1
|
López ME, Ozerov M, Pukk L, Noreikiene K, Gross R, Vasemägi A. Dynamic Outlier Slicing Allows Broader Exploration of Adaptive Divergence: A Comparison of Individual Genome and Pool-Seq Data Linked to Humic Adaptation in Perch. Mol Ecol 2025; 34:e17659. [PMID: 39846218 DOI: 10.1111/mec.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
How genetic variation contributes to adaptation at different environments is a central focus in evolutionary biology. However, most free-living species still lack a comprehensive understanding of the primary molecular mechanisms of adaptation. Here, we characterised the targets of selection associated with drastically different aquatic environments-humic and clear water-in the common freshwater fish, Eurasian perch (Perca fluviatilis). By using whole-genome sequencing (WGS) on a large population dataset (n = 42 populations) and analysing 873,788 SNPs, our primary aim was to uncover novel and confirm known footprints of selection. We compared individual and pooled WGS, and developed a novel approach, termed dynamic outlier slicing, to assess how the choice of outlier-calling stringency influences functional and Gene Ontology (GO) enrichment. By integrating genome-environment association (GEA) analysis with allele frequency-based approaches, we estimated composite selection signals (CSS) and identified 2679 outlier SNPs distributed across 324 genomic regions, involving 468 genes. Dynamic outlier slicing identified robust enrichment signals in five annotation categories (upstream, downstream, synonymous, 5'UTR and 3'UTR) highlighting the crucial role of regulatory elements in adaptive evolution. Furthermore, GO analyses revealed strong enrichment of molecular functions associated with gated channel activity, transmembrane transporter activity and ion channel activity, emphasising the importance of osmoregulation and ion balance maintenance. Our findings demonstrate that despite substantial random drift and divergence, WGS of high number of population pools enabled the identification of strong selection signals associated with adaptation to both humic and clear water environments, providing robust evidence of widespread adaptation. We anticipate that the dynamic outlier slicing method we developed will enable a more thorough exploration of adaptive divergence across a diverse range of species.
Collapse
Affiliation(s)
- María-Eugenia López
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Lilian Pukk
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Kristina Noreikiene
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Riho Gross
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Freshwater Research, Department of Aquatic Resources (SLU Aqua), Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
2
|
Whitsitt Q, Saxena A, Patel B, Evans BM, Hunt B, Purcell EK. Spatial transcriptomics at the brain-electrode interface in rat motor cortex and the relationship to recording quality. J Neural Eng 2024; 21:046033. [PMID: 38885679 PMCID: PMC11289622 DOI: 10.1088/1741-2552/ad5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Study of the foreign body reaction to implanted electrodes in the brain is an important area of research for the future development of neuroprostheses and experimental electrophysiology. After electrode implantation in the brain, microglial activation, reactive astrogliosis, and neuronal cell death create an environment immediately surrounding the electrode that is significantly altered from its homeostatic state.Objective.To uncover physiological changes potentially affecting device function and longevity, spatial transcriptomics (ST) was implemented to identify changes in gene expression driven by electrode implantation and compare this differential gene expression to traditional metrics of glial reactivity, neuronal loss, and electrophysiological recording quality.Approach.For these experiments, rats were chronically implanted with functional Michigan-style microelectrode arrays, from which electrophysiological recordings (multi-unit activity, local field potential) were taken over a six-week time course. Brain tissue cryosections surrounding each electrode were then mounted for ST processing. The tissue was immunolabeled for neurons and astrocytes, which provided both a spatial reference for ST and a quantitative measure of glial fibrillary acidic protein and neuronal nuclei immunolabeling surrounding each implant.Main results. Results from rat motor cortex within 300µm of the implanted electrodes at 24 h, 1 week, and 6 weeks post-implantation showed up to 553 significantly differentially expressed (DE) genes between implanted and non-implanted tissue sections. Regression on the significant DE genes identified the 6-7 genes that had the strongest relationship to histological and electrophysiological metrics, revealing potential candidate biomarkers of recording quality and the tissue response to implanted electrodes.Significance. Our analysis has shed new light onto the potential mechanisms involved in the tissue response to implanted electrodes while generating hypotheses regarding potential biomarkers related to recorded signal quality. A new approach has been developed to understand the tissue response to electrodes implanted in the brain using genes identified through transcriptomics, and to screen those results for potential relationships with functional outcomes.
Collapse
Affiliation(s)
- Quentin Whitsitt
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Bella Patel
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Blake M Evans
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Bradley Hunt
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| | - Erin K Purcell
- Department of Biomedical Engineering and Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States of America
| |
Collapse
|
3
|
Wang L, Lu X, Chopp M, Li C, Zhang Y, Szalad A, Liu XS, Zhang ZG. Comparative proteomic analysis of exosomes derived from endothelial cells and Schwann cells. PLoS One 2023; 18:e0290155. [PMID: 37594969 PMCID: PMC10437921 DOI: 10.1371/journal.pone.0290155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Exosomes derived from endothelial cells and Schwann cells have been employed as novel treatments of neurological diseases, including peripheral neuropathy. Exosomal cargo plays a critical role in mediating recipient cell function. In this study, we thus performed a comprehensive proteomic analysis of exosomes derived from healthy mouse dermal microvascular endothelial cells (EC-Exo) and healthy mouse Schwann cells (SC-Exo). We detected 1,817and 1,579 proteins in EC-Exo and SC-Exo, respectively. Among them, 1506 proteins were present in both EC-Exo and SC-Exo, while 311 and 73 proteins were detected only in EC-Exo and SC-Exo, respectively. Bioinformatic analysis revealed that EC-Exo enriched proteins were involved in neurovascular function, while SC-Exo enriched proteins were related to lipid metabolism. Western blot analysis of 14 enriched proteins revealed that EC-Exo contained proteins involved in mediating endothelial function such as delta-like 4 (DLL4) and endothelial NOS (NOS3), whereas SC-Exo had proteins involved in mediating glial function such as apolipoprotein A-I (APOA1) and phospholipid transfer protein (PLTP). Collectively, the present study identifies differences in the cargo protein profiles of EC-Exo and SC-Exo, thus providing new molecular insights into their biological functions for the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Chao Li
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
4
|
Funke VLE, Walter C, Melcher V, Wei L, Sandmann S, Hotfilder M, Varghese J, Jäger N, Kool M, Jones DTW, Pfister SM, Milde T, Mynarek M, Rutkowski S, Seggewiss J, Jeising D, de Faria FW, Marquardt T, Albert TK, Schüller U, Kerl K. Group-specific cellular metabolism in Medulloblastoma. J Transl Med 2023; 21:363. [PMID: 37277823 DOI: 10.1186/s12967-023-04211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.
Collapse
Affiliation(s)
- Viktoria L E Funke
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carolin Walter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Lanying Wei
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jochen Seggewiss
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Daniela Jeising
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, 48149, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
5
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
6
|
Gautier T, Deckert V, Nguyen M, Desrumaux C, Masson D, Lagrost L. New therapeutic horizons for plasma phospholipid transfer protein (PLTP): Targeting endotoxemia, infection and sepsis. Pharmacol Ther 2021; 236:108105. [PMID: 34974028 DOI: 10.1016/j.pharmthera.2021.108105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Phospholipid Transfer Protein (PLTP) transfers amphiphilic lipids between circulating lipoproteins and between lipoproteins, cells and tissues. Indeed, PLTP is a major determinant of the plasma levels, turnover and functionality of the main lipoprotein classes: very low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). To date, most attention has been focused on the role of PLTP in the context of cardiometabolic diseases, with additional insights in neurodegenerative diseases and immunity. Importantly, beyond its influence on plasma triglyceride and cholesterol transport, PLTP plays a key role in the modulation of the immune response, with immediate relevance to a wide range of inflammatory diseases including bacterial infection and sepsis. Indeed, emerging evidence supports the role of PLTP, in the context of its association with lipoproteins, in the neutralization and clearance of bacterial lipopolysaccharides (LPS) or endotoxins. LPS are amphipathic molecules originating from Gram-negative bacteria which harbor major pathogen-associated patterns, triggering an innate immune response in the host. Although the early inflammatory reaction constitutes a key step in the anti-microbial defense of the organism, it can lead to a dysregulated inflammatory response and to hemodynamic disorders, organ failure and eventually death. Moreover, and in addition to endotoxemia and acute inflammation, small amounts of LPS in the circulation can induce chronic, low-grade inflammation with long-term consequences in several metabolic disorders such as atherosclerosis, obesity and diabetes. After an updated overview of the role of PLTP in lipid transfer, lipoprotein metabolism and related diseases, current knowledge of its impact on inflammation, infection and sepsis is critically appraised. Finally, the relevance of PLTP as a new player and novel therapeutic target in the fight against inflammatory diseases is considered.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| | - Valérie Deckert
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service Anesthésie-Réanimation Chirurgicale, Dijon University Hospital, Dijon, France
| | - Catherine Desrumaux
- INSERM, U1198, Montpellier, France; Faculty of Sciences, Université Montpellier, Montpellier, France
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Plateau Automatisé de Biochimie, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service de la Recherche, Dijon University Hospital, Dijon, France.
