1
|
Jeon YH, Oh SH, Jung SJ, Oh EJ, Lim JH, Jung HY, Choi JY, Park SH, Kim CD, Kim YL, Hong CW, Cho JH. Observation of neutrophil extracellular traps in the development of diabetic nephropathy using diabetic murine models. Lab Anim Res 2024; 40:38. [PMID: 39506804 PMCID: PMC11542270 DOI: 10.1186/s42826-024-00226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a progressive complication among patients with diabetes and the most common cause of end-stage kidney disease. Neutrophil extracellular traps (NETs) are known to play a role in kidney disease, thus this study aimed to determine their role in the development of diabetic kidney disease using diabetic murine models. RESULTS Protein and histological analyses revealed that db/db mice and streptozotocin DN models expressed no significant NET-related proteins, myeloperoxidase, citrullinated histone H3 (citH3), neutrophil elastase, and lymphocyte antigen 6 complex locus G6D (Ly6G). However, the inflamed individuals in the DN model showed that citH3 and Ly6G were highly deposited in the renal system based on immunohistochemistry images. In vitro, NET treatment did not induce apoptosis in glomerular endothelial and renal tubular epithelial cells. NET inhibition by DNase administration demonstrated no significant changes in cell apoptosis. CONCLUSIONS NET-related proteins were only expressed in the DN model with tubulointerstitial inflammation. Our study revealed that NETs are only induced in mice with hyperglycemia-induced inflammation.
Collapse
Affiliation(s)
- You Hyun Jeon
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
| | - Se-Hyun Oh
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soo-Jung Jung
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Joo Oh
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
| | - Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
- Bio-Medical Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Yeon Jung
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
| | - Ji-Young Choi
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
| | - Sun-Hee Park
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944, South Korea.
- Bio-Medical Research Institute, Kyungpook National University, Daegu, Republic of Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Lee H, Kim MJ, Lee IK, Hong CW, Jeon JH. Impact of hyperglycemia on immune cell function: a comprehensive review. Diabetol Int 2024; 15:745-760. [PMID: 39469566 PMCID: PMC11512986 DOI: 10.1007/s13340-024-00741-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 10/30/2024]
Abstract
Hyperglycemia, a hallmark of diabetes and various metabolic disorders, has profound implications for immune cell function. The relationship between elevated blood glucose levels and immune cell function is a topic of significant medical interest. In this review, we aim to comprehensively review effects of hyperglycemia on various immune cell types and its clinical implications, particularly T cells, macrophages, natural killer cells, and neutrophils. It aims to consolidate current knowledge on the subject, with a focus on both type 1 and type 2 diabetes, as well as other pathological states where hyperglycemia is a concern. A comprehensive examination of recent studies and clinical data was conducted to assess effects of hyperglycemia on immune cell function. Evidence indicates that hyperglycemia can significantly alter immune cell function, with different diabetic conditions showing varied responses. Roles of key metabolic hormones in regulating T cell function highlight potential therapeutic targets for restoring immune balance. In addition, reprogramming of innate immune cells such as macrophages and natural killer cells under hyperglycemic conditions suggests a complex metabolic-immunological interface. This review will contribute to a better understanding of the link between diabetes, other metabolic disorders, and immune function. By examining recent research and clinical findings, this review will enhance our comprehension of the mechanisms at play and guide future medical strategies for managing and treating conditions associated with hyperglycemia.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-Ro, Buk-Gu, Daegu, 41404 Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-Ro, Buk-Gu, Daegu, 41404 Republic of Korea
| |
Collapse
|
3
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 PMCID: PMC7617515 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090Vienna, Austria
| |
Collapse
|
4
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 PMCID: PMC11535468 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H. Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
5
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
6
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Zhang X, Jie Y. Importance of Circadian Rhythms in the Ocular Surface. Biomolecules 2024; 14:796. [PMID: 39062510 PMCID: PMC11274730 DOI: 10.3390/biom14070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature throughout the organism. Accumulating evidence suggests that the dysfunction of circadian rhythms due to genetic mutations or environmental factors contributes to the genesis and progress of multiple diseases. The physiological homeostasis of the ocular surface, like any other tissue or organ, is also orchestrated by circadian rhythms. In this review, we summarize the molecular clocks and the expression of clock-controlled genes in the mammalian ocular surface. Based on the circadian expression of these genes, we conclude the diurnal oscillations of cellular biological activities in the mammalian ocular surface. Moreover, we evaluate the factors entraining circadian oscillators in the ocular surface. Finally, we further discuss the latest development of the close correlation between circadian rhythms and ocular health. Briefly, this review aimed to synthesize the previous studies to aid in understanding the importance of circadian rhythms in the ocular surface and the possible opportunities for circadian rhythm-based interventional strategies to restore the homeostasis of the ocular surface.
Collapse
Affiliation(s)
| | - Ying Jie
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing 100730, China;
| |
Collapse
|
8
|
Won SJ, Zhang Y, Butler NJ, Kim K, Mocanu E, Nzoutchoum OT, Lakkaraju R, Davis J, Ghosh S, Swanson RA. Stress hyperglycemia exacerbates inflammatory brain injury after stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594195. [PMID: 38798486 PMCID: PMC11118312 DOI: 10.1101/2024.05.14.594195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Post-stroke hyperglycemia occurs in 30% - 60% of ischemic stroke patients as part of the systemic stress response, but neither clinical evidence nor pre-clinical studies indicate whether post-stroke hyperglycemia affects stroke outcome. Here we investigated this issue using a mouse model of permanent ischemia. Mice were maintained either normoglycemic or hyperglycemic during the interval of 17 - 48 hours after ischemia onset. Post-stroke hyperglycemia was found to increase infarct volume, blood-brain barrier disruption, and hemorrhage formation, and to impair motor recovery. Post-stroke hyperglycemia also increased superoxide formation by peri-infarct microglia/macrophages. In contrast, post-stroke hyperglycemia did not increase superoxide formation or exacerbate motor impairment in p47 phox-/- mice, which cannot form an active superoxide-producing NADPH oxidase-2 complex. These results suggest that hyperglycemia occurring hours-to-days after ischemia can increase oxidative stress in peri-infarct tissues by fueling NADPH oxidase activity in reactive microglia/macrophages, and by this mechanism contribute to worsened functional outcome.
Collapse
|
9
|
Shrestha S, Lee YB, Lee H, Choi YK, Park BY, Kim MJ, Youn YJ, Kim SH, Jung SJ, Song DK, Jin HK, Bae JS, Lee IK, Jeon JH, Hong CW. Diabetes Primes Neutrophils for Neutrophil Extracellular Trap Formation through Trained Immunity. RESEARCH (WASHINGTON, D.C.) 2024; 7:0365. [PMID: 38654733 PMCID: PMC11037460 DOI: 10.34133/research.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Neutrophils are primed for neutrophil extracellular trap (NET) formation during diabetes, and excessive NET formation from primed neutrophils compromises wound healing in patients with diabetes. Here, we demonstrate that trained immunity mediates diabetes-induced NET priming in neutrophils. Under diabetic conditions, neutrophils exhibit robust metabolic reprogramming comprising enhanced glycolysis via the pentose phosphate pathway and fatty acid oxidation, which result in the accumulation of acetyl-coenzyme A. Adenosine 5'-triphosphate-citrate lyase-mediated accumulation of acetyl-coenzyme A and histone acetyltransferases further induce the acetylation of lysine residues on histone 3 (AcH3K9, AcH3K14, and AcH3K27) and histone 4 (AcH4K8). The pharmacological inhibition of adenosine 5'-triphosphate-citrate lyase and histone acetyltransferases completely inhibited high-glucose-induced NET priming. The trained immunity of neutrophils was further confirmed in neutrophils isolated from patients with diabetes. Our findings suggest that trained immunity mediates functional changes in neutrophils in diabetic environments, and targeting neutrophil-trained immunity may be a potential therapeutic target for controlling inflammatory complications of diabetes.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yu-Bin Lee
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hoyul Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Bo-Yoon Park
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Mi-Jin Kim
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Hwa Kim
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soo-Jung Jung
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine,
Hallym University, Chuncheon 24252, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine,
Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Alzheimer’s disease Research Institute,
Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
- KNU Alzheimer’s disease Research Institute,
Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Hospital, Daegu 41940, Republic of Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease,
Kyungpook National University Hospital, Daegu 41404, Republic of Korea
- Research Institute of Aging and Metabolism,
Kyungpook National University, Daegu 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University,
Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine,
Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
