm2)—bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate.
Collapse
Affiliation(s)
- Bonnie L. Barrilleaux
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
| | - Dana Burow
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
| | - Sarah H. Lockwood
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - Abigail Yu
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - David J. Segal
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Nac1 (nucleus accumbens 1) is a POZ (poxvirus and zinc finger)-domain transcriptional repressor that is expressed at high levels in ovarian serous carcinoma. Here we identify Nac1 as a novel interacting partner of the POZ-domain transcriptional activator, Miz1 (Myc-interacting zinc-finger protein 1), and using chemical crosslinking we show that this association is mediated by a heterodimeric interaction of the Nac1 and Miz1 POZ domains. Nac1 is found in discrete bodies within the nucleus of mammalian cells, and we demonstrate the relocalization of Miz1 to these structures in transfected HeLa cells. We show that siRNA (small interfering RNA)-mediated knockdown of Nac1 in ovarian cancer cells results in increased levels of the Miz1 target gene product, p21Cip1. The interaction of Nac1 with Miz1 may thus be relevant to its mechanism of tumourigenesis in ovarian cancer. Nac1 is a transcriptional repressor that has been implicated in ovarian serous carcinoma. Here we show that Nac1 interacts with the transcription factor Miz1, and suggest that this interaction may contribute to tumourigenesis.
Collapse
|
16
|
Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb Perspect Med 2013; 3:a014381. [PMID: 24296349 DOI: 10.1101/cshperspect.a014381] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MYC and MYCN have been directly implicated in the transcriptional regulation of several thousand genes in pluripotent stem cells and possibly contribute to the activity of all transcribed genes. Control of transcription by a pause-release mechanism, recruitment of positive and negative epigenetic regulators, and a general role in transcriptional amplification have all been implicated as part of the broad, overarching mechanism by which MYC controls stem cell biology. As would be anticipated from the regulation of so many genes, MYC is involved in a wide range of cellular processes including cell-cycle control, metabolism, signal transduction, self-renewal, maintenance of pluripotency, and control of cell fate decisions. MYC transcription factors also have clear roles in cell reprogramming and establishment of the pluripotent state. The mechanism by which MYC accomplishes this is now being explored and promises to uncover unexpected facets of general MYC regulation that are likely to be applicable to cancer biology. In this work we review our current understanding of how MYC contributes to the maintenance and establishment of pluripotent cells and how it contributes to early embryonic development.
Collapse
|
17
|
Närvä E, Pursiheimo JP, Laiho A, Rahkonen N, Emani MR, Viitala M, Laurila K, Sahla R, Lund R, Lähdesmäki H, Jaakkola P, Lahesmaa R. Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels. PLoS One 2013; 8:e78847. [PMID: 24236059 PMCID: PMC3827269 DOI: 10.1371/journal.pone.0078847] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022] Open
Abstract
Low oxygen tension (hypoxia) contributes critically to pluripotency of human embryonic stem cells (hESCs) by preventing spontaneous differentiation and supporting self-renewal. However, it is not well understood how hESCs respond to reduced oxygen availability and what are the molecular mechanisms maintaining pluripotency in these conditions. In this study we characterized the transcriptional and molecular responses of three hESC lines (H9, HS401 and HS360) on short (2 hours), intermediate (24 hours) and prolonged (7 days) exposure to low oxygen conditions (4% O2). In response to prolonged hypoxia the expression of pluripotency surface marker SSEA-3 was increased. Furthermore, the genome wide gene-expression analysis revealed that a substantial proportion (12%) of all hypoxia-regulated genes in hESCs, were directly linked to the mechanisms controlling pluripotency or differentiation. Moreover, transcription of MYC oncogene was induced in response to continuous hypoxia. At the protein level MYC was stabilized through phosphorylation already in response to a short hypoxic exposure. Total MYC protein levels remained elevated throughout all the time points studied. Further, MYC protein expression in hypoxia was affected by silencing HIF2α, but not HIF1α. Since MYC has a crucial role in regulating pluripotency we propose that induction of sustained MYC expression in hypoxia contributes to activation of transcriptional programs critical for hESC self-renewal and maintenance of enhanced pluripotent state.
