1
|
Yang CC, Zhang S, Zhang R, Zhao YN, Yang DW, Yang MY, Huang LJ. Application of Saccharomyces boulardii in combination with sulfasalazine in ulcerative colitis patients demonstrates significant effectiveness. World J Gastrointest Surg 2025; 17:102342. [DOI: 10.4240/wjgs.v17.i2.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a complex inflammatory bowel disease, and its etiology and pathogenesis remain incompletely elucidated.
AIM To analyze the effects of Saccharomyces boulardii in combination with sulfasalazine on intestinal microbiota and intestinal barrier function in patients with UC.
METHODS A retrospective analysis of clinical data from 127 UC patients admitted to our hospital between January 2021 and January 2023 was conducted. All patients met complete inclusion and exclusion criteria. Based on the treatment interventions received, they were divided into a control group (n = 63) and an observation group (n = 64). Both groups of patients received routine treatment upon admission. The control group received sulfasalazine in addition to routine interventions, while the observation group received a combination of Saccharomyces boulardii on the basis of the control group’s treatment. The clinical efficacy, improvement in symptoms, modified Baron endoscopic scores, quality of life “inflammatory bowel disease questionnaire (IBDQ)”, levels of intestinal microbial indicators (such as Lactobacillus, Bifidobacterium, Enterococcus, and Escherichia coli), intestinal mucosal barrier function indicators [diamine oxidase (DAO), lipopolysaccharide (LPS), D-lactic acid (D-LA)], and adverse reaction occurrences were compared between the two groups.
RESULTS (1) Clinical efficacy: The total effective rate in the control group was 79.37%, while in the observation group, it was 93.75%, significantly higher than that of the control group (P < 0.05); (2) Improvement in symptoms: The observation group showed significantly lower relief time for abdominal pain, diarrhea, rectal bleeding, fever symptoms, and mucosal healing time compared to the control group (P < 0.05); (3) Baron endoscopic scores and IBDQ scores: Before treatment, there was no significant difference in Baron endoscopic scores and IBDQ scores between the two groups (P > 0.05). However, after treatment, the observation group showed significantly lower Baron endoscopic scores and higher IBDQ scores compared to the control group (P < 0.05); (4) Levels of intestinal microbial indicators: Before treatment, there was no significant difference in the levels of Lactobacillus, Bifidobacterium, Enterococcus, and Escherichia coli between the two groups (P > 0.05). After treatment, the levels of Lactobacillus and Bifidobacterium in the observation group were significantly higher than those in the control group, while the levels of Enterococcus and Escherichia coli were significantly lower than those in the control group (P < 0.05); (5) Levels of intestinal mucosal barrier function indicators: Before treatment, there was no significant difference in the levels of DAO, LPS, and D-LA between the two groups (P > 0.05). However, after treatment, the levels of DAO, LPS, and D-LA in the observation group were significantly lower than those in the control group (P < 0.05); and (6) Occurrence of adverse reactions: The incidence of adverse reactions in the control group was 9.52%, while in the observation group, it was 10.94%. There was no significant difference in the occurrence of adverse reactions between the two groups (P > 0.05).
CONCLUSION The application of Saccharomyces boulardii in combination with sulfasalazine in UC patients demonstrates significant effectiveness. Compared to sole sulfasalazine intervention, the combined application of Saccharomyces boulardii further promotes the relief of relevant symptoms in patients, alleviates intestinal mucosal inflammation, and improves the quality of life. Its action may be related to rectifying the imbalance in intestinal microbiota and improving intestinal mucosal barrier function. Moreover, the combined use of Saccharomyces boulardii does not increase the risk of adverse reactions in patients, indicating a higher level of medication safety and advocating for its clinical promotion and application.