10
|
Lai SWT, Bhattacharya S, Lopez Gonzalez EDJ, Shuck SC. Methylglyoxal-Derived Nucleoside Adducts Drive Vascular Dysfunction in a RAGE-Dependent Manner. Antioxidants (Basel) 2024; 13:85. [PMID: 38247509 PMCID: PMC10812505 DOI: 10.3390/antiox13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of death in patients with diabetes. An early precursor to DKD is endothelial cell dysfunction (ECD), which often precedes and exacerbates vascular disease progression. We previously discovered that covalent adducts formed on DNA, RNA, and proteins by the reactive metabolic by-product methylglyoxal (MG) predict DKD risk in patients with type 1 diabetes up to 16 years pre-diagnosis. However, the mechanisms by which MG adducts contribute to vascular disease onset and progression remain unclear. Here, we report that the most predominant MG-induced nucleoside adducts, N2-(1-carboxyethyl)-deoxyguanosine (CEdG) and N2-(1-carboxyethyl)-guanosine (CEG), drive endothelial dysfunction. Following CEdG or CEG exposure, primary human umbilical vein endothelial cells (HUVECs) undergo endothelial dysfunction, resulting in enhanced monocyte adhesion, increased reactive oxygen species production, endothelial permeability, impaired endothelial homeostasis, and exhibit a dysfunctional transcriptomic signature. These effects were discovered to be mediated through the receptor for advanced glycation end products (RAGE), as an inhibitor for intracellular RAGE signaling diminished these dysfunctional phenotypes. Therefore, we found that not only are MG adducts biomarkers for DKD, but that they may also have a role as potential drivers of vascular disease onset and progression and a new therapeutic modality.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| | - Sarah C. Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| |
Collapse
|
11
|
Pisano M, Giordano F, Sangiovanni G, Capuano N, Acerra A, D’Ambrosio F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. MICROBIOLOGY RESEARCH 2023; 14:1862-1878. [DOI: 10.3390/microbiolres14040127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Massimo Pisano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Giuseppe Sangiovanni
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Alfonso Acerra
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
12
|
Kumar HN, Divya B, Kumar AR, Narayan M, Vasanthi V, Ramadoss R, Chandrasekar M. Comparative Evaluation of Buccal Exfoliated Cells in Individuals with Diabetes Mellitus and Healthy Controls: A Cytomorphometric Analysis. J Microsc Ultrastruct 2023; 11:185-189. [PMID: 38025183 PMCID: PMC10679835 DOI: 10.4103/jmau.jmau_82_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Diabetes mellitus is the third most frequent cause of mortality and morbidity worldwide. Patients with diabetes exhibit a variety of oral symptoms, and hence the early detection of this condition can be addressed by a dentist. Aim The current study aimed to study the cytomorphometric alterations of buccal exfoliated cells in individuals with type II diabetes mellitus. Methodology The study included thirty diabetics and thirty healthy controls. The smears were obtained from the buccal mucosa and stained with Papanicolaou stain and hematoxylin and eosin stain. The presence of inflammatory cells, microbial carriage, nuclear enlargement, and perinuclear halo and binucleation were examined on the slides. Cellular and nuclear parameters were quantitatively measured using Image J software. Statistical analysis was done using SPSS software, and the Student's t-test was employed. Results No inflammatory cells or microbes were observed in Group I individuals; however, the perinuclear halo was observed in 16.6% and binucleated cells in 3.3% of the controls. Inflammatory cells, consisting mainly of neutrophils and lymphocytes were seen in 40%, microbial carriage in 26.6%, perinuclear halo in 73.3%, and binucleated cells in 36.6% of the diabetic patients. The mean nuclear diameter, area, and nuclear-cytoplasmic ratio were significantly high in diabetic patients when compared to healthy controls. Conclusion Oral exfoliated mucosal cells of patients with diabetes mellitus exhibit distinct cytomorphometric alterations such as increased nuclear diameter, nuclear area, and nuclear-cytoplasmic ratio.
Collapse
Affiliation(s)
- H. Nanda Kumar
- Department of Oral Pathology and Microbiology, SRM Dental College, Chennai, Tamil Nadu, India
| | - Bose Divya
- Department of Oral Pathology and Microbiology, SRM Dental College, Chennai, Tamil Nadu, India
| | - Annasamy Ramesh Kumar
- Department of Oral Pathology and Microbiology, SRM Dental College, Chennai, Tamil Nadu, India
| | - Madhu Narayan
- Department of Oral Pathology and Microbiology, SRM Dental College, Chennai, Tamil Nadu, India
| | - V. Vasanthi
- Department of Oral Pathology and Microbiology, SRM Dental College, Chennai, Tamil Nadu, India
| | - Ramya Ramadoss
- Department of Oral Biology, Saveetha Dental College, Chennai, Tamil Nadu, India
| | | |
Collapse
|
13
|
Sakagami M, Inokuchi H, Mukumoto N, Itoyama H, Hamaura N, Yamagishi M, Mukumoto N, Matsuda S, Kabata D, Shibuya K. Clinical features and risk factors for interstitial lung disease spreading in low-dose irradiated areas after definitive radiotherapy with or without durvalumab consolidation therapy for patients with non-small cell lung cancer. Radiat Oncol 2023; 18:87. [PMID: 37217919 DOI: 10.1186/s13014-023-02276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The current standard of care for patients with unresectable locally advanced non-small cell lung cancer (NSCLC) is chemoradiotherapy (CRT) combined with durvalumab consolidation therapy. However, radiotherapy (RT) always carries the risk of radiation pneumonitis (RP), which can preclude durvalumab continuation. In particular, the spread of interstitial lung disease (ILD) in low-dose areas or extending beyond the RT field often makes it difficult to determine the safety of continuation or rechallenging of durvalumab. Thus, we retrospectively analyzed ILD/RP after definitive RT with and without durvalumab, with assessment of radiologic features and dose distribution in RT. METHODS We retrospectively evaluated the clinical records, CT imaging, and radiotherapy planning data of 74 patients with NSCLC who underwent definitive RT at our institution between July 2016 and July 2020. We assessed the risk factors for recurrence within one year and occurrence of ILD/RP. RESULTS Kaplan-Meier method showed that ≥ 7 cycles of durvalumab significantly improved 1-year progression free survival (PFS) (p < 0.001). Nineteen patients (26%) were diagnosed with ≥ Grade 2 and 7 (9.5%) with ≥ Grade 3 ILD/RP after completing RT. There was no significant correlation between durvalumab administration and ≥ Grade 2 ILD/RP. Twelve patients (16%) developed ILD/RP that spread outside the high-dose (> 40 Gy) area, of whom 8 (67%) had ≥ Grade 2 and 3 (25%) had Grade 3 symptoms. In unadjusted and multivariate Cox proportional-hazards models adjusted for V20 (proportion of the lung volume receiving ≥ 20 Gy), high HbA1c level was significantly correlated with ILD/RP pattern spreading outside the high-dose area (hazard ratio, 1.842; 95% confidence interval, 1.35-2.51). CONCLUSIONS Durvalumab improved 1-year PFS without increasing the risk of ILD/RP. Diabetic factors were associated with ILD/RP distribution pattern spreading in the lower dose area or outside RT fields, with a high rate of symptoms. Further study of the clinical background of patients including diabetes is needed to safely increase the number of durvalumab doses after CRT.
Collapse
Affiliation(s)
- Mai Sakagami
- Department of Radiation Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Haruo Inokuchi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshige Itoyama
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Nobunari Hamaura
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Mutsumi Yamagishi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoki Mukumoto
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shogo Matsuda
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Keiko Shibuya
- Department of Radiation Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
14
|
Thimmappa PY, Vasishta S, Ganesh K, Nair AS, Joshi MB. Neutrophil (dys)function due to altered immuno-metabolic axis in type 2 diabetes: implications in combating infections. Hum Cell 2023:10.1007/s13577-023-00905-7. [PMID: 37115481 DOI: 10.1007/s13577-023-00905-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Metabolic and inflammatory pathways are highly interdependent, and both systems are dysregulated in Type 2 diabetes (T2D). T2D is associated with pre-activated inflammatory signaling networks, aberrant cytokine production and increased acute phase reactants which leads to a pro-inflammatory 'feed forward loop'. Nutrient 'excess' conditions in T2D with hyperglycemia, elevated lipids and branched-chain amino acids significantly alter the functions of immune cells including neutrophils. Neutrophils are metabolically active cells and utilizes energy from glycolysis, stored glycogen and β-oxidation while depending on the pentose phosphate pathway for NADPH for performing effector functions such as chemotaxis, phagocytosis and forming extracellular traps. Metabolic changes in T2D result in constitutive activation and impeded acquisition of effector or regulatory activities of neutrophils and render T2D subjects for recurrent infections. Increased flux through the polyol and hexosamine pathways, elevated production of advanced glycation end products (AGEs), and activation of protein kinase C isoforms lead to (a) an enhancement in superoxide generation; (b) the stimulation of inflammatory pathways and subsequently to (c) abnormal host responses. Neutrophil dysfunction diminishes the effectiveness of wound healing, successful tissue regeneration and immune surveillance against offending pathogens. Hence, Metabolic reprogramming in neutrophils determines frequency, severity and duration of infections in T2D. The present review discusses the influence of the altered immuno-metabolic axis on neutrophil dysfunction along with challenges and therapeutic opportunities for clinical management of T2D-associated infections.
Collapse
Affiliation(s)
- Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Aswathy S Nair
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev 2023; 314:93-110. [PMID: 36271881 PMCID: PMC10049968 DOI: 10.1111/imr.13152] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.