Collapse
Affiliation(s)
- Elisa Närvä
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | - Juha-Pekka Pursiheimo
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | - Nelly Rahkonen
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | - Maheswara Reddy Emani
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | - Miro Viitala
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | - Kirsti Laurila
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
- Department of Information and Computer Science at Aalto University School of Science, Espoo, Finland
| | - Roosa Sahla
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
- Department of Information and Computer Science at Aalto University School of Science, Espoo, Finland
| | - Riikka Lund
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
- Department of Information and Computer Science at Aalto University School of Science, Espoo, Finland
| | - Panu Jaakkola
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, Turku University and Åbo Akademi University, Turku, Finland
- * E-mail:
| |
Collapse
|
18
|
Abstract
The study of MYC has led to pivotal discoveries in cancer biology, induced pluripotency, and transcriptional regulation. In this review, continuing advances in our understanding of the function of MYC as a transcription factor and how its transcriptional activity controls normal vertebrate development and contributes to developmental disorders is discussed.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children Portland, Portland, Oregon 97239
| |
Collapse
|
19
|
Laskowski AI, Knoepfler PS. Myc binds the pluripotency factor Utf1 through the basic-helix-loop-helix leucine zipper domain. Biochem Biophys Res Commun 2013; 435:551-6. [PMID: 23665319 DOI: 10.1016/j.bbrc.2013.04.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 01/10/2023]
Abstract
In order to elucidate the function of Myc in the maintenance of pluripotency and self-renewal in mouse embryonic stem cells (mESCs), we screened for novel ESC-specific interactors of Myc by mass spectrometry. Undifferentiated embryonic cell transcription factor 1 (Utf1) was identified in the screen as a putative Myc binding protein in mESCs. We found that Myc and Utf1 directly interact. Utf1 is a chromatin-associated factor required for maintaining pluripotency and self-renewal in mESCs. It can also replace c-myc during induced pluripotent stem cell (iPSC) generation with relatively high efficiency, and shares target genes with Myc in mESCs highlighting a potentially redundant functional role between Myc and Utf1. A large region of Utf1 was found to be necessary for direct interaction with N-Myc, while the basic helix-loop-helix leucine zipper domain of N-Myc is necessary for direct interaction with Utf1.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | |
Collapse
|
20
|
Do-Umehara HC, Chen C, Urich D, Zhou L, Qiu J, Jang S, Zander A, Baker MA, Eilers M, Sporn PHS, Ridge KM, Sznajder JI, Budinger GRS, Mutlu GM, Lin A, Liu J. Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-δ. Nat Immunol 2013; 14:461-9. [PMID: 23525087 PMCID: PMC3631447 DOI: 10.1038/ni.2566] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/31/2013] [Indexed: 12/17/2022]
Abstract
Inflammation is essential for host defense but can cause tissue damage and organ failure if unchecked. How the inflammation is resolved remains elusive. Here we report that the transcription factor Miz1 was required for terminating lipopolysaccharide (LPS)-induced inflammation. Genetic disruption of the Miz1 POZ domain, which is essential for its transactivation or repression activity, resulted in hyper-inflammation, lung injury and increased mortality in LPS-treated mice while reduced bacterial load and mortality in mice with Pseudomonas aeruginosa pneumonia. Loss of the Miz1 POZ domain prolonged pro-inflammatory cytokine expression. Upon stimulation, Miz1 was phosphorylated at Ser178, which is required for recruiting histone deacetylase 1 to repress transcription of C/EBP-δ, an amplifier of inflammation. Our data provide a long-sought mechanism underlying resolution of LPS-induced inflammation.
Collapse
Affiliation(s)
- Hanh Chi Do-Umehara
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Myc and N-Myc have widespread impacts on the chromatin state within cells, both in a gene-specific and genome-wide manner. Our laboratory uses functional genomic methods including chromatin immunoprecipitation (ChIP), ChIP-chip, and, more recently, ChIP-seq to analyze the binding and genomic location of Myc. In this chapter, we describe an effective ChIP protocol using specific validated antibodies to Myc and N-Myc. We discuss the application of this protocol to several types of stem and cancer cells, with a focus on aspects of sample preparation prior to library preparation that are critical for successful Myc ChIP assays. Key variables are discussed and include the starting quantity of cells or tissue, lysis and sonication conditions, the quantity and quality of antibody used, and the identification of reliable target genes for ChIP validation.
Collapse
Affiliation(s)
- Bonnie L Barrilleaux
- Department of Cell Biology and Human Anatomy, Institute of Pediatric Regenerative Medicine, University of California Davis School of Medicine, USA
| | | | | |
Collapse
|
22
|
Quinn LM, Secombe J, Hime GR. Myc in stem cell behaviour: insights from Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:269-85. [PMID: 23696362 DOI: 10.1007/978-94-007-6621-1_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Myc family proteins are key regulators of animal growth and development, which have critical roles in modulating stem cell behaviour. Since the identification of the oncogenic potential of c-Myc in the early 1980s the mammalian Myc family, which is comprised of c-Myc, N-Myc, and L-Myc, has been studied extensively. dMyc, the only Drosophila member of the Myc gene family, is orthologous to the mammalian c-Myc oncoprotein. Here we discuss key studies addressing the function of the Myc family in stem cell behaviour in both Drosophila Models and mammalian systems.