Collapse
Affiliation(s)
- Chun-Chun Yang
- Department of Gastroenterology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Sui Zhang
- Department of Hepatic, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Rui Zhang
- Department of Gastroenterology Center, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ya-Nan Zhao
- Department of Gastroenterology Center, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Da-Wei Yang
- Department of Hepatic, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ming-Yue Yang
- Department of Gastroenterology Center, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Li-Jing Huang
- Department of Rheumatology and Immunology, The First Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
2
|
Jin Y, Liu H, Wang Y, Zhang R, Wang Q, Wang Y, Cui H, Wang X, Bian Y. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119096. [PMID: 39532222 DOI: 10.1016/j.jep.2024.119096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory Bowel Disease (IBD) is an inflammatory intestinal disease, and with prolonged illness duration, the annual risk of IBD progressing to colitis-associated colorectal cancer (CAC) gradually increases. In recent years, there has been a noticeable trend towards the application of traditional Chinese medicine (TCM) in the treatment of CAC. AIM OF THIS REVIEW This comprehensive review summarizes the pathogenesis of CAC and details the therapeutic benefits of TCM in treating CAC, including various TCM prescriptions and ingredients, establishing the theoretical foundation for the application of TCM in CAC treatment. METHODS We assessed literature published before March 24, 2024, from several databases, including Web of Science, PubMed, Scopus and Google Scholar. The keywords used include "traditional Chinese medicine", "traditional Chinese medicine prescriptions", "traditional Chinese medicine ingredients", "herbal medicine", "colitis-associated colorectal cancer", "inflammatory bowel disease", "colorectal cancer" and "colitis-cancer transformation". We conducted a comprehensive collection and collation of pertinent scientific articles from various databases, focusing on the efficacy of TCM in the prevention and treatment of "colitis-cancer transformation". RESULTS This paper provides a concise summary and thorough analysis of twenty-eight prescriptions and ingredients of TCM for the prevention and treatment of CAC, based on existing experimental and clinical research. There are positive signs that TCM can effectively prevent and treat the "colitis-cancer transformation" through repairing the intestinal mucosal barrier, correcting intestinal flora imbalance, and regulating intestinal immune responses. CONCLUSION TCM possesses comprehensive regulatory advantages that are multifaceted, multilevel, and multitarget. It has a definite curative effect in the prevention and treatment of CAC. It is essential to enhance the clinical efficacy of TCM in the prevention and treatment of CAC based on syndrome differentiation and treatment, with the assistance of modern medicine.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haizhao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yuhui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruixuan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaochu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangling Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Yang W, Li T, An S, Chen R, Zhao Y, Cui J, Zhang M, Lu J, Tian Y, Bao L, Zhao P. Ligilactobacillus salivarius LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice. Microbiol Spectr 2025; 13:e0186124. [PMID: 39792005 PMCID: PMC11792455 DOI: 10.1128/spectrum.01861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects. The probiotics have the potential to prevent CRC, and they display a favorable safety performance. Probiotics could provide a potential strategy to prevent and treat CRC. The impact of LZZAY01 on cancer cell lines CT-26, HCT-116, and SW-620 was evaluated by conducting cytotoxicity and clonogenicity tests. A model of colitis-associated cancer (CAC) was established in C57BL/6j mice following induction with AOM/DSS. The levels of autophagy and apoptosis proteins, tight junction proteins, and inflammatory factors were detected by western blotting, immunofluorescence assay, and enzyme-linked immunosorbent assay. High-throughput sequencing of gut 16S rRNA was performed to analyze the abundance and diversity of the gut microbiome. LZZAY01, a new strain of Ligilactobacillus salivarius, was certified by an evolutionary tree and average nucleotide identity. LZZAY01 enhanced autophagy and apoptosis in CT-26, HCT-116, and SW-620 cell lines. It preserved the integrity of the intestinal barrier by regulating the tight junction protein ZO-1 and claudin-1. The tumor necrosis factor-α and interleukin-6 were reduced by LZZAY01. The abundance and diversity of the intestinal microbiota were enhanced, especially the beneficial bacterial species maintaining the balance of the intestinal flora such as Bifidobacterium and Lactobacillus. L. salivarius LZZAY01 improved CAC via suppressing the growth of colon cancer cells, promoting autophagy and apoptosis, enhancing intestinal tight junctions, reducing intestinal barrier degradation, modifying the gut microbiota abundance, and decreasing inflammatory reactions.IMPORTANCEAlthough similar probiotics have been shown to have anticancer potential in colorectal cancer (CRC), there is a paucity of research related to the preventive function of probiotics against CRC. And there are fewer studies about the mechanism of probiotics' preventive effects on CRC. The regulation of tumor cell proliferation and apoptosis by the active ingredients of probiotics may be one of the mechanisms of their prevention of CRC. In this study, we explored the effects of L. salivarius LZZAY01 on autophagy and apoptosis of colon cancer cells in vitro and in vivo and proposed a possible mechanism for the prevention of CRC by probiotics.
