1
|
Qin C, Yang X, Zuo Z, Yuan P, Sun F, Luo X, Ye X, Cao Z, Chen Z, Wu Y. Differential potassium channel inhibitory activities of a novel thermostable degradation peptide BmKcug1a-P1 from scorpion medicinal material and its N-terminal truncated/restored peptides. Sci Rep 2024; 14:16092. [PMID: 38997408 PMCID: PMC11245557 DOI: 10.1038/s41598-024-66794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 μM and 1.54 ± 0.28 μM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.
Collapse
Affiliation(s)
- Chenhu Qin
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixin Yuan
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan, 430072, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Center for BioDrug Research, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Hu Y, Meng B, Yin S, Yang M, Li Y, Liu N, Li S, Liu Y, Sun D, Wang S, Wang Y, Fu Z, Wu Y, Pang A, Sun J, Wang Y, Yang X. Scorpion venom peptide HsTx2 suppressed PTZ-induced seizures in mice via the circ_0001293/miR-8114/TGF-β2 axis. J Neuroinflammation 2022; 19:284. [PMID: 36457055 PMCID: PMC9713996 DOI: 10.1186/s12974-022-02647-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Due to the complexity of the mechanisms involved in epileptogenesis, the available antiseizure drugs (ASDs) do not meet clinical needs; hence, both the discovery of new ASDs and the elucidation of novel molecular mechanisms are very important. METHODS BALB/c mice were utilized to establish an epilepsy model induced by pentylenetetrazol (PTZ) administration. The peptide HsTx2 was administered for treatment. Primary astrocyte culture, immunofluorescence staining, RNA sequencing, identification and quantification of mouse circRNAs, cell transfection, bioinformatics and luciferase reporter analyses, enzyme-linked immunosorbent assay, RNA extraction and reverse transcription-quantitative PCR, Western blot and cell viability assays were used to explore the potential mechanism of HsTx2 via the circ_0001293/miR-8114/TGF-β2 axis. RESULTS The scorpion venom peptide HsTx2 showed an anti-epilepsy effect, reduced the inflammatory response, and improved the circular RNA circ_0001293 expression decrease caused by PTZ in the mouse brain. Mechanistically, in astrocytes, circ_0001293 acted as a sponge of endogenous microRNA-8114 (miR-8114), which targets transforming growth factor-beta 2 (TGF-β2). The knockdown of circ_0001293, overexpression of miR-8114, and downregulation of TGF-β2 all reversed the anti-inflammatory effects and the influence of HsTx2 on the MAPK and NF-κB signaling pathways in astrocytes. Moreover, both circ_0001293 knockdown and miR-8114 overexpression reversed the beneficial effects of HsTx2 on inflammation, epilepsy progression, and the MAPK and NF-κB signaling pathways in vivo. CONCLUSIONS HsTx2 suppressed PTZ-induced epilepsy by ameliorating inflammation in astrocytes via the circ_0001293/miR-8114/TGF-β2 axis. Our results emphasized that the use of exogenous peptide molecular probes as a novel type of ASD, as well as to explore the novel endogenous noncoding RNA-mediated mechanisms of epilepsy, might be a promising research area.