Collapse
Affiliation(s)
- Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Hajishengallis G, Chavakis T. Mechanisms and Therapeutic Modulation of Neutrophil-Mediated Inflammation. J Dent Res 2022; 101:1563-1571. [PMID: 35786033 PMCID: PMC9703529 DOI: 10.1177/00220345221107602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neutrophils are abundant, short-lived myeloid cells that are readily recruitable to sites of inflammation, where they serve as first-line defense against infection and other types of insult to the host. In recent years, there has been increased understanding on the involvement of neutrophils in chronic inflammatory diseases, where they may act as direct effectors of destructive inflammation. However, destructive tissue inflammation is also instigated in settings of neutrophil paucity, suggesting that neutrophils also mediate critical homeostatic functions. The activity of neutrophils is regulated by a variety of local tissue factors. In addition, systemic metabolic conditions, such as hypercholesterolemia and hyperglycemia, affect the production and mobilization of neutrophils from the bone marrow. Moreover, according to the recently emerged concept of innate immune memory, the functions of neutrophils can be enhanced through the process of trained granulopoiesis. This process may have both beneficial and potentially destructive effects, depending on context, that is, protective against infections and tumors, while destructive in the context of chronic inflammatory conditions. Although we are far from a complete understanding of the mechanisms underlying the regulation and function of neutrophils, current insights enable the development of targeted therapeutic interventions that can restrain neutrophil-mediated inflammation in chronic inflammatory diseases, such as periodontitis.
Collapse
Affiliation(s)
- G. Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T. Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Sachsen, Germany
| |
Collapse
|
17
|
Panasenko OM, Ivanov VA, Mikhalchik EV, Gorudko IV, Grigorieva DV, Basyreva LY, Shmeleva EV, Gusev SA, Kostevich VA, Gorbunov NP, Sokolov AV. Methylglyoxal-Modified Human Serum Albumin Binds to Leukocyte Myeloperoxidase and Inhibits its Enzymatic Activity. Antioxidants (Basel) 2022; 11:2263. [PMID: 36421449 PMCID: PMC9686918 DOI: 10.3390/antiox11112263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2023] Open
Abstract
Hyperglycemia in diabetes mellitus induces modification of proteins by glucose and its derivative methylglyoxal (MG). Neutrophils perform their bactericidal activity mainly via reactive halogen (RHS) and oxygen (ROS) species generation catalyzed by myeloperoxidase (MPO) stored in neutrophil azurophilic granules (AGs) and membrane NADPH oxidase, respectively. Herein, we study the binding of human serum albumin (HSA) modified with MG (HSA-MG) to MPO and its effects on MPO activity and release by neutrophils. Peroxidase activity of MPO was registered by oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, and chlorinating activity by decolorization of Celestine blue B dye. Binding of HSA-MG to MPO was studied by affinity chromatography, disc-electrophoresis, ligand Western blotting and enzyme-linked solid phase immunoassay using monoclonal antibodies (mAbs) to MPO. ROS and RHS generation were detected by lucigenin (Luc) and luminol (Lum) chemiluminescence (CL), respectively. Neutrophil degranulation was assessed by flow cytometry using fluorescent labeled antibodies to the marker proteins CD63 from AGs and CD11b from peroxidase-negative granules (PNGs). NETosis was assayed by quantifying DNA network-like structures (NET-like structures) in blood smears stained by Romanowsky. HSA-MG bound to MPO, giving a stable complex (Kd = 1.5 nM) and competing with mAbs, and non-competitively inhibited peroxidase and chlorinating MPO activity and induced degranulation of PNGs but not of AGs. HSA-MG enhanced Luc-CL per se or following PMA, unlike Lum-CL, and did not affect spontaneous or PMA-stimulated NETosis. Thus, HSA modified under hyperglycemia-like conditions stimulated NADPH oxidase of neutrophils but dampened their functions dependent on activity of MPO, with no effect on its release via degranulation or NETosis. This phenomenon could underlie the downregulation of bactericidal activity of MPO and neutrophils, and hence of innate immunity, giving rise to wound healing impairment and susceptibility to infection in patients with hyperglycemia.
Collapse
Affiliation(s)
- Oleg M. Panasenko
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Medical Biophysics of the Institute for Translative Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor A. Ivanov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Elena V. Mikhalchik
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Irina V. Gorudko
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Daria V. Grigorieva
- Department of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Liliya Yu. Basyreva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Ekaterina V. Shmeleva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Sergey A. Gusev
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Valeria A. Kostevich
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Nikolay P. Gorbunov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| | - Alexey V. Sokolov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
18
|
Tikhonova IV, Grinevich AA, Kosyakova NI, Safronova VG. The effect of high temperature on kinetics of reactive species generation in patients with type 2 diabetes. Free Radic Biol Med 2022; 192:235-245. [PMID: 36198342 DOI: 10.1016/j.freeradbiomed.2022.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022]
Abstract
The excessive amount of reactive species under chronic inflammation, which are accompanied by an increase body temperature, lead to diabetic complications. Phagocyte NADPH oxidase is the key enzyme in these processes. The role of high temperature in its regulation in diabetes is not clear. The aim was to investigate the effect of high temperature on NADPH-oxidase-dependent generation of reactive species in diabetic patients. Chemiluminescent method was applied to assess respiratory burst kinetics initiated by opsonized zymosan in blood or phorbol ester in isolated granulocytes. Analyzing ROC curves, the main predictors and changes in stages of activation of NADPH oxidase were determined. Phosphoisoforms of p47phox and p67phox were quantified by immunoblotting. Response to opsonized zymosan was lower in all subjects at 40 °C vs 37 °C, its kinetic parameters (except Tmax) were higher in blood of patients vs controls. Response rate was the main significant predictor to distinguish groups of subjects at 40 °C indicating NADPH oxidase upregulation in diabetes. Ca2+-dependent generation of reactive species by cells increased in both groups at 40 °C vs 37 °C, kinetic parameters were higher in patients. Initial phospho-p47phox level was higher in patient cells vs ones in controls. It was increased by ionomycin, phorbol ester, or 40 °C in control cells and unchanged in patient ones. Phospho-p67phox level was unchangeable in intact cells of healthy donors and patients at both temperatures. Excessive amounts of reactive species in patient cells were the consequence of granulocyte priming due to p47phox phosphorylation. Thus, high temperature decreased phagocytosis- and enhanced Ca2+-dependent generation of reactive species making the differences between controls and patients less pronounced. The effect of temperature on the generation of reactive species in blood granulocytes is associated with activity of NADPH oxidase that can be a prospective therapeutic target for pathologies accompanied by inflammation including type 2 diabetes.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3 Pushchino, 142290, Russia.
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3 Pushchino, 142290, Russia
| | - Ninel I Kosyakova
- Hospital of Pushchino Scientific Centre of Russian Academy of Sciences, Institutskaya st., 1 Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya st., 3 Pushchino, 142290, Russia
| |
Collapse
|
19
|
Aftermath of AGE-RAGE Cascade in the pathophysiology of cardiovascular ailments. Life Sci 2022; 307:120860. [PMID: 35940220 DOI: 10.1016/j.lfs.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
|
20
|
Evaluation of peripheral blood polymorphonuclear cell functions after an oral carbohydrate overload in obese and insulin dysregulated horses. Vet Immunol Immunopathol 2022; 250:110455. [PMID: 35716440 DOI: 10.1016/j.vetimm.2022.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Obesity and insulin dysregulation (ID) are increasingly prevalent conditions in equid populations worldwide. Immune impairment is well described in humans with metabolic dysfunction and is reported but still incompletely understood in horses. This study evaluated the effect of acute induced transient hyperglycemia on apoptosis, phagocytosis and oxidative burst activity of peripheral blood polymorphonuclear cells (PMN) of lean and obese adult horses with or without insulin dysregulation. Seventeen adult horses were allocated into three groups based on their body condition score (BCS) and metabolic status: lean-insulin sensitive (lean-IS), obese-insulin sensitive (obese-IS) and obese-insulin dysregulated (obese-ID). ID was determined by insulin tolerance testing (ITT). Blood glucose elevation was induced through an infeed-oral glucose test (in-feed OGT), and all assessments of PMN functions (apoptosis, phagocytosis and oxidative burst) were done in vitro after isolation from peripheral blood before and 120 min after carbohydrate overload. Results were analyzed using a repeated measures linear mixed model with significance defined at P < 0.05. No differences in apoptosis were observed between experimental groups at any time point. Phagocytic capacity was significantly lower at baseline in the obese-ID group but increased in response to glucose administration when compared to the other two groups. Basal reactive oxygen species production in the obese-IS group differed significantly from the lean-IS and obese-ID groups and decreased significantly in response to glucose administration. Results from this study showed that both metabolic status itself, and oral glucose administration, seem to be factors that alter PMN functionality in horses, specifically phagocytosis and oxidative burst.