Collapse
Affiliation(s)
- Wenhong Yang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Tao Li
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Shixiang An
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Rong Chen
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Yuxin Zhao
- Department of Anesthesiology, Inner Mongolia Chest Hospital (The Fourth Hospital), Hohhot, China
| | - Jiaxian Cui
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Mingyu Zhang
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Jingkun Lu
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yunpeng Tian
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Lili Bao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Pengwei Zhao
- Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
4
|
Rebeck ON, Wallace MJ, Prusa J, Ning J, Evbuomwan EM, Rengarajan S, Habimana-Griffin L, Kwak S, Zahrah D, Tung J, Liao J, Mahmud B, Fishbein SRS, Ramirez Tovar ES, Mehta R, Wang B, Gorelik MG, Helmink BA, Dantas G. A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden. Cell Chem Biol 2025; 32:98-110.e7. [PMID: 39571582 PMCID: PMC11741927 DOI: 10.1016/j.chembiol.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var. boulardii (Sb), a probiotic yeast with high genetic tractability and innate anticancer activity, to secrete "miniature" antibody variants that target programmed death ligand 1 (Sb_haPD-1). When tested in an ICI-refractory colorectal cancer (CRC) mouse model, Sb_haPD-1 significantly reduced intestinal tumor burden and resulted in significant shifts to the immune cell profile and microbiome composition. This oral therapeutic platform is modular and highly customizable, opening new avenues of targeted drug delivery that can be applied to treat a myriad of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miranda J Wallace
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome Prusa
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Esse M Evbuomwan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sunaina Rengarajan
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63110, USA
| | - LeMoyne Habimana-Griffin
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suryang Kwak
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Zahrah
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Tung
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Liao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erick S Ramirez Tovar
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rehan Mehta
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark G Gorelik
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth A Helmink
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Zhou Z, Kleis L, Depetris-Chauvin A, Jaskulski S, Damerell V, Michels KB, Gigic B, Nöthlings U, Panagiotou G. Beneficial microbiome and diet interplay in early-onset colorectal cancer. EMBO Mol Med 2025; 17:9-30. [PMID: 39653811 PMCID: PMC11730345 DOI: 10.1038/s44321-024-00177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Although the risk of developing CRC increases with age, approximately 10% of newly diagnosed cases occur in individuals under the age of 50. Significant changes in dietary habits in young adults since industrialization create a favorable microenvironment for colorectal carcinogenesis. We aim here to shed light on the complex interplay between diet and gut microbiome in the pathogenesis and prevention of early-onset CRC (EO-CRC). We provide an overview of dietary risk factors associated with EO-CRC and contrast them with the general trends for CRC. We delve into gut bacteria, fungi, and phages with potential benefits against CRC and discuss the underlying molecular mechanisms. Furthermore, based on recent findings from human studies, we offer insights into how dietary modifications could potentially enhance gut microbiome composition to mitigate CRC risk. All together, we outline the current research landscape in this area and propose directions for future investigations that could pave the way for novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Linda Kleis
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Ana Depetris-Chauvin
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Stefanie Jaskulski
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Victoria Damerell
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Nöthlings
- Institute of Nutritional and Food Sciences-Nutritional Epidemiology, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany.
- Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany.
- Friedrich Schiller University, Jena University Hospital, Jena, Germany.
| |
Collapse
|
6
|
Cheibchalard T, Leelahavanichkul A, Chatthanathon P, Klankeo P, Hirankarn N, Somboonna N. Fungal microbiome in gut of systemic lupus erythematosus (SLE)-prone mice (pristane and FCGRIIb deficiency), a possible impact of fungi in lupus. PLoS One 2024; 19:e0314662. [PMID: 39637140 PMCID: PMC11620554 DOI: 10.1371/journal.pone.0314662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The gut mycobiota (fungal microbiota) plays a crucial role in the immune system, potentially impacting autoimmune diseases such as systemic lupus erythematosus (SLE). Despite growing interest, data on intestinal fungi in SLE remain limited. This study thereby investigated the human-mimicked (mice) gut mycobiome and quantitative gut mycobiome analyses using universal fungal internal transcribed spacer 2 (ITS2) DNA next generation sequencing and real-time PCR, tracking time-series dynamics from preclinical to established SLE conditions in two SLE-prone mouse models. These models included pristane -induced mice, representing an environmental cause of SLE, and Fc gamma receptor RIIb (FcgRIIb) deficiency mice, representing a genetic factor. Fecal samples and different intestinal sections from mice aged 2-10 months were analyzed, including samples from 4-month-old and 11-month-old mice, which represented preclinical lupus (negative for anti-dsDNA) and established SLE conditions (positive for anti-dsDNA with proteinuria), respectively, alongside age-matched healthy controls. Results showed increased fungal diversity, specific changes in gut fungal species (i.e. increased Candida spp.), and an elevated Basidiomycota-to-Ascomycota (Basidiomycota/Ascomycota) ratio, which correlated with lupus activity in both lupus models. Linear discriminant analysis Effect Size (LEfSe; a possible representative organism) helped identify specific fungal difference between the lupus models. Our findings revealed that active lupus states may elevate gut fungal populations and alter fungal components in both the pristane and genetically susceptible SLE-prone mice, as indicated by mycobiota and quantitative mycobiota analyses. These changes could, in turn, influence disease activity. This research is essential for a deeper understand of the SLE-gut microbiome association, as the gut microbiome comprises both bacterial and fungal symbiosis. Manipulating fungal communities could present a potential therapeutic avenue for influencing disease outcomes in lupus. Further studies are crucial to clarify the direct role of gut fungi in lupus disease progression.