| |
Collapse
|
7
|
Pedrini S, Hone E, Gupta VB, James I, Teimouri E, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Rainey-Smith S, Verdile G, Sohrabi HR, Raida MR, Wenk MR, Taddei K, Chatterjee P, Martins I, Laws SM, Martins RN. Plasma High Density Lipoprotein Small Subclass is Reduced in Alzheimer's Disease Patients and Correlates with Cognitive Performance. J Alzheimers Dis 2021; 77:733-744. [PMID: 32741823 PMCID: PMC7592676 DOI: 10.3233/jad-200291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: The link between cholesterol and Alzheimer’s disease (AD) has received much attention, as evidence suggests high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to enable clearance of excess cholesterol via ‘cholesterol reverse transport’, although its activities in the pathogenesis of AD are poorly understood. There are several subclasses of HDL; these range from the newly formed small HDL, to much larger HDL. Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL subclass levels correlated with plasma amyloid-β (Aβ) levels or brain Aβ deposition. Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while Aβ1–42 levels were assessed by ELISA. Brain Aβ deposition was assessed by PET scan. Statistical analysis was performed using parametric and non-parametric tests. Results: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or HDL subfraction levels. Conclusion: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with cognitive performances.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elham Teimouri
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ashley I Bush
- CRC for Mental Health, Carlton South, Victoria, Australia.,The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,University of Melbourne Academic unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Hamid R Sohrabi
- Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Manfred R Raida
- Life Science Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kevin Taddei
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Pratishtha Chatterjee
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Simon M Laws
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ralph N Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
8
|
Wang WZ, Li MW, Chen Y, Liu LY, Xu Y, Xia ZH, Yu Y, Wang XD, Chen W, Zhang F, Xu XY, Gao YF, Zhang JG, Qin SC, Wang H. 3×Tg-AD Mice Overexpressing Phospholipid Transfer Protein Improves Cognition Through Decreasing Amyloid-β Production and Tau Hyperphosphorylation. J Alzheimers Dis 2021; 82:1635-1649. [PMID: 34219730 DOI: 10.3233/jad-210463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) belongs to the lipid transfer glycoprotein family. Studies have shown that it is closely related to Alzheimer's disease (AD); however, the exact effect and mechanism remain unknown. OBJECTIVE To observe the effect of PLTP overexpression on behavioral dysfunction and the related mechanisms in APP/PS1/Tau triple transgenic (3×Tg-AD) mice. METHODS AAV-PLTP-EGFP was injected into the lateral ventricle to induce PLTP overexpression. The memory of 3×Tg-AD mice and wild type (WT) mice aged 10 months were assessed using Morris water maze (MWM) and shuttle-box passive avoidance test (PAT). Western blotting and ELISA assays were used to quantify the protein contents. Hematoxylin and eosin, Nissl, and immunochemistry staining were utilized in observing the pathological changes in the brain. RESULTS 3×Tg-AD mice displayed cognitive impairment in WMW and PAT, which was ameliorated by PLTP overexpression. The histopathological hallmarks of AD, senile plaques and neurofibrillary tangles, were observed in 3×Tg-AD mice and were improved by PLTP overexpression. Besides, the increase of amyloid-β42 (Aβ42) and Aβ40 were found in the cerebral cortex and hippocampus of 3×Tg-AD mice and reversed by PLTP overexpression through inhibiting APP and PS1. PLTP overexpression also reversed tau phosphorylation at the Ser404, Thr231 and Ser199 of the hippocampus in 3×Tg-AD mice. Furthermore, PLTP overexpression induced the glycogen synthase kinase 3β (GSK3β) inactivation via upregulating GSK3β (pSer9). CONCLUSION These results suggest that PLTP overexpression has neuroprotective effects. These effects are possibly achieved through the inhibition of the Aβ production and tau phosphorylation, which is related to GSK3β inactivation.
Collapse
Affiliation(s)
- Wen-Zhi Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Ming-Wei Li
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Ying Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Li-Yuan Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yong Xu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Zeng-Hui Xia
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yang Yu
- Key Laboratory of Atherosclerosis, University of Shandong, Jinan, China.,Institute of Artherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiao-Dan Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiao-Yan Xu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yong-Feng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Ji-Guo Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Shu-Cun Qin
- Key Laboratory of Atherosclerosis, University of Shandong, Jinan, China.,Institute of Artherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| |
Collapse
|
9
|
Wang H, Chen MH, Chen W, Zhang JG, Qin SC. Roles and mechanisms of phospholipid transfer protein in the development of Alzheimer's disease. Psychogeriatrics 2021; 21:659-667. [PMID: 33851473 DOI: 10.1111/psyg.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/20/2023]
Abstract
Phospholipid transfer protein (PLTP) is a complex glycosylated protein that mediates the transfer of phospholipids, unesterified cholesterol, diacylglycerides, specific apolipoproteins, and tocopherols between different classes of lipoproteins as well as between lipoproteins and cells. Many studies have associated PLTP with a variety of lipid metabolic diseases. However, recent studies have indicated that PLTP is highly expressed in the brain of vertebrate and may be related to many central nervous system diseases, such as Alzheimer's disease. Here, we review the data and report the role and mechanisms PLTP in Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Mei-Hua Chen
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Ji-Guo Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Shu-Cun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong; Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| |
Collapse
|
10
|
Jiang XC, Yu Y. The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis. Curr Atheroscler Rep 2021; 23:9. [PMID: 33496859 DOI: 10.1007/s11883-021-00907-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Phospholipid transfer protein (PLTP), a member of lipid transfer protein family, is an important protein involved in lipid metabolism in the circulation. This article reviews recent PLTP research progresses, involving lipoprotein metabolism and atherogenesis. RECENT FINDINGS PLTP activity influences atherogenic and anti-atherogenic lipoprotein levels. Human serum PLTP activity is a risk factor for human cardiovascular disease and is an independent predictor of all-cause mortality. PLTP deficiency reduces VLDL and LDL levels and attenuates atherosclerosis in mouse models, while PLTP overexpression exerts an opposite effect. Both PLTP deficiency and overexpression result in reduction of HDL which has different size, inflammatory index, and lipid composition. Moreover, although both PLTP deficiency and overexpression reduce cholesterol efflux capacity, but this effect has no impact in macrophage reverse cholesterol transport in mice. Furthermore, PLTP activity is related with metabolic syndrome, thrombosis, and inflammation. PLTP could be target for the treatment of dyslipidemia and atherosclerosis, although some potential off-target effects should be noted.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, USA.
| | - Yang Yu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| |
Collapse
|
11
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
12
|
Zilmer M, Edmondson AC, Khetarpal SA, Alesi V, Zaki MS, Rostasy K, Madsen CG, Lepri FR, Sinibaldi L, Cusmai R, Novelli A, Issa MY, Fenger CD, Abou Jamra R, Reutter H, Briuglia S, Agolini E, Hansen L, Petäjä-Repo UE, Hintze J, Raymond KM, Liedtke K, Stanley V, Musaev D, Gleeson JG, Vitali C, O’Brien WT, Gardella E, Rubboli G, Rader DJ, Schjoldager KT, Møller RS. Novel congenital disorder of O-linked glycosylation caused by GALNT2 loss of function. Brain 2020; 143:1114-1126. [PMID: 32293671 PMCID: PMC7534148 DOI: 10.1093/brain/awaa063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.