Collapse
Affiliation(s)
- Yan Hu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.452826.fDepartment of Gynecology, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118 Yunnan China
| | - Buliang Meng
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Saige Yin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Meifeng Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yilin Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Naixin Liu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Shanshan Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yixiang Liu
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Dandan Sun
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Siyu Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yinglei Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zhe Fu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yutong Wu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ailan Pang
- grid.414902.a0000 0004 1771 3912Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650031 Yunnan China
| | - Jun Sun
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ying Wang
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Xinwang Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| |
Collapse
|
3
|
Multipurpose E-bioplatform targeting Kv channels in whole cancer cells and evaluating of their potential therapeutics. Anal Chim Acta 2022; 1231:340397. [DOI: 10.1016/j.aca.2022.340397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
|
4
|
Qin C, Yang X, Zuo Z, Yang L, Yang F, Cao Z, Chen Z, Wu Y. BmK86-P1, a New Degradation Peptide with Desirable Thermostability and Kv1.2 Channel-Specific Activity from Traditional Chinese Scorpion Medicinal Material. Toxins (Basel) 2021; 13:toxins13090610. [PMID: 34564614 PMCID: PMC8472965 DOI: 10.3390/toxins13090610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Thermally processed Buthus martensii Karsch scorpions are a traditional Chinese medical material for treating various diseases. However, their pharmacological foundation remains unclear. Here, a new degraded peptide of scorpion toxin was identified in Chinese scorpion medicinal material by proteomics. It was named BmK86-P1 and has six conserved cysteine residues. Homology modeling and circular dichroism spectra experiments revealed that BmK86-P1 not only contained representative disulfide bond-stabilized α-helical and β-sheet motifs but also showed remarkable stability at test temperatures from 20-95 °C. Electrophysiology experiments indicated that BmK86-P1 was a highly potent and selective inhibitor of the hKv1.2 channel with IC50 values of 28.5 ± 6.3 nM. Structural and functional dissection revealed that two residues of BmK86-P1 (i.e., Lys19 and Ile21) were the key residues that interacted with the hKv1.2 channel. In addition, channel chimeras and mutagenesis experiments revealed that three amino acids (i.e., Gln357, Val381 and Thr383) of the hKv1.2 channel were responsible for BmK86-P1 selectivity. This research uncovered a new bioactive peptide from traditional Chinese scorpion medicinal material that has desirable thermostability and Kv1.2 channel-specific activity, which strongly suggests that thermally processed scorpions are novel peptide resources for new drug discovery for the Kv1.2 channel-related ataxia and epilepsy diseases.
Collapse
Affiliation(s)
- Chenhu Qin
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
| | - Liuting Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
| | - Fan Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
| | - Zongyun Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (C.Q.); (X.Y.); (Z.Z.); (L.Y.); (F.Y.); (Z.C.); (Z.C.)
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
5
|
Qin C, Wan X, Li S, Yang F, Yang L, Zuo Z, Cao Z, Chen Z, Wu Y. Different pharmacological properties between scorpion toxin BmKcug2 and its degraded analogs highlight the diversity of K + channel blockers from thermally processed scorpions. Int J Biol Macromol 2021; 178:143-153. [PMID: 33636268 DOI: 10.1016/j.ijbiomac.2021.02.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
Novel degraded potassium channel-modulatory peptides were recently found in thermally processed scorpions, but their pharmacological properties remain unclear. Here, we identified a full-length scorpion toxin (i.e., BmKcug2) and its four truncated analogs (i.e., BmKcug2-P1, BmKcug2-P2, BmKcug2-P3 and BmKcug2-P4) with three conserved disulfide bonds in processed scorpion medicinal material by mass spectrometry. The pharmacological experiments revealed that the recombinant BmKcug2 and BmKcug2-P1 could selectively inhibit the human Kv1.2 and human Kv1.3 potassium channels, while the other three analogs showed a much weaker inhibitory effect on potassium channels. BmKcug2 inhibited hKv1.2 and hKv1.3 channels, with IC50 values of 45.6 ± 5.8 nM and 215.2 ± 39.7 nM, respectively, and BmKcug2-P1 inhibited hKv1.2 and hKv1.3, with IC50 values of 89.9 ± 9.6 nM and 1142.4 ± 64.5 nM, respectively. The chromatographic analysis and pharmacological properties of BmKcug2 and BmKcug2-P1 boiled in water for different times further strongly supported their good thermal stability. Structural and functional dissection indicated that one amino acid, i.e., Tyr36, determined the differential affinities of BmKcug2 and four BmKcug2 analogs. Altogether, this research investigated the different pharmacological properties of BmKcug2 and its truncated analogs, and the findings highlighted the diversity of K+ channel blockers from various scorpion species through thermal processing.