Collapse
Affiliation(s)
- Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Piriya Klankeo
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Zainab SR, Khan JZ, Rehman MU, Shah FA, Tipu MK. Effect of Bacillus clausii in attenuating symptoms of DSS-induced ulcerative colitis by modulating NFkB pathway and oxidative stress in mice. Clin Exp Pharmacol Physiol 2024; 51:e70004. [PMID: 39513300 DOI: 10.1111/1440-1681.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Ulcerative colitis (UC) is a condition characterized by inflammation and ulcer formation in the colon and rectum due to genetic and environmental factors. It is a common condition, with a global prevalence rate exceeding 0.3%. Current treatments have limited efficacy and can cause unwanted side effects, leading to a high recurrence rate and reduced quality of life for patients. This study suggests that Bacillus clausii has a beneficial role in reducing intestinal inflammation and relieving colitis symptoms in mice. The study aimed to examine B. clausii's potential to reduce the progression and pathogenesis of dextran sulphate sodium (DSS)-induced UC. Bacillus clausii was administered to mice as a pre-treatment, post-treatment and adjunct treatment with sulfasalazine for 14 days. The study found that B. clausii effectively reduced the severity of colitis in mice when used preventatively. Administering B. clausii after the onset of colitis also effectively alleviated symptoms. Combining B. clausii with standard sulfasalazine as adjunct therapy was more effective in reducing intestinal inflammation than using a single therapy alone. B. clausii has shown the potential to prevent colon damage and decrease the likelihood and severity of the disease. Immunohistochemistry results revealed a decrease in the expression of pro-inflammatory cytokines such as IL-1β, TNF-α and NFkB in colon tissue. Additionally, mice that received B. clausii showed a significant increase in anti-oxidant levels and improved haematological markers. In conclusion, it must be emphasized that B. clausii possesses the potential to alleviate the symptoms of UC.
Collapse
Affiliation(s)
- Syeda Rida Zainab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mujeeb Ur Rehman
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Yang Y, Wu R, Qian C, Wu D, Ou J. Mume fructus alters the abundance of intestinal microbiota and alleviates damaged intestinal barrier and inflammation in rats with DSS induced colitis. Mol Immunol 2024; 176:60-72. [PMID: 39579562 DOI: 10.1016/j.molimm.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The gut microbiota plays a crucial role in the development of colitis by influencing the immune response and inflammation in the colon. Previous research has shown that Mume Fructus, a traditional Chinese medicine, can alleviate colitis by reducing the activity of inflammatory pathways. However, the specific connection between Mume Fructus-treated colitis and regulation of gut flora remains unclear, prompting further investigation. This research aims to delve deeper into the possible impact of the gut microbiota in colitis when treated with the aqueous decoction of Mume Fructus (MF). The effects of MF on rats with DSS-induced colitis were assessed through examination of pathological indicators, intestinal barrier proteins, and analysis of 16S rDNA sequencing to investigate its impact on the gut microbiota. In addition, the colon contents of rats after the administration of MF were transplanted into rats with colitis, and the effect of MF on intestinal flora was verified, and "beneficial bacteria" were identified by 16S rDNA sequencing and Spearman's correlation analysis. In summary, our findings suggest that MF has the potential to ameliorate symptoms of colitis through modulation of intestinal microbiota and restoration of intestinal barrier function.