Collapse
Affiliation(s)
- Monica Zilmer
- Department of Paediatrics, Danish Epilepsy Centre Filadelfia, 4293 Dianalund, Denmark
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, Section of Biochemical Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sumeet A Khetarpal
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Viola Alesi
- Medical Genetics Department, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Kevin Rostasy
- Department of Paediatric Neurology, Children’s Hospital Datteln, Witten/Herdecke University, 45711 Datteln, Germany
| | - Camilla G Madsen
- Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, 2650 Hvidovre, Denmark
| | - Francesca R Lepri
- Medical Genetics Department, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetics Department, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Raffaella Cusmai
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Antonio Novelli
- Medical Genetics Department, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre Filadelfia, 4293 Dianalund, Denmark
- Amplexa Genetics A/S, 5000 Odense C, Denmark
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, 04103 Leipzig, Germany
| | - Heiko Reutter
- Department of Neonatology and Pediatric Intensive Care, University Hospital of Bonn, 53012 Bonn, Germany
- Institute of Human Genetics, University Hospital of Bonn, 53012 Bonn, Germany
| | | | - Emanuele Agolini
- Medical Genetics Department, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Lars Hansen
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ulla E Petäjä-Repo
- Research Unit of Biomedicine, University of Oulu, 90014 University of Oulu, Finland
| | - John Hintze
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kimiyo M Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kristen Liedtke
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children’s Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Damir Musaev
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children’s Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children’s Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Cecilia Vitali
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - W Timothy O’Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Gardella
- Department of Neurophysiology, Danish Epilepsy Centre Filadelfia, 4293 Dianalund, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre Filadelfia, 4293 Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniel J Rader
- Department of Pediatrics, Division of Human Genetics, Section of Biochemical Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katrine T Schjoldager
- Copenhagen Centre for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre Filadelfia, 4293 Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
13
|
Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:1-13. [PMID: 32705590 DOI: 10.1007/978-981-15-6082-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLTP plays an important role in lipoprotein metabolism and cardiovascular disease development in humans; however, the mechanisms are still not completely understood. In mouse models, PLTP deficiency reduces cardiovascular disease, while its overexpression induces it. Therefore, we used mouse models to investigate the involved mechanisms. In this chapter, the recent main progresses in the field of PLTP research are summarized, and our focus is on the relationship between PLTP and lipoprotein metabolism, as well as PLTP and cardiovascular diseases.
Collapse
|
14
|
Jin U, Park SJ, Park SM. Cholesterol Metabolism in the Brain and Its Association with Parkinson's Disease. Exp Neurobiol 2019; 28:554-567. [PMID: 31698548 PMCID: PMC6844833 DOI: 10.5607/en.2019.28.5.554] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer’s disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.
Collapse
Affiliation(s)
- Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Cardiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
15
|
Wang X, Xia W, Li K, Zhang Y, Ge W, Ma C. Rapamycin regulates cholesterol biosynthesis and cytoplasmic ribosomal proteins in hippocampus and temporal lobe of APP/PS1 mouse. J Neurol Sci 2019; 399:125-139. [PMID: 30798110 DOI: 10.1016/j.jns.2019.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 11/16/2022]
Abstract
As an inhibitor of the immune system and a longevity drug, rapamycin has been suggested as a treatment for Alzheimer's disease, although the underlying mechanisms remain to be clarified. To elucidate the mechanisms, we performed a high-throughput quantitative proteomics analysis and bioinformatics analysis of the changes in the proteome profiles of hippocampus and temporal lobe of wild-type mice, APP/PS1 mice and rapamycin-treated APP/PS1 mice (ProteomeXchange: PXD009540). Morris Water Maze tests were used to evaluate the effectiveness of rapamycin in APP/PS1 treatment and Western blot analysis was used to verify the proteomics data. The results of Morris Water Maze tests indicated that rapamycin improved the spatial learning and memory abilities of APP/PS1 mice. Proteome analysis identified 100 significantly changed (SC) proteins in hippocampus and 260 in temporal lobe in APP/PS1 mice. Among these, 57 proteins in hippocampus and 167 proteins in temporal lobe were rescued by rapamycin. STRING analysis indicated relatively more complicated protein interactions of AD-related rapamycin rescued proteins in temporal lobe. Pathway analysis showed that SC proteins in APP/PS1 mice were mainly enriched in cholesterol biosynthesis pathway and cytoplasmic ribosomal proteins. After rapamycin treatment, the expression of most proteins in these signaling pathways were reversed. Overall, our findings demonstrate that rapamycin may be an potential strategy which can effectively delays the progression of AD.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Medical Molecular Biology, & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wenchao Xia
- State Key Laboratory of Medical Molecular Biology, & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kai Li
- Department of Neurosurgery, Peking University International Hospital, Peking University, Beijing, China
| | - Yusheng Zhang
- State Key Laboratory of Medical Molecular Biology, & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Srivastava D, Kukkuta Sarma GR, Dsouza DS, Muralidharan M, Srinivasan K, Mandal AK. Characterization of residue-specific glutathionylation of CSF proteins in multiple sclerosis - A MS-based approach. Anal Biochem 2018; 564-565:108-115. [PMID: 30367882 DOI: 10.1016/j.ab.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022]
Abstract
Reduction of a disulfide linkage between cysteine residues in proteins, a standard step in the preanalytical preparation of samples in conventional proteomics approach, presents a challenge to characterize S-glutathionylation of proteins. S-glutathionylation of proteins has been reported in medical conditions associated with high oxidative stress. In the present study, we attempted to characterize glutathionylation of CSF proteins in patients with multiple sclerosis which is associated with high oxidative stress. Using the nano-LC/ESI-MS platform, we adopted a modified proteomics approach and a targeted database search to investigate glutathionylation at the residue level of CSF proteins. Compared to patients with Intracranial hypertension, the following CSF proteins: Extracellular Superoxide dismutase (ECSOD) at Cys195, α1-antitrypsin (A1AT) at Cys232, Phospholipid transfer protein (PLTP) at Cys318, Alpha-2-HS-glycoprotein at Cys340, Ectonucleotide pyrophosphate (ENPP-2) at Cys773, Gelsolin at Cys304, Interleukin-18 (IL-18) at Cys38 and Ig heavy chain V III region POM at Cys22 were found to be glutathionylated in patients with multiple sclerosis during a relapse. ECSOD, A1AT, and PLTP were observed to be glutathionylated at the functionally important cysteine residues. In conclusion, in the present study using a modified proteomics approach we have identified and characterized glutathionylation of CSF proteins in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Deepsikha Srivastava
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Gosala Raja Kukkuta Sarma
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Delon Snehal Dsouza
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Monita Muralidharan
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Krishnamachari Srinivasan
- Department of Psychiatry, St. John's Medical College and Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
17
|
Phospholipid transfer protein and alpha-1 antitrypsin regulate Hck kinase activity during neutrophil degranulation. Sci Rep 2018; 8:15394. [PMID: 30337619 PMCID: PMC6193999 DOI: 10.1038/s41598-018-33851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/07/2018] [Indexed: 01/21/2023] Open
Abstract
Excessive neutrophil degranulation is a common feature of many inflammatory disorders, including alpha-1 antitrypsin (AAT) deficiency. Our group has demonstrated that phospholipid transfer protein (PLTP) prevents neutrophil degranulation but serine proteases, which AAT inhibits, cleave PLTP in diseased airways. We propose to identify if airway PLTP activity can be restored by AAT augmentation therapy and how PLTP subdues degranulation of neutrophils in AAT deficient subjects. Airway PLTP activity was lower in AAT deficient patients but elevated in the airways of patients on augmentation therapy. Functional AAT protein (from PiMM homozygotes) prevented PLTP cleavage unlike its mutated ZZ variant (PiZZ). PLTP lowered leukotriene B4 induced degranulation of primary, secondary and tertiary granules from neutrophils from both groups (n = 14/group). Neutrophils isolated from Pltp knockout mice have enhance neutrophil degranulation. Both AAT and PLTP reduced neutrophil degranulation and superoxide production, possibly though their inhibition of the Src tyrosine kinase, Hck. Src kinase inhibitors saracatinib and dasatinib reduced neutrophil degranulation and superoxide production. Therefore, AAT protects PLTP from proteolytic cleavage and both AAT and PLTP mediate degranulation, possibly via Hck tyrosine kinase inhibition. Deficiency of AAT could contribute to reduced lung PLTP activity and elevated neutrophil signaling associated with lung disease.