Collapse
Affiliation(s)
- Leonie M Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne, 3010, VIC, Australia.
| | | | | |
Collapse
|
23
|
Genome-wide analysis of c-MYC-regulated mRNAs and miRNAs, and c-MYC DNA binding by next-generation sequencing. Methods Mol Biol 2013; 1012:145-85. [PMID: 24006064 DOI: 10.1007/978-1-62703-429-6_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The c-MYC oncogene is activated in ~50 % of all tumors, and its product, the c-MYC transcription factor, regulates numerous processes, which contribute to tumor initiation and progression. Therefore, the genome-wide characterization of c-MYC targets and their role in different tumor entities is a recurrent theme in cancer research. Recently, next-generation sequencing (NGS) has become a powerful tool to analyze mRNA and miRNA expression, as well as DNA binding of proteins in a genome-wide manner with an extremely high resolution and coverage. Since the c-MYC transcription factor regulates mRNA and miRNA expression by binding to specific DNA elements in the vicinity of promoters, NGS can be used to generate integrated representations of c-MYC-mediated regulations of gene transcription and chromatin modifications. Here, we provide protocols and examples of NGS-based analyses of c-MYC-regulated mRNA and miRNA expression, as well as of DNA binding by c-MYC. Furthermore, the validation of single c-MYC targets identified by NGS is described. Taken together, these approaches allow an accelerated and comprehensive analysis of c-MYC function in numerous cellular contexts which will further illuminate the role of this important oncogene.
Collapse
|
24
|
Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V, Knoepfler PS. Induced pluripotency and oncogenic transformation are related processes. Stem Cells Dev 2012; 22:37-50. [PMID: 22998387 DOI: 10.1089/scd.2012.0375] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have the potential for creating patient-specific regenerative medicine therapies, but the links between pluripotency and tumorigenicity raise important safety concerns. More specifically, the methods employed for the production of iPSCs and oncogenic foci (OF), a form of in vitro produced tumor cells, are surprisingly similar, raising potential concerns about iPSCs. To test the hypotheses that iPSCs and OF are related cell types and, more broadly, that the induction of pluripotency and tumorigenicity are related processes, we produced iPSCs and OF in parallel from common parental fibroblasts. When we compared the transcriptomes of these iPSCs and OF to their parental fibroblasts, similar transcriptional changes were observed in both iPSCs and OF. A significant number of genes repressed during the iPSC formation were also repressed in OF, including a large cohort of differentiation-associated genes. iPSCs and OF shared a limited number of genes that were upregulated relative to parental fibroblasts, but gene ontology analysis pointed toward monosaccharide metabolism as upregulated in both iPSCs and OF. iPSCs and OF were distinct in that only iPSCs activated a host of pluripotency-related genes, while OF activated cellular damage and specific metabolic pathways. We reprogrammed oncogenic foci (ROF) to produce iPSC-like cells, a process dependent on Nanog. However, the ROF had reduced differentiation potential compared to iPSC, suggesting that oncogenic transformation leads to cellular changes that impair complete reprogramming. Taken together, these findings support a model in which OF and iPSCs are related, yet distinct cell types, and in which induced pluripotency and induced tumorigenesis are similar processes.
Collapse
Affiliation(s)
- John W Riggs
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, California 95616, USA
| | | | | | | | | | | |
Collapse
|
25
|
Vickers DAL, Kulik M, Hincapie M, Hancock WS, Dalton S, Murthy SK. Lectin-functionalized microchannels for characterizing pluripotent cells and early differentiation. BIOMICROFLUIDICS 2012; 6:24122-2412210. [PMID: 22712033 PMCID: PMC3371070 DOI: 10.1063/1.4719979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/06/2012] [Indexed: 05/07/2023]
Abstract
Embryonic stem (ES) cells are capable of proliferating and differentiating to form cells of the three embryonic germ layers, namely, endoderm, mesoderm, and ectoderm. The utilization of human ES cell derivatives requires the ability to direct differentiation to specific lineages in defined, efficient, and scalable systems. Better markers are needed to identify early differentiation. Lectins have been reported as an attractive alternative to the common stem cell markers. They have been used to identify, characterize, and isolate various cell subpopulations on the basis of the presentation of specific carbohydrate groups on the cell surface. This article demonstrates how simple adhesion assays in lectin-coated microfluidic channels can provide key information on the interaction of lectins with ES and definitive endoderm cells and thereby track early differentiation. The microfluidic approach incorporates both binding strength and cell surface receptor density, whereas traditional flow cytometry only incorporates the latter. Both approaches are examined and shown to be complementary with the microfluidic approach providing more biologically relevant information.
Collapse
|