Collapse
|
21
|
Ateeq H, Zia A, Husain Q, Khan MS, Ahmad M. Effect of inflammation on bones in diabetic patients with periodontitis via RANKL/OPG system-A review. J Diabetes Metab Disord 2022; 21:1003-1009. [PMID: 35673491 PMCID: PMC9167386 DOI: 10.1007/s40200-021-00960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/14/2021] [Indexed: 01/31/2023]
Abstract
Purpose Diabetes mellitus and periodontitis are inflammatory diseases, the severity of inflammation results in the progression and persistence of both the disorders and affects bones. Diabetic complications aggravate in diabetic subjects having periodontitis; similarly, diabetic patients are more prone to developing gingivitis and periodontitis. Periodontal and diabetic inflammation disturbs bone homeostasis, which possibly involves both innate and adaptive immune responses. The pathogenic processes that link the two diseases are the focus of much research and it is likely that upregulated inflammation arising from each condition adversely affects the other. RANKL/OPG pathway plays a prominent role in periodontal and diabetic inflammation and bone resorption. Method This review article summarises the literature on the link between inflammatory cytokines and the prevalence of disturbed bone homeostasis in diabetic patients with periodontitis. An extensive search was done in PubMed, Scopus, Medline and Google Scholar databases between April 2003 and May 2021. Result A total of 27 articles, including pilot studies, case-control studies, cross-sectional studies, cohort studies, randomized control trials, longitudinal studies, descriptive studies and experimental studies, were included in our literature review. Conclusion Since RANKL/OPG are cytokines and have immune responses, regulating these cytokines expression will help control diabetes, periodontitis and bone homeostasis. The growing evidence of bone loss and increased fracture risk in diabetic patients with periodontitis makes it imperative that health professionals carry out planned treatment focusing on monitoring oral health in diabetic patients; bone markers should also be evaluated in patients with chronic periodontitis with an impaired glycemic state.
Collapse
Affiliation(s)
- Hira Ateeq
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
- Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh-202002, India
| | - Afaf Zia
- Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh-202002, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Sajid Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Ahmad
- Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|
22
|
Thimmappa PY, Nair AS, Najar MA, Mohanty V, Shastry S, Prasad TSK, Joshi MB. Quantitative phosphoproteomics reveals diverse stimuli activate distinct signaling pathways during neutrophil activation. Cell Tissue Res 2022; 389:241-257. [PMID: 35622142 PMCID: PMC9287233 DOI: 10.1007/s00441-022-03636-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Neutrophils display functional heterogeneity upon responding diversely to physiological and pathological stimulations. During type 2 diabetes (T2D), hyperglycemia constitutively activates neutrophils, leading to reduced response to infections and on the other hand, elevated metabolic intermediates such as homocysteine induce bidirectional activation of platelets and neutrophils leading to thrombosis. Hence, in the context of T2D-associated complications, we examined the influence of high glucose, homocysteine, and LPS representing effector molecules of hyperglycemia, thrombosis, and infection, respectively, on human neutrophil activation to identify distinct signaling pathways by quantitative phosphoproteomics approach. High glucose activated C-Jun-N-Terminal Kinase, NTRK1, SYK, and PRKACA kinases associated with Rho GTPase signaling and phagocytosis, whereas LPS induced AKT1, SRPK2, CSNK2A1, and TTN kinases involved in cytokine signaling and inflammatory response. Homocysteine treatment led to activatation of LRRK2, FGR, MAPK3, and PRKCD kinases which are associated with neutrophil degranulation and cytoskeletal remodeling. Diverse inducers differentially modulated phosphorylation of proteins associated with neutrophil functions such as oxidative burst, degranulation, extracellular traps, and phagocytosis. Further validation of phosphoproteomics data on selected kinases revealed neutrophils pre-cultured under high glucose showed impeded response to LPS to phosphorylate p-ERK1/2Thr202/Tyr204, p-AKTSer473, and C-Jun-N-Terminal KinaseSer63 kinases. Our study provides novel phosphoproteome signatures that may be explored to understand neutrophil biology in T2D-associated complications.
Collapse
Affiliation(s)
- Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, India
| | - Varshasnatha Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
23
|
Luong A, Tawfik AN, Islamoglu H, Gobriel HS, Ali N, Ansari P, Shah R, Hung T, Patel T, Henson B, Thankam F, Lewis J, Mintline M, Boehm T, Tumur Z, Seleem D. Periodontitis and diabetes mellitus co-morbidity: A molecular dialogue. J Oral Biosci 2021; 63:360-369. [PMID: 34728373 DOI: 10.1016/j.job.2021.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and periodontitis are two biologically linked diseases that often coexist in complex interaction. While periodontitis may lead to insulin receptor desensitization, diabetes may increase the expression of inflammatory cytokines, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin 6 (IL-6), in the gingival crevicular fluid and activate osteoclasts via Receptor activator of nuclear factor kappa-Β ligand (RANK-L) production, leading to bone resorption. However, the association between the two diseases processes, where one may exacerbate the progression of the other, is unclear. In addition, both diseases have similar mechanistic themes, such as chronic inflammation and oxidative stress. This review aimed to investigate the pathophysiological and molecular mechanisms underlying T2DM and periodontitis. HIGHLIGHT Uncontrolled diabetes is often associated with severe periodontitis, measured by clinical attachment loss. Alteration in the oral microbiome composition, which may activate the host inflammatory response and lead to irreversible oxidative stress, is a common finding in both diseases. An understanding of the molecular crosstalk between the two disease processes is crucial for developing therapeutic targets that inhibit bone resorption and halt the progression of periodontitis in patients with diabetes. CONCLUSION The Oral microbiome composition in T2DM and periodontitis shifts toward dysbiosis, favoring bacterial pathogens, such as Fusobacteria and Porphyromonas species. Both conditions are marked by pro-inflammatory immune activity via the activation of Interleukin 17 (IL-17), Interleukin 1 (IL-1), TNF-α, and Nuclear Factor Kappa Beta (NF-κB). Common molecular crosstalk signaling appears to involve advanced glycation end products (AGEs) and oxidative stress. Thus, future drug targets are multifactorial, ranging from modulatory of host inflammatory response to preventing the accumulation of AGEs and oxidative free radicals.
Collapse
Affiliation(s)
- Anthony Luong
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Andy Nassif Tawfik
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hicret Islamoglu
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hanaa Selim Gobriel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nada Ali
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Pouya Ansari
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Ruchita Shah
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tiffany Hung
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tanusha Patel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Bradley Henson
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Finosh Thankam
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Jill Lewis
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Mark Mintline
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tobias Boehm
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Zohra Tumur
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Dalia Seleem
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
| |
Collapse
|
24
|
Lin R, Li L. Innate Neutrophil Memory Dynamics in Disease Pathogenesis. Handb Exp Pharmacol 2021; 276:43-64. [PMID: 34486096 DOI: 10.1007/164_2021_538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutrophils, the most abundant leukocytes in circulation and the first responders to infection and inflammation, closely modulate both acute and chronic inflammatory processes. Resting neutrophils constantly patrol vasculature and migrate to tissues when challenges occur. When infection and/or inflammation recede, tissue neutrophils will be subsequently cleaned up by macrophages which collectively contribute to the resolution of inflammation. While most studies focus on the anti-microbial function of neutrophils including phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation, recent research highlighted additional contributions of neutrophils beyond simply controlling infectious agents. Neutrophils with resolving characteristics may alter the activities of neighboring cells and facilitate inflammation resolution, modulate long-term macrophage and adaptive immune responses, therefore having important impacts on host pathophysiology. The focus of this chapter is to provide an updated assessment of recent progress in the emerging field of neutrophil programming and memory in the context of both acute and chronic diseases.
Collapse
Affiliation(s)
- RuiCi Lin
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
25
|
Nichols BE, Hook JS, Weng K, Ahn C, Moreland JG. Novel neutrophil phenotypic signature in pediatric patients with type 1 diabetes and diabetic ketoacidosis. J Leukoc Biol 2021; 111:849-856. [PMID: 34342036 DOI: 10.1002/jlb.3a1220-826r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic inflammatory condition sometimes complicated by acute diabetic ketoacidosis (DKA). A subset of patients with T1D develop DKA independent of known risk factors. This study tested the hypothesis that circulating polymorphonuclear leukocytes (PMN) from children with T1D and DKA would exhibit a primed phenotype and that the signature would be unique in patients predisposed to have DKA. Using a prospective cohort study design, neutrophil phenotype was assessed in 30 patients with T1D seen in endocrinology clinic for routine care, 30 patients with acute DKA, and 36 healthy donors. Circulating PMN from patients with DKA display a primed phenotype with increased basal cell-surface CD11b, L-selectin shedding, and enhanced fMLF-elicited reactive oxygen species (ROS) production. Moreover, PMN from T1D patients both with and without DKA lack the capacity to be further primed by incubation with TNF-α, a classic priming stimulus. Primed PMN phenotypic signatures demonstrated are independent of hemoglobin A1c, the premier biological marker for DKA risk, and are consistent with a hyperinflammatory state. A single nucleotide polymorphism in TLR-1 (1805G>T), known to be associated with a hyperinflammatory PMN phenotype, correlated with DKA. This study elucidated a novel phenotypic signature in circulating PMN from children with T1D with and without DKA, and suggests the possibility of a previously unrecognized PMN phenotype with potential clinical implications. Immunophenotype and genotype may be applicable as biomarkers for DKA risk stratification in patients with T1D.