Collapse
|
18
|
Deletion of plasma Phospholipid Transfer Protein (PLTP) increases microglial phagocytosis and reduces cerebral amyloid-β deposition in the J20 mouse model of Alzheimer's disease. Oncotarget 2018; 9:19688-19703. [PMID: 29731975 PMCID: PMC5929418 DOI: 10.18632/oncotarget.24802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 01/22/2023] Open
Abstract
Plasma phospholipid transfer protein (PLTP) binds and transfers a number of amphipathic compounds, including phospholipids, cholesterol, diacylglycerides, tocopherols and lipopolysaccharides. PLTP functions are relevant for many pathophysiological alterations involved in neurodegenerative disorders (especially lipid metabolism, redox status, and immune reactions), and a significant increase in brain PLTP levels was observed in patients with Alzheimer's disease (AD) compared to controls. To date, it has not been reported whether PLTP can modulate the formation of amyloid plaques, i.e. one of the major histopathological hallmarks of AD. We thus assessed the role of PLTP in the AD context by breeding PLTP-deficient mice with an established model of AD, the J20 mice. A phenotypic characterization of the amyloid pathology was conducted in J20 mice expressing or not PLTP. We showed that PLTP deletion is associated with a significant reduction of cerebral Aβ deposits and astrogliosis, which can be explained at least in part by a rise of Aβ clearance through an increase in the microglial phagocytic activity and the expression of the Aβ-degrading enzyme neprilysin. PLTP arises as a negative determinant of plaque clearance and over the lifespan, elevated PLTP activity could lead to a higher Aβ load in the brain.
Collapse
|
19
|
Jiang XC. Phospholipid transfer protein: its impact on lipoprotein homeostasis and atherosclerosis. J Lipid Res 2018; 59:764-771. [PMID: 29438986 DOI: 10.1194/jlr.r082503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis development in humans; however, we still do not quite understand the mechanisms. In mouse models, PLTP overexpression induces atherosclerosis, while its deficiency reduces it. Thus, mouse models were used to explore the mechanisms. In this review, I summarize the major progress made in the PLTP research field and emphasize its impact on lipoprotein metabolism and atherosclerosis, as well as its regulation.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, Brooklyn, NY
| |
Collapse
|
20
|
Dong W, Gong H, Zhang G, Vuletic S, Albers J, Zhang J, Liang H, Sui Y, Zheng J. Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:62-73. [PMID: 27864281 DOI: 10.1093/abbs/gmw117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
Glioma is one of the common tumors in brain. The expression level of lipoprotein lipase (LPL) or phospholipid transfer protein (PLTP) may influence glioma progression and its relationship with clinical and pathological parameters. The clinical significance of LPL or PLTP expression in glioma has not been established. In the present study, the LPL and PLTP levels in glioma tumors were investigated and the relationship between the LPL and PLTP level and the grade of malignant glioma was analyzed, with the aim to provide new ideas for the diagnosis and treatment of gliomas in clinical and basic research settings. LPL and PLTP mRNA and protein levels were significantly higher in Grade IV glioma than those in the lower grade tumors (P < 0.01). Double immunofluorescent staining showed that the levels of LPL and PLTP were significantly associated with the pathological grade of glioma (P = 0.005). The levels of LPL and PLTP were increased with the shortened survival of glioma patients (P < 0.001). Knockdown of LPL and PLTP led to decreased cell growth and migration but increased apoptosis in vitro Additionally, cell cycle-related cyclins and their partners were found to be down-regulated while cyclin-dependent kinase inhibitors p16, p21, and Rb were up-regulated. Furthermore, knockdown of LPL or PLTP resulted in the up-regulation of pro-apoptotic molecules and the down-regulation of anti-apoptotic molecules. Ablation of LPL or PLTP in U251 cells resulted in the down-regulation of epithelial mesenchymal transition markers and invasion molecules matrix metalloproteinases. LPL and PLTP appear to be novel glioma-associated proteins and play a role in the progression of human glioma.
Collapse
Affiliation(s)
- Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Huilin Gong
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - John Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - Jiaojiao Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hua Liang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanxia Sui
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
21
|
Chen H, Wu FP, Yang YZ, Yu XY, Zhang L, Zhang H, Chen YJ. Cigarette smoke extract induces the epithelial-to-mesenchymal transition via the PLTP/TGF-β1/Smad2 pathway in RLE-6TN cells. Toxicol Res (Camb) 2016; 6:215-222. [PMID: 30090492 DOI: 10.1039/c6tx00378h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/13/2016] [Indexed: 11/21/2022] Open
Abstract
Aim: The role of phospholipid transfer protein (PLTP) in the pathogenesis of the cigarette smoke extract (CSE)-induced epithelial-to-mesenchymal transition (EMT) has not been well described. In this study we investigated the effect of PLTP on the CSE-induced EMT of rat alveolar epithelial cells (RLE-6TN). Methods: The rats were exposed to air and cigarette smoke (CS) for 3 d and then the lungs were sectioned and examined using immunohistochemistry techniques. RLE-6TN cells were treated with different concentrations of CSE. PLTP siRNA was transfected into cells or SB431542 - an inhibitor of the transforming growth factor-β1 (TGF-β1) type I receptor - was administered prior to CSE exposure. The expression of EMT markers and PLTP was detected by qRT-PCR. The levels of PLTP, TGF-β1, p-Smad2, Smad2, and EMT proteins were analyzed by western blotting. Results: Lung injury and EMT were accompanied by up-regulation of PLTP and TGF-β1 in the CS-exposed rat model. EMT was induced by CSE in vitro, and the expression of PLTP, TGF-β1, and p-Smad2 was significantly increased after exposure to CSE (P < 0.05). Moreover, knockdown of PLTP and blocking of the TGF-β1/Smad2 pathway restrained the CSE-induced activation of the TGF-β1/Smad2 pathway and partly inhibited EMT by reversing E-cadherin expression and retarding the induction of N-cadherin and vimentin. In contrast, SB431542 had no effect on the expression of PLTP, while it ameliorated CSE-induced EMT. Conclusion: PLTP promotes the CSE-induced EMT process, in which the TGF-β1/Smad2 pathway is activated.
Collapse
Affiliation(s)
- Hong Chen
- Department of Respiratory Medicine , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China . ; ; Tel: +86151-11926661
| | - Feng-Ping Wu
- Department of Respiratory Medicine , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China . ; ; Tel: +86151-11926661.,Department of Respiratory Medicine , Neijiang Affiliated Hospital of Chongqing Medical University , Neijiang , Sichuan , China
| | - Yong-Zhen Yang
- Department of Respiratory Medicine , Neijiang Affiliated Hospital of Chongqing Medical University , Neijiang , Sichuan , China
| | - Xiu-Ying Yu
- Department of Respiratory Medicine , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China . ; ; Tel: +86151-11926661
| | - Lu Zhang
- Department of Respiratory Medicine , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China . ; ; Tel: +86151-11926661
| | - Hui Zhang
- Department of Respiratory Medicine , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China . ; ; Tel: +86151-11926661
| | - Ya-Juan Chen
- Department of Respiratory Medicine , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China . ; ; Tel: +86151-11926661
| |
Collapse
|
22
|
Dafnis I, Metso J, Zannis VI, Jauhiainen M, Chroni A. Influence of Isoforms and Carboxyl-Terminal Truncations on the Capacity of Apolipoprotein E To Associate with and Activate Phospholipid Transfer Protein. Biochemistry 2015; 54:5856-66. [PMID: 26337529 DOI: 10.1021/acs.biochem.5b00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phospholipid transfer protein (PLTP), a main protein in lipid and lipoprotein metabolism, exists in high-activity (HA-PLTP) and low-activity (LA-PLTP) forms in human plasma. Proper phospholipid transfer activity of PLTP is modulated by interactions with various apolipoproteins (apo) including apoE. The domains of apoE involved in interactions with PLTP are not known. Here we analyzed the capacity of recombinant apoE isoforms and apoE4 mutants with progressive carboxyl-terminal deletions to bind to and activate HA-PLTP and LA-PLTP. Our analyses demonstrated that lipid-free apoE isoforms bind to both HA-PLTP and LA-PLTP, resulting in phospholipid transfer activation, with apoE3 inducing the highest PLTP activation. The isoform-specific differences in apoE/PLTP binding and PLTP activation were abolished following apoE lipidation. Lipid-free apoE4[Δ(260-299)], apoE4[Δ(230-299)], apoE4[Δ(203-299)], and apoE4[Δ(186-299)] activated HA-PLTP by 120-160% compared to full-length apoE4. Lipid-free apoE4[Δ(186-299)] also activated LA-PLTP by 85% compared to full-length apoE4. All lipidated truncated apoE4 forms displayed a similar effect on HA-PLTP and LA-PLTP activity as full-length apoE4. Strikingly, lipid-free or lipidated full-length apoE4 and apoE4[Δ(186-299)] demonstrated similar binding capacity to LA-PLTP and HA-PLTP. Biophysical studies showed that the carboxyl-terminal truncations of apoE4 resulted in small changes of the structural or thermodynamic properties of lipidated apoE4, that were much less pronounced compared to changes observed previously for lipid-free apoE4. Overall, our findings show an isoform-dependent binding to and activation of PLTP by lipid-free apoE. Furthermore, the domain of apoE4 required for PLTP activation resides within its amino-terminal 1-185 region. The apoE/PLTP interactions can be modulated by the conformation and lipidation state of apoE.