Collapse
Affiliation(s)
- Chenhu Qin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiuping Wan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Songryong Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Department of Biotechnology, Institute for Life Science, Kim Hyong Jik University of Education, Pyongyang, Democratic People's Republic of Korea
| | - Fan Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liuting Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zheng Zuo
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Center for BioDrug Research, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
6
|
Guo F, Sun Y, Wang X, Wang H, Wang J, Gong T, Chen X, Zhang P, Su L, Fu G, Su J, Yang S, Lai R, Jiang C, Liang P. Patient-Specific and Gene-Corrected Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Short QT Syndrome. Circ Res 2019; 124:66-78. [PMID: 30582453 DOI: 10.1161/circresaha.118.313518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Short QT syndrome (SQT) is a rare but arrhythmogenic disorder featured by shortened ventricular repolarization and a propensity toward life-threatening ventricular arrhythmias and sudden cardiac death. OBJECTIVE This study aimed to investigate the single-cell mechanism of SQT using patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS AND RESULTS One SQT patient carrying missense mutation T618I in potassium voltage-gated channel subfamily H member 2 ( KCNH2) was recruited as well as 2 healthy control subjects in this study. Control and SQT patient-specific iPSCs were generated from skin fibroblasts using nonintegrated Sendai virus. The KCNH2 T618I mutation was corrected by genome editing in SQT iPSC lines to generate isogenic controls. All iPSCs were differentiated into iPSC-CMs using monolayer-based differentiation protocol. SQT iPSC-CMs exhibited abnormal action potential phenotype featured by shortened action potential duration and increased beat-beat interval variability, when compared with control and gene-corrected iPSC-CMs. Furthermore, SQT iPSC-CMs showed KCNH2 gain-of-function with increased rapid delayed rectifying potassium current (IKr) density and enhanced membrane expression. Gene expression profiling of iPSC-CMs exhibited a differential cardiac ion-channel gene expression profile of SQT. Moreover, QTc of SQT patient and action potential durations of SQT iPSC-CMs were both normalized by quinidine, indicating that quinidine is beneficial to KCNH2 T618I of SQT. Importantly, shortened action potential duration phenotype observed in SQT iPSC-CMs was effectively rescued by a short-peptide scorpion toxin BmKKx2 with a mechanism of targeting KCNH2. CONCLUSIONS We demonstrate that patient-specific and gene-corrected iPSC-CMs are able to recapitulate single-cell phenotype of SQT, which is caused by the gain-of-function mutation KCNH2 T618I. These findings will help elucidate the mechanisms underlying SQT and discover therapeutic drugs for treating the disease by using peptide toxins as lead compounds.
Collapse
Affiliation(s)
- Fengfeng Guo
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaxun Sun
- Department of Cardiology (Y.S., C.J.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Hao Wang
- Department of Prenatal Diagnosis (Screening) Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), China (H.W.)
| | - Jue Wang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Tingyu Gong
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venerology (X.C.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgeng Hospital, China (P.Z.)
| | - Lan Su
- Cardiovascular Medicine Department, The First Affiliated Hospital of Wenzhou Medical University, China (L.S.)
| | - Guosheng Fu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Jun Su
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.).,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China.,Key Laboratory of Bioactive Peptides of Yunnan Province (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China.,Key Laboratory of Bioactive Peptides of Yunnan Province (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Chenyang Jiang
- Department of Cardiology (Y.S., C.J.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Liang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| |
Collapse
|
7
|
Pore-modulating toxins exploit inherent slow inactivation to block K + channels. Proc Natl Acad Sci U S A 2019; 116:18700-18709. [PMID: 31444298 DOI: 10.1073/pnas.1908903116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Voltage-dependent potassium channels (Kvs) gate in response to changes in electrical membrane potential by coupling a voltage-sensing module with a K+-selective pore. Animal toxins targeting Kvs are classified as pore blockers, which physically plug the ion conduction pathway, or as gating modifiers, which disrupt voltage sensor movements. A third group of toxins blocks K+ conduction by an unknown mechanism via binding to the channel turrets. Here, we show that Conkunitzin-S1 (Cs1), a peptide toxin isolated from cone snail venom, binds at the turrets of Kv1.2 and targets a network of hydrogen bonds that govern water access to the peripheral cavities that surround the central pore. The resulting ectopic water flow triggers an asymmetric collapse of the pore by a process resembling that of inherent slow inactivation. Pore modulation by animal toxins exposes the peripheral cavity of K+ channels as a novel pharmacological target and provides a rational framework for drug design.
Collapse
|
8
|
Zhao Y, Chen Z, Cao Z, Li W, Wu Y. Diverse Structural Features of Potassium Channels Characterized by Scorpion Toxins as Molecular Probes. Molecules 2019; 24:molecules24112045. [PMID: 31146335 PMCID: PMC6600638 DOI: 10.3390/molecules24112045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022] Open
Abstract
Scorpion toxins are well-known as the largest potassium channel peptide blocker family. They have been successfully proven to be valuable molecular probes for structural research on diverse potassium channels. The potassium channel pore region, including the turret and filter regions, is the binding interface for scorpion toxins, and structural features from different potassium channels have been identified using different scorpion toxins. According to the spatial orientation of channel turrets with differential sequence lengths and identities, conformational changes and molecular surface properties, the potassium channel turrets can be divided into the following three states: open state with less hindering effects on toxin binding, half-open state or half-closed state with certain effects on toxin binding, and closed state with remarkable effects on toxin binding. In this review, we summarized the diverse structural features of potassium channels explored using scorpion toxin tools and discuss future work in the field of scorpion toxin-potassium channel interactions.