Collapse
Affiliation(s)
- Blake E Nichols
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica S Hook
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kayson Weng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chul Ahn
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jessica G Moreland
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Hyperglycemia and Some Aspects of Leukocyte Activation In Vitro. Bull Exp Biol Med 2021; 170:748-751. [PMID: 33893954 DOI: 10.1007/s10517-021-05147-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 10/21/2022]
Abstract
We analyzed functional status of blood leukocytes in diabetes mellitus and after addition of glucose in vitro. To this end, generation of ROS and reactive halogen species by monocytes and neutrophils from patients with diabetes mellitus and healthy donors was assayed using lucigenin- and luminol-dependent chemiluminescence after stimulation with phorbol 12-myristate 13-acetate or opsonized zymosan in vitro. Formation of neutrophil extracellular traps was evaluated in the blood after addition of glucose. In comparison with donors, leukocytes from patients with diabetes mellitus were primed and this effect can be modeled by addition of glucose to the blood in vitro. Addition of glucose to donor blood also triggered the formation of neutrophil extracellular traps.
Collapse
|
27
|
Jeon JH, Hong CW, Kim EY, Lee JM. Current Understanding on the Metabolism of Neutrophils. Immune Netw 2020; 20:e46. [PMID: 33425431 PMCID: PMC7779868 DOI: 10.4110/in.2020.20.e46] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are innate immune cells that constitute the first line of defense against invading pathogens. Due to this characteristic, they are exposed to diverse immunological environments wherein sources for nutrients are often limited. Recent advances in the field of immunometabolism revealed that neutrophils utilize diverse metabolic pathways in response to immunological challenges. In particular, neutrophils adopt specific metabolic pathways for modulating their effector functions in contrast to other immune cells, which undergo metabolic reprogramming to ensure differentiation into distinct cell subtypes. Therefore, neutrophils utilize different metabolic pathways not only to fulfill their energy requirements, but also to support specialized effector functions, such as neutrophil extracellular trap formation, ROS generation, chemotaxis, and degranulation. In this review, we discuss the basic metabolic pathways used by neutrophils and how these metabolic alterations play a critical role in their effector functions.
Collapse
Affiliation(s)
- Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Kyungpook National University Hospital, Bio-Medical Research Institute, Daegu 41940, Korea
| | - Chang-Won Hong
- Kyungpook National University Hospital, Bio-Medical Research Institute, Daegu 41940, Korea.,Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Eun Young Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
28
|
Tikhonova IV, Grinevich AA, Guseva IE, Safronova VG. Modified kinetics of generation of reactive species in peripheral blood of patients with type 2 diabetes. Free Radic Biol Med 2020; 159:76-86. [PMID: 32763412 DOI: 10.1016/j.freeradbiomed.2020.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
Level of reactive species in blood is an important pathogenic factor in diabetes mellitus leading to dysfunctions of vascular endothelial and smooth muscle cells and coagulation system abnormality. A massive release of reactive species (respiratory burst), catalyzed by NADPH oxidase in blood phagocytes, is not well understood in diabetes. The work aimed to study kinetics of response to microbial particles in blood to specify changes in regulatory mechanisms of generation of reactive species in patients with type 2 diabetes. Production of reactive species in blood and isolated granulocytes was measured by luminol-dependent chemiluminescence. Respiratory burst was initiated by serum opsonized zymosan in blood samples and phorbol ester in cell samples. Kinetic parameters were calculated from experimental kinetic curves of chemiluminescence intensity. ROC curve analysis and mathematical modeling were used to reveal the most significant predictors and clarify specific mechanisms of NADPH oxidase activation. It was shown that kinetic parameters of response to opsonized zymosan (lag-time, response rate, amplitude, production of reactive species) were higher in blood of patients than controls. Amplitude and response rate were the most statistically significant predictors for distinguishing patients and controls at high glucose. It indicated NADPH oxidase activation was the target of hyperglycemia. Mathematical modeling showed hyperglycemia increased stability of NADPH oxidase complex, decreased synchronization of its assembling and elevated neutrophil capacity to phagocytosis in patients. Weak or no dependence of response kinetics on ionomycin concentration was shown in patients indicating changed Ca2+-dependent mechanism of NADPH oxidase activation. Hyperglycemia in type 2 diabetes causes disturbances in mechanisms of NADPH oxidase activation associated with both phagocytosis and the state of intracellular signaling systems, including Ca2+-dependent. We suggest that NADPH oxidase in blood granulocytes can be a promising target for clinical intervention improving management of diabetic complications associated with inflammation.
Collapse
Affiliation(s)
- Irina V Tikhonova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya St., 3, Pushchino, 142290, Russia.
| | - Andrei A Grinevich
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya St., 3, Pushchino, 142290, Russia; Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskaya St., 3, Pushchino, 142290, Russia
| | - Irina E Guseva
- Hospital of Pushchino Scientific Centre of Russian Academy of Sciences, Institutskaya St., 1, Pushchino, 142290, Russia
| | - Valentina G Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya St., 3, Pushchino, 142290, Russia
| |
Collapse
|
29
|
Fine N, Tasevski N, McCulloch CA, Tenenbaum HC, Glogauer M. The Neutrophil: Constant Defender and First Responder. Front Immunol 2020; 11:571085. [PMID: 33072112 PMCID: PMC7541934 DOI: 10.3389/fimmu.2020.571085] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The role of polymorphonuclear neutrophils (PMNs) in biology is often recognized during pathogenesis associated with PMN hyper- or hypo-functionality in various disease states. However, in the vast majority of cases, PMNs contribute to resilience and tissue homeostasis, with continuous PMN-mediated actions required for the maintenance of health, particularly in mucosal tissues. PMNs are extraordinarily well-adapted to respond to and diminish the damaging effects of a vast repertoire of infectious agents and injurious processes that are encountered throughout life. The commensal biofilm, a symbiotic polymicrobial ecosystem that lines the mucosal surfaces, is the first line of defense against pathogenic strains that might otherwise dominate, and is therefore of critical importance for health. PMNs regularly interact with the commensal flora at the mucosal tissues in health and limit their growth without developing an overt inflammatory reaction to them. These PMNs exhibit what is called a para-inflammatory phenotype, and have reduced inflammatory output. When biofilm growth and makeup are disrupted (i.e., dysbiosis), clinical symptoms associated with acute and chronic inflammatory responses to these changes may include pain, erythema and swelling. However, in most cases, these responses indicate that the immune system is functioning properly to re-establish homeostasis and protect the status quo. Defects in this healthy everyday function occur as a result of PMN subversion by pathological microbial strains, genetic defects or crosstalk with other chronic inflammatory conditions, including cancer and rheumatic disease, and this can provide some avenues for therapeutic targeting of PMN function. In other cases, targeting PMN functions could worsen the disease state. Certain PMN-mediated responses to pathogens, for example Neutrophil Extracellular Traps (NETs), might lead to undesirable symptoms such as pain or swelling and tissue damage/fibrosis. Despite collateral damage, these PMN responses limit pathogen dissemination and more severe damage that would otherwise occur. New data suggests the existence of unique PMN subsets, commonly associated with functional diversification in response to particular inflammatory challenges. PMN-directed therapeutic approaches depend on a greater understanding of this diversity. Here we outline the current understanding of PMNs in health and disease, with an emphasis on the positive manifestations of tissue and organ-protective PMN-mediated inflammation.
Collapse
Affiliation(s)
- Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Nikola Tasevski
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Howard C Tenenbaum
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
30
|
Acute Glucose Load, Inflammation, Oxidative Stress, Nonenzymatic Glycation, and Screening for Gestational Diabetes. Reprod Sci 2020; 27:1587-1594. [DOI: 10.1007/s43032-020-00188-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Herrmann JM, Sonnenschein SK, Groeger SE, Ewald N, Arneth B, Meyle J. Refractory neutrophil activation in type 2 diabetics with chronic periodontitis. J Periodontal Res 2020; 55:315-323. [DOI: 10.1111/jre.12717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jens Martin Herrmann
- School of Dental Medicine Department of Periodontology Justus‐Liebig University of Giessen Giessen Germany
| | - Sarah Kirsten Sonnenschein
- School of Dental Medicine Department of Periodontology Justus‐Liebig University of Giessen Giessen Germany
| | - Sabine Elisabeth Groeger
- School of Dental Medicine Department of Periodontology Justus‐Liebig University of Giessen Giessen Germany
| | - Nils Ewald
- Internal Medicine III–Endocrinology Justus‐Liebig University of Giessen Giessen Germany
| | - Borros Arneth
- Laboratory Medicine and Pathobiochemistry Justus‐Liebig University of Giessen Giessen Germany
| | - Joerg Meyle
- School of Dental Medicine Department of Periodontology Justus‐Liebig University of Giessen Giessen Germany
| |
Collapse
|
32
|
Novita BD. Metformin: A review of its potential as enhancer for anti tuberculosis efficacy in diabetes mellitus-tuberculosis coinfection patients. Indian J Tuberc 2019; 66:294-298. [PMID: 31151499 DOI: 10.1016/j.ijtb.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
Abstract
Metformin is the most commonly prescribed drug for type 2 diabetes mellitus. Nowadays metformin is also use for efficacy in diabetes mellitus-tuberculosis coinfection patients through several mechanisms, such increasing superoxide production therefore activation isoniazid is increasing; inducing adeno-monophosphate kinase (AMPK) associated autophagy process; and regulating inflammation cytokines. This article will review the mechanism of action of Metformin as enhancer for anti tuberculosis efficacy.