Collapse
Affiliation(s)
- Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos" , Agia Paraskevi 15310, Athens, Greece
| | - Jari Metso
- Genomics and Biomarkers Unit, Biomedicum, National Institute for Health and Welfare , Helsinki 00290, Finland
| | - Vassilis I Zannis
- Departments of Medicine and Biochemistry, Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, Biomedicum, National Institute for Health and Welfare , Helsinki 00290, Finland
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos" , Agia Paraskevi 15310, Athens, Greece
| |
Collapse
|
23
|
Elevated Phospholipid Transfer Protein in Subjects with Multiple Sclerosis. J Lipids 2015; 2015:518654. [PMID: 26347820 PMCID: PMC4549613 DOI: 10.1155/2015/518654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
An anomaly in the plasma proteins of patients with multiple sclerosis detectable on SDS-PAGE has been reported. The molecular weight of the anomaly was the same as the phospholipid transfer protein. A metabolic protein was involved in lipid homeostasis and remodeling of the high density lipoproteins. We have identified the anomaly as the phospholipid transfer protein by western blot using antiphospholipid transfer antibodies. Activity assays showed that the phospholipid transfer activity was elevated in fasted plasma samples from subjects with MS compared to controls. Sequence analysis of the gene encoding the phospholipid transfer protein did not identify any mutations in the genetic structure, suggesting that the increase in activity was not due to structural changes in the protein, but may be due to one of the other proteins with which it forms active complexes. Altered phospholipid transfer activity is important because it could be implicated in the decreased lipid uptake and abnormal myelin lipids observed in multiple sclerosis. It has been shown that alteration in myelin lipid content is an epitope for autoimmunity. Therefore, lipid changes due to a defect in phospholipid transfer and/or uptake could potentially influence the course of the disease. Further research is needed to elucidate the role of the phospholipid transfer protein in subjects with multiple sclerosis.
Collapse
|
24
|
Tong Y, Sun Y, Tian X, Zhou T, Wang H, Zhang T, Zhan R, Zhao L, Kuerban B, Li Z, Wang Q, Jin Y, Fan D, Guo X, Han H, Qin S, Chui D. Phospholipid transfer protein (PLTP) deficiency accelerates memory dysfunction through altering amyloid precursor protein (APP) processing in a mouse model of Alzheimer's disease. Hum Mol Genet 2015; 24:5388-403. [DOI: 10.1093/hmg/ddv262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
|
25
|
Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord 2014; 3:533-541. [PMID: 24955324 DOI: 10.1016/j.msard.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apoE), phospholipid transfer protein (PLTP) activity, lipids, total tau and beta amyloid 1-42 (Aβ42) were measured in cerebrospinal fluid (CSF) from controls (n=38) and multiple sclerosis (MS) patients (n=91). ApoE and PLTP activity were significantly reduced in MS compared to non-inflammatory disease controls (NINDC; p<0.05). In NINDC and MS, apoE correlated with PLTP activity (rs=0.399 and 0.591, respectively), Aβ42 (rs= 0.609 and 0.483, respectively), and total tau (rs=0.748 and 0.380, respectively; all p<0.05). CSF apoE and PLTP significantly contributed to the variance of the normalized brain volume (NBV) and T2 lesion volume in MS (p<0.001 and p<0.05, respectively). ApoE correlated with CSF cholesterol and 24-hydroxycholesterol in all groups; PLTP activity correlated with CSF cholesterol in controls (p<0.05).
Collapse
|
26
|
Abstract
Cholesterol is an essential component of both the peripheral nervous system and central nervous system (CNS) of mammals. Brain cholesterol is synthesized in situ by astrocytes and oligodendrocytes and is almost completely isolated from other pools of cholesterol in the body, but a small fraction can be taken up from the circulation as 27-hydroxycholesterol, or via the scavenger receptor class B type I. Glial cells synthesize native high-density lipoprotein (HDL)-like particles, which are remodelled by enzymes and lipid transfer proteins, presumably as it occurs in plasma. The major apolipoprotein constituent of HDL in the CNS is apolipoprotein E, which is produced by astrocytes and microglia. Apolipoprotein A-I, the major protein component of plasma HDL, is not synthesized in the CNS, but can enter and become a component of CNS lipoproteins. Low HDL-C levels have been shown to be associated with cognitive impairment and various neurodegenerative diseases. On the contrary, no clear association with brain disorders has been shown in genetic HDL defects, with the exception of Tangier disease. Mutations in a wide variety of lipid handling genes can result in human diseases, often with a neuronal phenotype caused by dysfunctional intracellular lipid trafficking.
Collapse
Affiliation(s)
- Cecilia Vitali
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
27
|
Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure. Neurobiol Aging 2014; 35:2504-2513. [PMID: 24997672 DOI: 10.1016/j.neurobiolaging.2014.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
Abstract
Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4 years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4 Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3 years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain.
Collapse
|
28
|
Chirackal Manavalan AP, Kober A, Metso J, Lang I, Becker T, Hasslitzer K, Zandl M, Fanaee-Danesh E, Pippal JB, Sachdev V, Kratky D, Stefulj J, Jauhiainen M, Panzenboeck U. Phospholipid transfer protein is expressed in cerebrovascular endothelial cells and involved in high density lipoprotein biogenesis and remodeling at the blood-brain barrier. J Biol Chem 2014; 289:4683-98. [PMID: 24369175 PMCID: PMC3931031 DOI: 10.1074/jbc.m113.499129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is a key protein involved in biogenesis and remodeling of plasma HDL. Several neuroprotective properties have been ascribed to HDL. We reported earlier that liver X receptor (LXR) activation promotes cellular cholesterol efflux and formation of HDL-like particles in an established in vitro model of the blood-brain barrier (BBB) consisting of primary porcine brain capillary endothelial cells (pBCEC). Here, we report PLTP synthesis, regulation, and its key role in HDL metabolism at the BBB. We demonstrate that PLTP is highly expressed and secreted by pBCEC. In a polarized in vitro model mimicking the BBB, pBCEC secreted phospholipid-transfer active PLTP preferentially to the basolateral ("brain parenchymal") compartment. PLTP expression levels and phospholipid transfer activity were enhanced (up to 2.5-fold) by LXR activation using 24(S)-hydroxycholesterol (a cerebral cholesterol metabolite) or TO901317 (a synthetic LXR agonist). TO901317 administration elevated PLTP activity in BCEC from C57/BL6 mice. Preincubation of HDL3 with human plasma-derived active PLTP resulted in the formation of smaller and larger HDL particles and enhanced the capacity of the generated HDL particles to remove cholesterol from pBCEC by up to 3-fold. Pre-β-HDL, detected by two-dimensional crossed immunoelectrophoresis, was generated from HDL3 in pBCEC-derived supernatants, and their generation was markedly enhanced (1.9-fold) upon LXR activation. Furthermore, RNA interference-mediated PLTP silencing (up to 75%) reduced both apoA-I-dependent (67%) and HDL3-dependent (30%) cholesterol efflux from pBCEC. Based on these findings, we propose that PLTP is actively involved in lipid transfer, cholesterol efflux, HDL genesis, and remodeling at the BBB.