Collapse
Affiliation(s)
- Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
POULSEN KRISTIANL, HOTAIT MOSTAFA, CALLOE KIRSTINE, KLAERKE DANA, REBEIZ ABDALLAH, NEMER GEORGES, TEJADA MARIAA, REFAAT MARWANM. The Mutation P.T613a in the Pore Helix of the Kv11.1 Potassium Channel is Associated with Long QT Syndrome. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2015; 38:1304-9. [DOI: 10.1111/pace.12693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/15/2015] [Accepted: 06/28/2015] [Indexed: 11/30/2022]
Affiliation(s)
- KRISTIAN L. POULSEN
- Department of Veterinary Clinical and Animal Science; University of Copenhagen; Frederiksberg C Denmark
| | - MOSTAFA HOTAIT
- Cardiology Division, Department of Internal Medicine; American University of Beirut; Beirut Lebanon
| | - KIRSTINE CALLOE
- Department of Veterinary Clinical and Animal Science; University of Copenhagen; Frederiksberg C Denmark
| | - DAN A. KLAERKE
- Department of Veterinary Clinical and Animal Science; University of Copenhagen; Frederiksberg C Denmark
| | - ABDALLAH REBEIZ
- Cardiology Division, Department of Internal Medicine; American University of Beirut; Beirut Lebanon
| | - GEORGES NEMER
- Department of Biochemistry and Molecular Genetics; American University of Beirut; Beirut Lebanon
| | - MARIA A. TEJADA
- Department of Veterinary Clinical and Animal Science; University of Copenhagen; Frederiksberg C Denmark
| | - MARWAN M. REFAAT
- Cardiology Division, Department of Internal Medicine; American University of Beirut; Beirut Lebanon
- Department of Biochemistry and Molecular Genetics; American University of Beirut; Beirut Lebanon
| |
Collapse
|
10
|
Chen Z, Hu Y, Hong J, Hu J, Yang W, Xiang F, Yang F, Xie Z, Cao Z, Li W, Lin D, Wu Y. Toxin acidic residue evolutionary function-guided design of de novo peptide drugs for the immunotherapeutic target, the Kv1.3 channel. Sci Rep 2015; 5:9881. [PMID: 25955787 PMCID: PMC4424837 DOI: 10.1038/srep09881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
Abstract
During the long-term evolution of animal toxins acting on potassium channels, the acidic residues can orientate the toxin binding interfaces by adjusting the molecular polarity. Based on the evolutionary function of toxin acidic residues, de novo peptide drugs with distinct binding interfaces were designed for the immunotherapeutic target, the Kv1.3 channel. Using a natural basic toxin, BmKTX, as a template, which contains 2 acidic residues (Asp19 and Asp33), we engineered two new peptides BmKTX-19 with 1 acidic residue (Asp33), and BmKTX-196 with 2 acidic residues (Asp6 and Asp33) through only adjusting acidic residue distribution for reorientation of BmKTX binding interface. Pharmacological experiments indicated that BmKTX-19 and BmKTX-196 peptides were specific inhibitors of the Kv1.3 channel and effectively suppressed cytokine secretion. In addition to the structural similarity between the designed and native peptides, both experimental alanine-scanning mutagenesis and computational simulation further indicated that the binding interface of wild-type BmKTX was successfully reoriented in BmKTX-19 and BmKTX-196, which adopted distinct toxin surfaces as binding interfaces. Together, these findings indicate not only the promising prospect of BmKTX-19 and BmKTX-196 as drug candidates but also the desirable feasibility of the evolution-guided peptide drug design for discovering numerous peptide drugs for the Kv1.3 channel.
Collapse
Affiliation(s)
- Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Youtian Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Hong
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Jun Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- 1] State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China [2] Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Wenxin Li
- 1] State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China [2] Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingliang Wu
- 1] State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China [2] Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| |
Collapse
|