Collapse
Affiliation(s)
- Yatian Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang 222001, China
| | - Rui Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengcheng Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei 230012, China.
| | - Jinmei Ou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei 230012, China.
| |
Collapse
|
9
|
Li L, Meng Z, Huang Y, Xu L, Chen Q, Qiao D, Yue X. Chronic Sleep Deprivation Causes Anxiety, Depression and Impaired Gut Barrier in Female Mice-Correlation Analysis from Fecal Microbiome and Metabolome. Biomedicines 2024; 12:2654. [PMID: 39767560 PMCID: PMC11673394 DOI: 10.3390/biomedicines12122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chronic sleep deprivation (CSD) plays an important role in mood disorders. However, the changes in the gut microbiota and metabolites associated with CSD-induced anxiety/depression-like behavior in female mice have not been determined. Due to the influence of endogenous hormone levels, females are more susceptible than males to negative emotions caused by sleep deprivation. Here, we aim to investigate how CSD changes the gut microbiota and behavior and uncover the relationship between CSD and gut microbiota and its metabolites in female mice. METHODS We used a 48-day sleep deprivation (SD) model using the modified multiple platform method (MMPM) to induce anxiety/depression-like behavior in female C57BL/6J mice and verified our results using the open field test, elevated plus maze, novel object recognition test, forced swim test, and tail suspension test. We collected fecal samples of mice for 16S rDNA sequencing and untargeted metabolomic analysis and colons for histopathological observation. We used Spearmen analysis to find the correlations between differential bacterial taxa, fecal metabolites, and behaviors. RESULTS Our study demonstrates that CSD induced anxiety/depressive-like behaviors in female mice. The results of 16S rDNA sequencing suggested that the relative abundance of the harmful bacteria g_ Rothia, g_ Streptococcus, g_ Pantoea, and g_ Klebsiella were significantly increased, while the beneficial bacteria g_ Rikenella, g_ Eubacterium]-xylanophilum-group, and g_ Eisenbergiella were significantly decreased after SD. Glycerophospholipid metabolism and glutathione metabolism were identified as key pathways in the fecal metabolism related to oxidative stress and inflammatory states of the intestine. Histological observation showed hyperplasia of epithelial cells, a decrease in goblet cells, and glandular atrophy of the colon in SD mice. There were correlations between some of the differential bacterial taxa, fecal metabolites, and behaviors. CONCLUSION In summary, we found that CSD induced anxiety/depression-like behavior, caused gut microbiota dysbiosis, altered fecal metabolism, and damaged the colon barrier in female mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (L.L.); (Z.M.); (Y.H.); (L.X.); (Q.C.)
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; (L.L.); (Z.M.); (Y.H.); (L.X.); (Q.C.)
| |
Collapse
|
10
|
Chen S, Wang C, Zou X, Li H, Yang G, Su X, Mo Z. Multi-omics insights implicate the remodeling of the intestinal structure and microbiome in aging. Front Genet 2024; 15:1450064. [PMID: 39600316 PMCID: PMC11588687 DOI: 10.3389/fgene.2024.1450064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Aging can impair the ability of elderly individuals to fight infections and trigger persistent systemic inflammation, a condition known as inflammaging. However, the mechanisms underlying the development of inflammaging remain unknown. Methods We conducted 16S rRNA sequencing of intestinal contents from young and old C57BL/6J mice to elucidate changes in gut microbiota diversity and microbial community composition after aging. Aging-related differential bacterial taxa were then identified, and their abundance trends were validated in human samples. The variances in intestinal barrier function and circulating endotoxin between groups were also assessed. Furthermore, widely targeted metabolomics was conducted to characterize metabolic profiles after aging and to investigate the key metabolic pathways enriched by the differential metabolites. Results Our findings demonstrated an increase in relative proportion of pathogenic bacteria with age, a trend also revealed in healthy populations of different age groups. Additionally, aging individuals exhibited reduced intestinal barrier function and increased circulating endotoxin levels. Widely targeted metabolomics revealed a significant increase in various secondary bile acid metabolites after aging, positively correlated with the relative abundance of several aging-related bacterial taxa. Furthermore, old group had lower levels of various anti-inflammatory or beneficial metabolites. Enrichment analysis identified the starch and sucrose metabolism pathway as potentially the most significantly impacted signaling pathway during aging. Conclusion This study aimed to provide insights into the complex interactions involved in organismal inflammaging through microbial multi-omics. These findings lay a solid foundation for future research aimed at identifying novel biomarkers for the clinical diagnosis of aging-related diseases or potential therapeutic targets.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chengbang Wang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiong Zou
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Hanwen Li
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaotao Su
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Mozooni Z, Ghadyani R, Soleimani S, Ahangar ER, Sheikhpour M, Haghighi M, Motallebi M, Movafagh A, Aghaei-Zarch SM. TNF-α, and TNFRs in gastrointestinal cancers. Pathol Res Pract 2024; 263:155665. [PMID: 39442225 DOI: 10.1016/j.prp.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] |