Collapse
Affiliation(s)
| | | | - Jari Metso
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ingrid Lang
- Institute of Cell Biology, Histology, and Embryology, and
| | | | | | - Martina Zandl
- From the Institute of Pathophysiology and Immunology
| | | | | | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jasminka Stefulj
- the Department of Molecular Biology, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Matti Jauhiainen
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ute Panzenboeck
- From the Institute of Pathophysiology and Immunology, , To whom correspondence should be addressed: Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31a, 8010 Graz, Austria. Tel.: 43-316-3801955; Fax: 43-316-3809640; E-mail:
| |
Collapse
|
29
|
Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, Eden E, Jiang XC, D'Armiento J, Foronjy R. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J 2014; 28:2318-31. [PMID: 24532668 DOI: 10.1096/fj.13-246843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1β, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.
Collapse
Affiliation(s)
- Anthony Brehm
- 2Department of Medicine, St. Luke's Roosevelt, Mt. Sinai Health System, Antenucci Bldg., 432 West 58th St., Rm. 311, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pathogenesis, modulation, and therapy of Alzheimer’s disease: A perspective on roles of liver-X receptors. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0136-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AbstractThe pathogenesis of Alzheimer’s disease (AD) has been mostly linked to aberrant amyloid beta (Aβ) and tau proteins metabolism, disturbed lipid/cholesterol homeostasis, and progressive neuroinflammation. Liver X receptors (LXR) are ligand-activated transcription factors, best known as the key regulators of cholesterol metabolism and transport. In addition, LXR signaling has been shown to have significant anti-inflammatory properties. In this brief review, we focus on the outcome of studies implicating LXR in the pathogenesis, modulation, and therapy of AD.
Collapse
|
31
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:345-57. [PMID: 21736953 PMCID: PMC3192936 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
32
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|
33
|
Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1917-24. [PMID: 21782857 DOI: 10.1016/j.bbamcr.2011.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Phospholipid transfer protein (PLTP) plays an important role in regulation of inflammation. Previously published studies have shown that PLTP binds, transfers and neutralizes bacterial lipopolysaccharides. In the current study we tested the hypothesis that PLTP can also regulate anti-inflammatory pathways in macrophages. Incubation of macrophage-like differentiated THP1 cells and human monocyte-derived macrophages with wild-type PLTP in the presence or absence of tumor necrosis factor alpha (TNFα) or interferon gamma (IFNγ) significantly increased nuclear levels of active signal transducer and activator of transcription 3, pSTAT3(Tyr705) (p<0.01). Similar results were obtained in the presence of a PLTP mutant without lipid transfer activity (PLTP(M159E)), suggesting that PLTP-mediated lipid transfer is not required for activation of the STAT3 pathway. Inhibition of ABCA1 by chemical inhibitor, glyburide, as well as ABCA1 RNA inhibition, reversed the observed PLTP-mediated activation of STAT3. In addition, PLTP reduced nuclear levels of active nuclear factor kappa-B (NFκB) p65 and secretion of pro-inflammatory cytokines in conditioned media of differentiated THP1 cells and human monocyte-derived macrophages. Our data suggest that PLTP has anti-inflammatory capabilities in macrophages.
Collapse
Affiliation(s)
- S Vuletic
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
34
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
35
|
Dong W, Albers JJ, Vuletic S. Phospholipid transfer protein reduces phosphorylation of tau in human neuronal cells. J Neurosci Res 2009; 87:3176-85. [PMID: 19472218 PMCID: PMC2755571 DOI: 10.1002/jnr.22137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tau function is regulated by phosphorylation, and abnormal tau phosphorylation in neurons is one of the key processes associated with development of Alzheimer's disease and other tauopathies. In this study we provide evidence that phospholipid transfer protein (PLTP), one of the main lipid transfer proteins in the brain, significantly reduces levels of phosphorylated tau and increases levels of the inactive form of glycogen synthase kinase-3beta (GSK3 beta) in HCN2 cells. Furthermore, inhibition of phosphatidylinositol-3 kinase (PI3K) reversed the PLTP-induced increase in levels of GSK3 beta phosphorylated at serine 9 (pGSK3 beta(Ser9)) and partially reversed the PLTP-induced reduction in tau phosphorylation. We provide evidence that the PLTP-induced changes are not due to activation of Disabled-1 (Dab1), insofar as PLTP reduced levels of total and phosphorylated Dab1 in HCN2 cells. We have also shown that inhibition of tyrosine kinase activity of insulin receptor (IR) and/or insulin-like growth factor 1 (IGF1) receptor (IGFR) reverses the PLTP-induced increase in levels of phosphorylated Akt (pAkt(Thr308) and pAkt(Ser473)), suggesting that PLTP-mediated activation of the PI3K/Akt pathway is dependent on IR/IGFR receptor tyrosine kinase activity. Our study suggests that PLTP may be an important modulator of signal transduction pathways in human neurons.
Collapse
Affiliation(s)
- Weijiang Dong
- University of Washington School of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, 401 Queen Anne Ave N, Seattle, WA 98109, USA
- Xi’an Jiaotong University School of Medicine, Department of Human Anatomy and Histology & Embryology, Yanta West Road 76, Xi’an 710061, People’s Republic of China
| | - John J. Albers
- University of Washington School of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - Simona Vuletic
- University of Washington School of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| |
Collapse
|
36
|
Vuletic S, Dong W, Wolfbauer G, Day JR, Albers JJ. PLTP is present in the nucleus, and its nuclear export is CRM1-dependent. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:584-91. [PMID: 19321130 PMCID: PMC2692677 DOI: 10.1016/j.bbamcr.2009.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/09/2008] [Accepted: 01/05/2009] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP), one of the key lipid transfer proteins in plasma and cerebrospinal fluid, is nearly ubiquitously expressed in cells and tissues. Functions of secreted PLTP have been extensively studied. However, very little is known about potential intracellular PLTP functions. In the current study, we provide evidence for PLTP localization in the nucleus of cells that constitutively express PLTP (human neuroblastoma cells, SK-N-SH; and human cortical neurons, HCN2) and in cells transfected with human PLTP (Chinese hamster ovary and baby hamster kidney cells). Furthermore, we have shown that incubation of these cells with leptomycin B (LMB), a specific inhibitor of nuclear export mediated by chromosome region maintenance 1 (CRM1), leads to intranuclear accumulation of PLTP, suggesting that PLTP nuclear export is CRM1-dependent. We also provide evidence for entry of secreted PLTP into the cell and its translocation to the nucleus, and show that intranuclear PLTP is active in phospholipid transfer. These findings suggest that PLTP is involved in novel intracellular functions.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - Weijiang Dong
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
- Xi’an Jiaotong University School of Medicine, Department of Human Anatomy and Histology & Embryology, Yanta West Road 76, Xi’an 710061, People’s Republic of China
| | - Gertrud Wolfbauer
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - Joseph R. Day
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| | - John J. Albers
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA
| |
Collapse
|
37
|
Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008; 104:1145-66. [DOI: 10.1111/j.1471-4159.2007.05099.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Settasatian N, Barter PJ, Rye KA. Remodeling of apolipoprotein E-containing spherical reconstituted high density lipoproteins by phospholipid transfer protein. J Lipid Res 2008; 49:115-26. [DOI: 10.1194/jlr.m700220-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Dumont D, Noben JP, Moreels M, Vanderlocht J, Hellings N, Vandenabeele F, Lambrichts I, Stinissen P, Robben J. Characterization of mature rat oligodendrocytes: a proteomic approach. J Neurochem 2007; 102:562-76. [PMID: 17442050 DOI: 10.1111/j.1471-4159.2007.04575.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oligodendrocytes are glial cells responsible for the synthesis and maintenance of myelin in the central nervous system (CNS). Oligodendrocytes are vulnerable to damage occurring in a variety of neurological diseases. Understanding oligodendrocyte biology is crucial for the dissemination of de- and remyelination mechanisms. The goal of the present study is the construction of a protein database of mature rat oligodendrocytes. Post-mitotic oligodendrocytes were isolated from mature Wistar rats and subjected to immunocytochemistry. Proteins were extracted and analyzed by means of two-dimensional gel electrophoresis and two-dimensional liquid chromatography, both coupled to mass spectrometry. The combination of the gel-based and gel-free approach resulted in confident identification of a total of 200 proteins. A minority of proteins were identified in both proteomic strategies. The identified proteins represent a variety of functional groups, including novel oligodendrocyte proteins. The results of this study emphasize the power of the applied proteomic strategy to study known or to reveal new proteins and to investigate their regulation in oligodendrocytes in different disease models.