Collapse
Affiliation(s)
- Bernadette Dian Novita
- Department of Pharmacology and Therapy, Faculty of Medicine Widya Mandala Catholic University Surabaya, Indonesia.
| |
Collapse
|
33
|
Jones ML, Buhimschi IA, Zhao G, Bartholomew A, Smith-Timms J, Rood KM, Buhimschi CS. Acute Glucose Load, Inflammation, Oxidative Stress, Nonenzymatic Glycation, and Screening for Gestational Diabetes. Reprod Sci 2019:1933719119831772. [PMID: 30813845 DOI: 10.1177/1933719119831772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIMS: To investigate if oral glucose tolerance test (OGTT) associates with changes in maternal symptoms (ie, flushing, sweating), blood nonenzymatic advanced glycation end products (AGE), acute-phase reactive inflammatory markers, and oxidative stress. METHODS: Prospective case-control study of patients screened for gestational diabetes mellitus (GDM). One hundred nonfasting, second-trimester consecutive pregnant women allocated to either 50 g OGTT or water. Five women who had a 3-hour fasting 100 g OGTT also enrolled. Maternal serum glucose, AGE, soluble receptor for AGE (sRAGE), interleukin (IL)-6, and C-reactive protein (CRP) were immunoassayed. Total radical-trapping antioxidant parameter (TRAP) estimated with antioxidant capacity-peroxyl assay. Data corrected for gestational age and maternal body mass index. RESULTS: During 50 g OGTT there was a decrease in systolic blood pressure not accompanied by the onset of adverse clinical symptoms. There was a decrease in serum glucose levels 1 hour after water ( P = .019) but not glucose ingestion. Serum CRP ( P = .001) but not IL-6 was increased. The AGE, sRAGE, and TRAP levels remained unchanged. Similar results were seen during 100 g OGTT, except serum glucose was significantly elevated after 1 hour. CONCLUSION: Results suggest screening tools for gestational diabetes are safe and clinically well tolerated during pregnancy. Clinical Trial Registration: ClinicalTrials.gov NCT03029546.
Collapse
Affiliation(s)
- Megan L Jones
- 1 Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Irina A Buhimschi
- 2 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- 3 Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Guomao Zhao
- 2 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Anna Bartholomew
- 1 Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jordan Smith-Timms
- 1 Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kara M Rood
- 1 Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catalin S Buhimschi
- 1 Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
- 2 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
34
|
Neethi Raj P, Shaji BV, Haritha V, Anie Y. Neutrophil secretion modulates neutrophil and monocyte functions during hyperglucose and/or hyperinsulin conditions in vitro. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jocit.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Yamamoto S, Omori K, Mandai H, Nakayama M, Nakagawa S, Kobayashi H, Kunimine T, Yoshimura H, Sakaida K, Sako H, Ibaragi S, Yamamoto T, Maeda H, Suga S, Takashiba S. Fungal metabolite (+)-terrein suppresses IL-6/sIL-6R-induced CSF1 secretion by inhibiting JAK1 phosphorylation in human gingival fibroblasts. Heliyon 2018; 4:e00979. [PMID: 30519664 PMCID: PMC6260243 DOI: 10.1016/j.heliyon.2018.e00979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/16/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Control of bacterial infection-induced inflammatory responses is one of the effective therapeutic approaches of periodontal diseases. Natural products such as lipid mediators and metabolites from microorganisms have been used for decreasing inflammation. We previously reported that (+)-terrein inhibited activation of STAT3 and ERK1/2 in interleukin-6 (IL-6) signaling cascade, leading to prevent vascular endothelial growth factor (VEGF) secretion in human gingival fibroblasts (HGFs). However, little is still known about the role of (+)-terrein on inflammatory responses. In this study, we provided the possibility of novel action that (+)-terrein inhibits activation of Janus-activated kinase 1 (JAK1), which has a central function in IL-6 signaling cascade, and alters expression of mRNAs and proteins induced by IL-6/soluble IL-6 receptor (sIL-6R) stimulation in HGFs. First, we performed PCR array to examine IL-6/sIL-6R-induced mRNA expression, and then expression of mRNA and protein of colony stimulating factor-1 (CSF1) and VEGF were clearly determined by quantitative RT-PCR and ELISA, respectively. Treatment with (+)-terrein suppressed expression of mRNA and protein of CSF1 and VEGF by IL-6/sIL-6R stimulation. Next, to test the effect of (+)-terrein on IL-6/sIL-6R signaling cascade, we demonstrated whether (+)-terrein affects phosphorylation of JAK1 and its downstream proteins, Akt and SHP-2. Western blotting revealed that (+)-terrein inhibited IL-6/sIL-6R-induced phosphorylation of JAK1, Akt, and SHP-2. Therefore, (+)-terrein suppresses IL-6/sIL-6R-induced expression of CSF1 and VEGF via inhibition of JAK1, Akt, and SHP-2. Based on our results, we suggest that (+)-terrein is a candidate compound for anti-inflammatory effect associated with IL-6 signaling.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, 700-8558, Japan
- Corresponding author.
| | - Hiroki Mandai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Saki Nakagawa
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Tadashi Kunimine
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hiroshi Yoshimura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kyosuke Sakaida
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Hidefumi Sako
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Tadashi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Hiroshi Maeda
- Department of Endodontics, Osaka Dental University, Osaka, 540-0008, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
- Corresponding author.
| |
Collapse
|
36
|
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA 2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:846-860. [PMID: 30408523 DOI: 10.1016/j.bbalip.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
The Ca2+-independent phospholipases, designated as group VI iPLA2s, also referred to as PNPLAs due to their shared homology with patatin, include the β, γ, δ, ε, ζ, and η forms of the enzyme. The iPLA2s are ubiquitously expressed, share a consensus GXSXG catalytic motif, and exhibit organelle/cell-specific localization. Among the iPLA2s, iPLA2β has received wide attention as it is recognized to be involved in membrane remodeling, cell proliferation, cell death, and signal transduction. Ongoing studies implicate participation of iPLA2β in a variety of disease processes including cancer, cardiovascular abnormalities, glaucoma, and peridonditis. This review will focus on iPLA2β and its links to male fertility, neurological disorders, metabolic disorders, and inflammation.
Collapse
Affiliation(s)
- John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tayleur D White
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alexander J Nelson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
37
|
Abstract
Periodontal diseases are initiated by bacteria that accumulate in a biofilm on the tooth surface and affect the adjacent periodontal tissue. Systemic diseases such as diabetes, rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) increase susceptibility to destructive periodontal diseases. In human studies and in animal models, these diseases have been shown to enhance inflammation in the periodontium and increase the risk or severity of periodontitis. All 3 systemic diseases are linked to a decrease in bacterial taxa associated with health and an increase in taxa associated with disease. Although there is controversy regarding the specific oral bacterial changes associated with each disease, it has been reported that diabetes increases the levels of Capnocytophaga, Porphyromonas, and Pseudomonas, while Prevotella and Selenomonas are increased in RA and Selenomonas, Leptotrichia, and Prevotella in SLE. In an animal model, diabetes increased the pathogenicity of the oral microbiome, as shown by increased inflammation, osteoclastogenesis, and periodontal bone loss when transferred to normal germ-free hosts. Moreover, in diabetic animals, the increased pathogenicity could be substantially reversed by inhibition of IL-17, indicating that host inflammation altered the microbial pathogenicity. Increased IL-17 has also been shown in SLE, RA, and leukocyte adhesion deficiency and may contribute to oral microbial changes in these diseases. Successful RA treatment with anti-inflammatory drugs partially reverses the oral microbial dysbiosis. Together, these data demonstrate that systemic diseases characterized by enhanced inflammation disturb the oral microbiota and point to IL-17 as key mediator in this process.
Collapse
Affiliation(s)
- D T Graves
- 1 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J D Corrêa
- 2 Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T A Silva
- 2 Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
38
|
Abstract
The diminished capacity for wound healing in patients with diabetes contributes to morbidity through ulceration and recurrent infections, loss of function and decreased workplace productivity, increased hospitalisation rates, and rising health-care costs. These are due to diabetes' effects on signalling molecules, cellular cascades, different cell populations, and the vasculature. The function of multiple immune system components including cellular response, blood factors, and vascular tone are all negatively impacted by diabetes. The purpose of this paper is to review the current understanding of immune and vascular dysfunction contributing to impaired wound healing mechanisms in the diabetic population. Normal wound healing mechanisms are reviewed followed by diabetic aberrations to immune and inflammatory function and atherogenesis and angiopathy. DECLARATION OF INTEREST The authors have no financial or personal relationships to people or organisations that could potentially and inappropriately influence their work and conclusions.
Collapse
Affiliation(s)
- A S Ahmed
- Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030
| | - E L Antonsen
- Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030.,Department of Medicine - Section of Emergency Medicine, 1 Baylor Plaza, Houston, Texas.,Department of Medicine - Section of Space Medicine, 1 Baylor Plaza, Houston, Texas
| |
Collapse
|
39
|
Yadav K, Singh D, Singh MR. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int J Biol Macromol 2018; 118:1796-1810. [PMID: 30017989 DOI: 10.1016/j.ijbiomac.2018.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is defined as a long-lasting multifactorial inflammatory autoimmune skin condition precisely characterized by delimited, erythematic papules with adherent shiny scales. The conditions are led by hyperproliferative responses of epidermis due to hyperactivation and immature keratinocytes production. The psoriatic skin consists of the thickened epidermal layer, in concurrence with inflammatory exudates in the dermis mainly of dendritic cells, neutrophils, T cells, and macrophages, contributing to the distinct manifestation of psoriatic lesions. It consents to multifaceted and discrete pathology due to the genetic and immunological alteration resulting from abnormal expression of various regulatory and structural proteins. These proteins are associated with various cellular and sub-cellular activities. Therefore, the presence of protein in a pathological cellular environment in the psoriatic lesions as well as in serum could be a great avenue for the insight of pathomechanism, anticipation and diagnosis of psoriasis. Research of protein biomarker in psoriasis is yet a developing realm to be explored by both fundamental and clinical researchers. This review is an attempt to assimilate the current discoveries and revelations of different proteins as a biomarker and their importance in pathogenesis, diagnosis, treatment, and anticipation of both the inflammatory and other dermatological aspects of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
40
|
Di Sebastiano KM, Pinthus JH, Duivenvoorden WCM, Mourtzakis M. Glucose impairments and insulin resistance in prostate cancer: the role of obesity, nutrition and exercise. Obes Rev 2018; 19:1008-1016. [PMID: 29573216 DOI: 10.1111/obr.12674] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hyperinsulinemia, obesity and related metabolic diseases are associated with prostate cancer development. Prostate cancer patients undergoing androgen deprivation therapy (ADT) are at increased risk for metabolic syndrome, cardiovascular disease and diabetes, while pre-existing metabolic conditions may be exacerbated. PURPOSE An integrative approach is used to describe the interactions between insulin, glucose metabolism, obesity and prostate cancer. The potential role of nutrition and exercise will also be examined. FINDINGS Hyperinsulinemia is associated with prostate cancer development, progression and aggressiveness. Prostate cancer patients who undergo ADT are at risk of diabetes in survivorship. It is unclear whether this is a direct result of treatment or related to pre-existing metabolic features (e.g. hyperinsulinemia and obesity). Obesity and metabolic syndrome are also associated with prostate cancer development and poorer outcomes for cancer survivors, which may be driven by hyperinsulinemia, pro-inflammation, hyperleptinemia and/or hypoadiponectinemia. CONCLUSIONS Independently evaluating changes in glucose metabolism near the time of prostate cancer diagnosis and during long-term ADT treatment is important to distinguish their unique contributions to the development of metabolic disturbances. Integrative approaches, including metabolic, clinical and body composition measures, are needed to understand the role of adiposity and insulin resistance in prostate cancer and to develop effective nutrition and exercise interventions to improve secondary diseases in survivorship.
Collapse
Affiliation(s)
- K M Di Sebastiano
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - J H Pinthus
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON, Canada
| | - W C M Duivenvoorden
- Department of Surgery, Division of Urology, McMaster University, Hamilton, ON, Canada
| | - M Mourtzakis
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
41
|
Salem SAM, El-Khateeb EA, Harvy M, Emam HMES, Abdelaal W, Nemr RE, El-Hagry OO. Study of serum levels and skin expression of S100B protein in psoriasis. An Bras Dermatol 2018; 92:323-328. [PMID: 29186242 PMCID: PMC5514570 DOI: 10.1590/abd1806-4841.20175038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/15/2016] [Indexed: 11/22/2022] Open
Abstract
Background S100B protein was reported to be elevated in psoriatic patients' serum, with
no previous evaluation of its skin expression, in contrast to the
extensively studied S100 protein. Objective To evaluate the serum level and skin expression of S100B in psoriasis to
assess its possible involvement in its pathogenesis. Methods Serum level of S100B protein was estimated in 40 psoriatic patients of
different clinical varieties and 10 healthy controls. S100B protein
expression was assessed immunohistochemically in lesional and non-lesional
skin of patients and in normal skin of controls. Relation to disease
severity was also evaluated. Results Serum level of S100B protein was significantly higher in psoriatic patients
(0.15±0.03 µg/l) than in controls (0.03±0.007
µg/l) (P-value <0.001) with no significant correlation with PASI
score. On comparing grades of S100B protein skin expression in lesional and
non-lesional skin biopsies, a statistically significant difference was found
(P=0.046) with higher percentage of strong S100B skin expression (60%) in
non-lesional than in lesional (42%) skin. All the control biopsies showed
negative expression. Study limitations Relatively small sample size with a limited range of low PASI scores. Conclusion This study points to a potential link between psoriasis and S100B protein
with higher serum and skin expression in patients than in controls.
Collapse
Affiliation(s)
| | | | - Mervat Harvy
- Department of Medical Biochemistry, National Research Center - Giza, Egypt
| | | | - Wafaa Abdelaal
- Department of Pathology, National Research Center - Giza, Egypt
| | - Reham El Nemr
- Department of Pathology, National Research Center - Giza, Egypt
| | | |
Collapse
|
42
|
Manosudprasit A, Kantarci A, Hasturk H, Stephens D, Van Dyke TE. Spontaneous PMN apoptosis in type 2 diabetes and the impact of periodontitis. J Leukoc Biol 2017; 102:1431-1440. [PMID: 29021368 DOI: 10.1189/jlb.4a0416-209rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to test the hypothesis that peripheral blood neutrophils (PMN) exhibit delayed spontaneous apoptosis in individuals with diabetes mellitus type 2 (T2DM) and that the delay is exacerbated further among people who coexpress chronic periodontitis (CP). Seventy-three individuals were enrolled, including those with T2DM (n = 16), CP (n = 15), T2DM + CP (n = 21), and healthy volunteers (n = 21). PMN apoptosis was determined by flow cytometry using TUNEL and Annexin V assays. The activity of caspase-3, -8, and -9 was measured by colorimetric assay. PMN surface death receptor quantification was performed by flow cytometry staining with fluorescence-conjugated anti-CD120a (TNFR1) and anti-CD95 [Fas receptor (FasR)] antibody. Analysis of inflammatory markers in serum samples was performed using multiplexed sandwich immunoassays. In healthy volunteers and individuals with T2DM, CP, and T2DM + CP, spontaneous PMN apoptosis observed at 12 h reached 85.3 ± 3.1, 67.3 ± 3.9, 62.9 ± 3.5 and 62.5 ± 5.4%, respectively (P < 0.05). Caspase-3 activity was significantly reduced in individuals with T2DM and T2DM + CP (P < 0.05) when compared with healthy volunteers. Caspase-8 activity was also significantly decreased in CP and T2DM + CP (P < 0.05), associated with reduced cell-surface FasR, TNFRs, and Fas ligand (FasL) serum levels. Glucose alone was not observed to impact PMN apoptosis; simultaneous incubation with the receptor for advanced glycation endproducts (RAGE) agonist S100B induced significant PMN apoptosis (P < 0.05). These data support the premise that the inhibition of PMN apoptosis in individuals with T2DM occurs through an advanced glycation endproducts/RAGE ligand/receptor-mediated interaction.
Collapse
Affiliation(s)
- Aggasit Manosudprasit
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hatice Hasturk
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Danielle Stephens
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
43
|
Zahoor I, de Koning DJ, Hocking PM. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature. Genet Sel Evol 2017; 49:69. [PMID: 28931372 PMCID: PMC5607596 DOI: 10.1186/s12711-017-0346-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. RESULTS Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. CONCLUSIONS Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers.
Collapse
Affiliation(s)
- Imran Zahoor
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Dirk-Jan de Koning
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Paul M Hocking
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
44
|
El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PMC. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 2017; 273:180-93. [PMID: 27558335 DOI: 10.1111/imr.12447] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases.
Collapse
Affiliation(s)
- Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Margarita Hurtado-Nedelec
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Viviana Marzaioli
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| | - Jean-Claude Marie
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| |
Collapse
|
45
|
Song F, Xue Y, Dong D, Liu J, Fu T, Xiao C, Wang H, Lin C, Liu P, Zhong J, Yang Y, Wang Z, Pan H, Chen J, Li Y, Cai D, Li Z. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes. Sci Rep 2016; 6:32871. [PMID: 27611469 PMCID: PMC5017193 DOI: 10.1038/srep32871] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea.
Collapse
Affiliation(s)
- Fang Song
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Yunxia Xue
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Dong Dong
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Jun Liu
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Ting Fu
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Chengju Xiao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Hanqing Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Cuipei Lin
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Peng Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Jiajun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Yabing Yang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Zhaorui Wang
- Department of Medical Images, The Third People's Hospital, Puyang, China
| | - Hongwei Pan
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Jiansu Chen
- International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Dongqing Cai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China
| | - Zhijie Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, P.R. China.,International Ocular Surface Research Centre and Institute of Ophthalmology, Jinan University Medical School, Guangzhou 510632, P.R. China.,Section of Leukocyte Biology, Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
46
|
Ridzuan N, John CM, Sandrasaigaran P, Maqbool M, Liew LC, Lim J, Ramasamy R. Preliminary study on overproduction of reactive oxygen species by neutrophils in diabetes mellitus. World J Diabetes 2016; 7:271-278. [PMID: 27433296 PMCID: PMC4937165 DOI: 10.4239/wjd.v7.i13.271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To assess the amount and pattern of reactive oxygen species (ROS) production in diabetic patient-derived neutrophils.