Collapse
Affiliation(s)
- Debora Dumont
- Hasselt University, Biomedical Research Institute BIOMED, Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vuletic S, Riekse RG, Marcovina SM, Peskind ER, Hazzard WR, Albers JJ. Statins of different brain penetrability differentially affect CSF PLTP activity. Dement Geriatr Cogn Disord 2007; 22:392-8. [PMID: 16960448 DOI: 10.1159/000095679] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Phospholipid transfer protein (PLTP) and apolipoprotein E (apoE) are key proteins involved in lipoprotein metabolism in the peripheral circulation and in the brain. Several epidemiological studies suggested that use of 3-hydroxyl-3-methylglutaryl-coenzyme A reductase inhibitors (statins) reduces risk of Alzheimer's disease (AD). However, the effects of statins of differing blood-brain barrier (BBB) penetrability on brain-derived molecules in cognitively normal individuals are largely unknown. METHODS To assess the effect of statins on these indices as a function of BBB penetration, cerebrospinal fluid (CSF) and plasma PLTP activity and apoE concentration were measured in cognitively intact, modestly hypercholesterolemic adults randomly allocated to treatment with either pravastatin, which does not penetrate BBB (80 mg/day, n = 13), or simvastatin, which penetrates BBB (40 mg/day, n = 10). RESULTS Simvastatin significantly increased CSF PLTP activity (p = 0.005). In contrast, pravastatin had no such effect. In the pravastatin-treated group, CSF apoE concentration decreased significantly (p = 0.026), while the simvastatin-treated group showed a tendency towards lower CSF apoE levels, with CSF apoE concentration lowered in 8 of 10 subjects. CONCLUSION Our data indicate that statins differentially affect two key lipid transfer proteins in the brain, and that effect on PLTP activity depends on statin BBB penetrability.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Plasma cholesteryl ester transfer protein and phospholipid transfer protein are involved in lipoprotein metabolism. Conceivably, manipulation of either transfer protein could impact atherosclerosis and other lipid-driven diseases. RECENT FINDINGS Cholesteryl ester transfer protein mediates direct HDL cholesteryl ester delivery to the liver cells; adipose tissue-specific overexpression of cholesteryl ester transfer protein in mice reduces the plasma HDL cholesterol concentration and adipocyte size; cholesteryl ester transfer protein TaqIB polymorphism is associated with HDL cholesterol plasma levels and the risk of coronary heart disease. In apolipoprotein B transgenic mice, phospholipid transfer protein deficiency enhances reactive oxygen species-dependent degradation of newly synthesized apolipoprotein B via a post-endoplasmic reticulum process, as well as improving the antiinflammatory properties of HDL in mice. Activity of this transfer protein in cerebrospinal fluid of patients with Alzheimer's disease is profoundly decreased and exogenous phospholipid transfer protein induces apolipoprotein E secretion by primary human astrocytes in vitro. SUMMARY Understanding the relationship between lipid transfer proteins and lipoprotein metabolism is expected to be an important frontier in the search for a therapy for atherosclerosis.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Anatomy and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.
| | | |
Collapse
|
43
|
Dallinga-Thie GM, van Tol A, Hattori H, Rensen PCN, Sijbrands EJG. Plasma phospholipid transfer protein activity is decreased in type 2 diabetes during treatment with atorvastatin: a role for apolipoprotein E? Diabetes 2006; 55:1491-6. [PMID: 16644710 DOI: 10.2337/db05-1685] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. PLTP activity is elevated in patients with diabetes, a condition with strongly elevated risk for coronary heart disease. The aim of this study was to test the hypothesis that statins reduce PLTP activity and to examine the potential role of apolipoprotein E (apoE). PLTP activity and apoE were measured in patients with type 2 diabetes from the DALI (Diabetes Atorvastatin Lipid Intervention) Study, a 30-week randomized double-blind placebo-controlled trial with atorvastatin (10 and 80 mg daily). At baseline, PLTP activity was positively correlated with waist circumference, HbA(1c), glucose, and apoE (all P < 0.05). Atorvastatin treatment resulted in decreased PLTP activity (10 mg atorvastatin: -8.3%, P < 0.05; 80 mg atorvastatin: -12.1%, P < 0.002). Plasma apoE decreased by 28 and 36%, respectively (P < 0.001). The decrease in apoE was strongly related to the decrease in PLTP activity (r = 0.565, P < 0.001). The change in apoE remained the sole determinant of the change in PLTP activity in a multivariate model. The activity of PLTP in type 2 diabetes is decreased by atorvastatin. The association between the decrease in PLTP activity and apoE during statin treatment supports the hypothesis that apoE may prevent PLTP inactivation.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Internal Medicine, Vascular and Metabolic Diseases, Bd 277, Erasmus Medical Center, Dr Molewaterplein 40, 3000 CA Rotterdam, Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Waage-Baudet H, Dunty WC, Dehart DB, Hiller S, Sulik KK. Immunohistochemical and microarray analyses of a mouse model for the smith-lemli-opitz syndrome. Dev Neurosci 2006; 27:378-96. [PMID: 16280635 DOI: 10.1159/000088453] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 06/05/2005] [Indexed: 12/30/2022] Open
Abstract
The Smith-Lemli-Opitz syndrome is a mental retardation/malformation syndrome with behavioral components of autism. It is caused by a deficiency in 3beta-hydroxysteroid-Delta7-reductase (DHCR7), the enzyme required for the terminal enzymatic step of cholesterol biosynthesis. The availability of Smith-Lemli-Opitz syndrome mouse models has made it possible to investigate the genesis of the malformations associated with this syndrome. Dhcr7 gene modification (Dhcr7-/-) results in neonatal lethality and multiple organ system malformations. Pathology includes cleft palate, pulmonary hypoplasia, cyanosis, impaired cortical response to glutamate, and hypermorphic development of hindbrain serotonergic neurons. For the current study, hindbrain regions microdissected from gestational day 14 Dhcr7-/-, Dhcr7+/- and Dhcr7+/+ fetuses were processed for expression profiling analyses using Affymetrix oligonucleotide arrays and filtered using statistical significance (S-score) of change in gene expression. Of the 12,000 genes analyzed, 91 were upregulated and 98 were downregulated in the Dhcr7-/- hindbrains when compared to wild-type animals. Fewer affected genes, representing a reduced affect on these pathways, were identified in heterozygous animals. Hierarchical clustering identified altered expression of genes associated with cholesterol homeostasis, cell cycle control and apoptosis, neurodifferentiation and embryogenesis, transcription and translation, cellular transport, neurodegeneration, and neuronal cytoskeleton. Of particular interest, Dhcr7 gene modification elicited dynamic changes in genes involved in axonal guidance. In support of the microarray findings, immunohistochemical analyses of the netrin/deleted in colorectal cancer axon guidance pathway illustrated midline commissural deficiencies and hippocampal pathfinding errors in Dhcr7-/- mice. The results of these studies aid in providing insight into the genesis of human cholesterol-related birth defects and neurodevelopmental disorders and highlight specific areas for future investigation.