METHODS: Blood samples from type 2 diabetes mellitus (DM) patients and volunteers (controls) were subjected to neutrophil isolation and the assessment of neutrophil oxidative burst using chemiluminescence assay. Neutrophils were activated by using phorbol myristate acetate (PMA) and neutrophils without activation were kept as a negative control. The chemiluminescence readings were obtained by transferring cell suspension into a 1.5 mL Eppendorf tube, with PMA and luminol. Reaction mixtures were gently vortexed and placed inside luminometer for a duration of 5 min.
RESULTS: Our results showed that in the resting condition, the secretion of ROS in normal non-diabetic individuals was relatively low compared to diabetic patients. However, the time scale observation revealed that the secreted ROS declined accordingly with time in non-diabetic individuals, yet such a reduction was not detected in diabetic patients where at all the time points, the secretion of ROS was maintained at similar magnitudes. This preliminary study demonstrated that ROS production was significantly higher in patients with DM compared to non-diabetic subjects in both resting and activated conditions.
CONCLUSION: The respiratory burst activity of neutrophils could be affected by DM and the elevation of ROS production might be an aggravating factor in diabetic-related complications.
Collapse
|
47
|
Fine N, Hassanpour S, Borenstein A, Sima C, Oveisi M, Scholey J, Cherney D, Glogauer M. Distinct Oral Neutrophil Subsets Define Health and Periodontal Disease States. J Dent Res 2016; 95:931-8. [PMID: 27270666 DOI: 10.1177/0022034516645564] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neutrophils exit the vasculature and swarm to sites of inflammation and infection. However, these cells are abundant in the healthy, inflammation-free human oral environment, suggesting a unique immune surveillance role within the periodontium. We hypothesize that neutrophils in the healthy oral cavity occur in an intermediary parainflammatory state that allows them to interact with and contain the oral microflora without eliciting a marked inflammatory response. Based on a high-throughput screen of neutrophil CD (cluster of differentiation) marker expression and a thorough literature review, we developed multicolor flow cytometry panels to determine the surface marker signatures of oral neutrophil subsets in periodontal health and disease. We define here 3 distinct neutrophil subsets: resting/naive circulatory neutrophils, parainflammatory neutrophils found in the healthy oral cavity, and proinflammatory neutrophils found in the oral cavity during chronic periodontal disease. Furthermore, parainflammatory neutrophils manifest as 2 distinct subpopulations-based on size, granularity, and expression of specific CD markers-and exhibit intermediate levels of activation as compared with the proinflammatory oral neutrophils. These intermediately activated parainflammatory populations occur in equal proportions in the healthy oral cavity, with a shift to one highly activated proinflammatory neutrophil population in chronic periodontal disease. This work is the first to identify and characterize oral parainflammatory neutrophils that interact with commensal biofilms without inducing an inflammatory response, thereby demonstrating that not all neutrophils trafficking through periodontal tissues are fully activated. In addition to establishing possible diagnostic and treatment monitoring biomarkers, this oral neutrophil phenotype model builds on existing literature suggesting that the healthy periodontium may be in a parainflammatory state.
Collapse
Affiliation(s)
- N Fine
- Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, Canada
| | - S Hassanpour
- Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, Canada
| | - A Borenstein
- Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, Canada
| | - C Sima
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - M Oveisi
- Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, Canada
| | - J Scholey
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - D Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - M Glogauer
- Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Knight ET, Liu J, Seymour GJ, Faggion CM, Cullinan MP. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases. Periodontol 2000 2016; 71:22-51. [DOI: 10.1111/prd.12110] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/31/2022]
|
49
|
Zamakhchari MF, Sima C, Sama K, Fine N, Glogauer M, Van Dyke TE, Gyurko R. Lack of p47(phox) in Akita Diabetic Mice Is Associated with Interstitial Pneumonia, Fibrosis, and Oral Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:659-70. [PMID: 26747235 PMCID: PMC4816692 DOI: 10.1016/j.ajpath.2015.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/06/2015] [Accepted: 10/29/2015] [Indexed: 01/22/2023]
Abstract
Excess reactive oxygen species production is central to the development of diabetic complications. The contribution of leukocyte reactive oxygen species produced by the NADPH oxidase to altered inflammatory responses associated with uncontrolled hyperglycemia is poorly understood. To get insight into the role of phagocytic superoxide in the onset of diabetic complications, we used a model of periodontitis in mice with chronic hyperglycemia and lack of leukocyte p47(phox) (Akita/Ncf1) bred from C57BL/6-Ins2(Akita)/J (Akita) and neutrophil cytosolic factor 1 knockout (Ncf1) mice. Akita/Nfc1 mice showed progressive cachexia starting at early age and increased mortality by six months. Their lungs developed infiltrative interstitial lesions that obliterated air spaces as early as 12 weeks when fungal colonization of lungs also was observed. Neutrophils of Akita/Ncf1 mice had normal degranulation and phagocytic efficiency when compared with wild-type mice. Although Akita/Ncf1 mice had increased prevalence of oral infections and more severe periodontitis compared with wild-type mice, bone loss was only marginally higher compared with Akita and Ncf1 null mice. Altogether these results indicate that lack of leukocyte superoxide production in mice with chronic hyperglycemia results in interstitial pneumonia and increased susceptibility to infections.
Collapse
Affiliation(s)
- Mai F Zamakhchari
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts
| | - Corneliu Sima
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts; Department of Oral Medicine, Infection, Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Kishore Sama
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts
| | - Noah Fine
- The Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | - Michael Glogauer
- The Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts; Department of Oral Medicine, Infection, Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Robert Gyurko
- Department of Periodontology and Oral Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts; Department of Periodontology, Tufts University School of Dental Medicine, Boston, Massachusetts.
| |
Collapse
|
50
|
Silva ARD, Cerdeira CD, Brito AR, Salles BCC, Ravazi GF, Moraes GDOI, Rufino LRA, Oliveira RBSD, Santos GB. Green banana pasta diet prevents oxidative damage in liver and kidney and improves biochemical parameters in type 1 diabetic rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2016; 60:355-66. [PMID: 26910629 PMCID: PMC10118715 DOI: 10.1590/2359-3997000000152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In this study, the effects of a green banana pasta diet on the oxidative damage from type 1 diabetes mellitus (DM) were investigated. MATERIALS AND METHODS Formulations containing 25 (F25), 50 (F50), and 75% (F75) of green banana pasta were prepared and included in a 12-week diet of Wistar rats with alloxan-induced type 1 DM. The effects of these formulations in preventing oxidative damage in kidneys and liver homogenates of rats were evaluated using the TBARS assay (lipid peroxidation in liver) and the DNPH assay (protein oxidation in liver and kidneys). Furthermore, the effects of the formulations on the fasting glycemia, fructosamine levels, renal function (creatinine), liver function (enzymes aspartate aminotransferase [AST] and alanine aminotransferase [ALT]), and lipid profile (total cholesterol and fractions) in the serum of rats were evaluated in addition to the evaluation of the centesimal composition and microbiological analysis of the produced green banana pasta. RESULTS An F75 diet prevented hyperglycemia in diabetic rats (p < 0.05) compared to the diabetic rats fed a standard diet (commercial feed). Notably, the protein oxidation in both the liver and kidneys were prevented in diabetic rats on the F50 or F75 diets compared to the control group, whereas the lipid peroxidation was only prevented in the liver (p < 0.05). Moreover, all formulations prevented an increase in the amount of triglycerides in the serum of the rats. The F25 and F50 diet prevented the increase of cholesterol, and the F75-based diet of ALT and fructosamine (p < 0.05) supported the anti-hyperglycemic effects and the protection against oxidative damage. CONCLUSION The green banana pasta (F75) diet showed great potential for preventing complications associated with diabetes.
Collapse
Affiliation(s)
- Aline Rodrigues da Silva
- Laboratório de Pesquisa em Ciências Biológicas, Universidade José do Rosário Vellano (Unifenas), Alfenas, MG, Brasil
| | - Cláudio Daniel Cerdeira
- Departamento de Bioquímica, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal), Alfenas, MG, Brasil
| | - Anelise Rigoni Brito
- Laboratório de Pesquisa em Ciências Biológicas, Universidade José do Rosário Vellano (Unifenas), Alfenas, MG, Brasil
| | - Bruno Cesar Correa Salles
- Laboratório de Bioquímica Clínica, Departamento de Análises Clínicas e Toxicológicas da Faculdade de Ciências Farmacêuticas, Unifal, Alfenas, MG, Brasil
| | - Gabriela Franzin Ravazi
- Laboratório de Pesquisa em Ciências Biológicas, Universidade José do Rosário Vellano (Unifenas), Alfenas, MG, Brasil
| | | | - Luciana Rosa Alves Rufino
- Laboratório de Pesquisa em Ciências Biológicas, Universidade José do Rosário Vellano (Unifenas), Alfenas, MG, Brasil
| | | | - Gérsika Bitencourt Santos
- Laboratório de Pesquisa em Ciências Biológicas, Universidade José do Rosário Vellano (Unifenas), Alfenas, MG, Brasil
| |
Collapse
|