Collapse
Affiliation(s)
- H Waage-Baudet
- Department of Cell and Developmental Biology, The University of North Carolina, Chapel Hill, N.C. 27599-7178, USA
| | | | | | | | | |
Collapse
|
45
|
Vuletic S, Peskind ER, Marcovina SM, Quinn JF, Cheung MC, Kennedy H, Kaye JA, Jin LW, Albers JJ. Reduced CSF PLTP activity in Alzheimer's disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro. J Neurosci Res 2005; 80:406-13. [PMID: 15795933 DOI: 10.1002/jnr.20458] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phospholipid transfer protein (PLTP) plays a pivotal role in cellular lipid efflux and modulation of lipoprotein metabolism. PLTP is distributed widely in the central nervous system (CNS), is synthesized by glia and neurons, and is active in cerebrospinal fluid (CSF). The aims of this study were to test the hypothesis that patients with Alzheimer's disease (AD) have altered PLTP-mediated phospholipid transfer activity in CSF, and to examine the potential relationship between PLTP activity and apolipoprotein E (apoE) levels in CSF. We assessed PLTP activity and apoE concentration in CSF of patients with probable AD (n = 50), multiple sclerosis (MS; n = 9), other neurologic diseases (n = 21), and neurologically healthy controls (n = 40). PLTP activity in AD was reduced compared to that in controls (P < 0.001), with approximately half of the AD patients with PLTP activity values below all controls. Patients with MS had lower PLTP activity than AD patients (P < 0.001). PLTP activity was highly correlated with PLTP mass, as estimated by Western blot (r = 0.006; P < 0.01). CSF PLTP activity positively correlated with apoE concentration in AD (R = 0.435; P = 0.002) and controls (R = 0.456; P = 0.003). Anti-apoE immunoaffinity chromatography and Western blot analyses indicated that some CSF PLTP is associated with apoE-containing lipoproteins. Exogenous addition of recombinant PLTP to primary human astrocytes significantly increased apoE secretion to the conditioned medium. The findings of reduced PLTP activity in AD CSF, and the observation that PLTP can influence apoE secretion in astrocytes suggest a potential link between alterations in the brain lipid metabolism and AD pathogenesis.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, Washington 98109-4517, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stein O, Stein Y. Lipid transfer proteins (LTP) and atherosclerosis. Atherosclerosis 2005; 178:217-30. [PMID: 15694928 DOI: 10.1016/j.atherosclerosis.2004.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/07/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
This review deals with four lipid transfer proteins (LTP): three are involved in cholesteryl ester (CE) synthesis or transport, the fourth deals with plasma phospholipid (PL) transfer. Experimental models of atherosclerosis, clinical and epidemiological studies provided information as to the relationship of these LTP(s) to atherosclerosis, which is the main focus of this review. Thus, inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) 1 and 2 decreases cholesterol absorption, plasma cholesterol and aortic cholesterol esterification in the aorta. The discovery that tamoxifen is a potent ACAT inhibitor explained the plasma cholesterol lowering of the drug. The use of ACAT inhibition in humans is under current investigation. As low cholesteryl ester transfer protein (CETP) activity is connected with high HDL-C, several CETP inhibitors were tried in rabbits, with variable results. A new CETP inhibitor, Torcetrapib, was tested in humans and there was a 50-100% increase in HDL-C. Lecithin cholesterol acyl-transferase (LCAT) influences oxidative stress, which can be lowered by transient LCAT gene transfer in LCAT-/- mice. Phospholipid transfer protein (PLTP) deficiency reduced apo B production in apo E-/- mice, as well as oxidative stress in four models of mouse atherosclerosis. In conclusion, the ability to increase HDL-C so markedly by inhibitors of CETP introduces us into a new era in prevention and treatment of coronary heart disease (CHD).
Collapse
Affiliation(s)
- O Stein
- Department of Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
47
|
Gurok U, Steinhoff C, Lipkowitz B, Ropers HH, Scharff C, Nuber UA. Gene expression changes in the course of neural progenitor cell differentiation. J Neurosci 2004; 24:5982-6002. [PMID: 15229246 PMCID: PMC6729244 DOI: 10.1523/jneurosci.0809-04.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular changes underlying neural progenitor differentiation are essentially unknown. We applied cDNA microarrays with 13,627 clones to measure dynamic gene expression changes during the in vitro differentiation of neural progenitor cells that were isolated from the subventricular zone of postnatal day 7 mice and grown in vitro as neurospheres. In two experimental series in which we withdrew epidermal growth factor and added the neurotrophins Neurotrophin-4 or BDNF, four time points were investigated: undifferentiated cells grown as neurospheres, and cells 24, 48, and 96 hr after differentiation. Expression changes of selected genes were confirmed by semiquantitative RT-PCR. Ten different groups of gene expression dynamics obtained by cluster analysis are described. To correlate selected gene expression changes to the localization of respective proteins, we performed immunostainings of cultured neurospheres and of brain sections from adult mice. Our results provide new insights into the genetic program of neural progenitor differentiation and give strong hints to as yet unknown cellular communications within the adult subventricular zone stem cell niche.
Collapse
Affiliation(s)
- Ulf Gurok
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Desrumaux C, Risold PY, Schroeder H, Deckert V, Masson D, Athias A, Laplanche H, Le Guern N, Blache D, Jiang XC, Tall AR, Desor D, Lagrost L. Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. FASEB J 2004; 19:296-7. [PMID: 15576481 DOI: 10.1096/fj.04-2400fje] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vitamin E supplementation constitutes a promising strategy in the prevention of neurodegenerative diseases. Here, we show that a phospholipid transfer protein (PLTP) is widely expressed in the brain where it appears to function as a transfer factor for alpha-tocopherol, the main isomer of vitamin E. PLTP deficiency results in significant depletion of brain alpha-tocopherol in both homozygous (-30.1%, P<0.0002) and heterozygous (-18.0%, P<0.05) PLTP knocked-out mice. Alpha-tocopherol depletion in PLTP-deficient homozygotes is associated with the elevation of lipofuscin (+25% and +450% increases in cortex and substantia nigra, respectively), cholesterol oxides (+54.5%, P<0.05), and cellular peroxides (+32.3%, P<0.01) in the brain. Complete PLTP deficiency in homozygotes is accompanied by increased anxiety as shown by fewer entries (8.3% vs. 44.4% in controls, P<0.01) and less time spent (1.7% vs. 41.3% in controls, P<0.05) in the open arms of an elevated plus-maze, in the absence of locomotor deterioration. Thus, the vitamin E transfer activity of PLTP appears to be a key process in preventing oxidative damage in the brain, and PLTP-deficient mice could be a new model of the contribution of oxidative brain injury in the etiology of neurodegenerative diseases.
Collapse
|
49
|
Maezawa I, Jin LW, Woltjer RL, Maeda N, Martin GM, Montine TJ, Montine KS. Apolipoprotein E isoforms and apolipoprotein AI protect from amyloid precursor protein carboxy terminal fragment-associated cytotoxicity. J Neurochem 2004; 91:1312-21. [PMID: 15584908 DOI: 10.1111/j.1471-4159.2004.02818.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inheritance of the apolipoprotein (APO) E gene epsilon4 or epsilon2 allele alters the risk of developing Alzheimer disease (AD), while increased alpha-tocopherol (AT) intake appears to lower the risk of AD. As APOE is a major apolipoprotein in the CNS and AT in vivo is transported in lipoproteins, we tested the hypothesis that CNS lipoproteins, as modeled by relevant concentrations of high density lipoprotein (HDL), and AT would interact to suppress neurotoxicity in a cell culture model of amyloid beta (Abeta)- related toxicity. These cells conditionally express C99-derived peptides, proposed to be a key step in AD pathogenesis; this expression is closely associated with subsequent cell death. We found that physiologic concentrations of lipoproteins present in the CNS protected from C99-associated toxicity and provided evidence for two mechanisms of protection. The first was AT-independent, APOE isoform-dependent, and most potent for the APOE2 isoform. The second was a synergistic protection afforded by a combination of APOAI, or less so APOE, and AT. These data provide a novel explanation for the apparent AD-protective effect of inheriting an epsilon2 APOE allele, and suggest that optimizing AT enrichment of CNS lipoproteins or devising APOAI mimetics may augment AT efficacy in treating AD.
Collapse
Affiliation(s)
- Izumi Maezawa
- Department of Pathology, University of Washington, Seattle, Washington 98104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Amyloid-beta (Abeta) has for a long time been thought to play a central role in the pathogenesis of Alzheimer disease (AD). Analysis of available data indicates that Abeta possesses properties of a metal-binding apolipoprotein influencing lipid transport and metabolism. Protection of lipoproteins from oxidation by transition metals, synaptic activity and role in the acute phase response represent plausible physiological functions of Abeta. However, these important biochemical qualities which may critically influence the development of AD, have been largely ignored by mainstream AD researchers, making Abeta appear to be a "black sheep" in a "good apolipoprotein" family. New studies are needed to shed further light on the physiological role of Abeta in lipid metabolism in the brain.
Collapse
Affiliation(s)
- Anatol Kontush
- INSERM Unité 551, Hôpital de la Pitié, Pavilion Benjamin Delessert, 83, Bd de l'Hôpital, 75651 Paris Cedex 13, France.
| |
Collapse
|