1
|
Vasiljević I, Turković E, Parojčić J. Data-driven insights into the properties of liquisolid systems based on machine learning algorithms. Eur J Pharm Sci 2024; 203:106927. [PMID: 39378961 DOI: 10.1016/j.ejps.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Liquisolid systems (LS) represent a formulation approach where liquid drug or its dispersion is transformed into a powder with good flowability and compactibility, leading to enhanced drug dissolution and bioavailability. Many research groups have focused on the preparation and investigation of LS, leading to a higher need for comprehensive evaluation of factors impacting LS characteristics. The aim of this work was to investigate the applicability of machine learning algorithms in the LS evaluation, using data mined from published literature, and provide an insight into critical factors governing the liquisolid system performance. The dataset was prepared using publication search engines and relevant keywords, with a total of 425 formulations included in the database. The database focused on preparation methods, formulation parameters, and liquisolid system characteristics. Subsequently, critical properties of the liquisolid system, i.e. flowability, compact hardness, and drug dissolution, were analyzed using machine learning algorithms, including Gradient Boosting, Adaptive Boosting and Random Forest. In addition to conventional preparation methods and excipients, novel technologies (fluid bed preparation, extrusion/spheronization) and materials (Neusilin®, Fujicalin®, and Syloid®) enhanced the properties of liquisolid systems. The analysis revealed that formulation factors, such as carrier and coating agent type and content, liquid phase load, model drug type and content, as well as preparation method, significantly influenced liquisolid system characteristics. The models developed exhibited high prediction accuracy when applied on test data (higher than 80 %). This indicates that the machine learning models may provide an insight into the critical attributes affecting the LS performance and may be used as a valuable tool in the development and optimization of these samples.
Collapse
Affiliation(s)
- Ivana Vasiljević
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Erna Turković
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Parojčić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
2
|
Akl MA, Ryad S, Ibrahim MF, Kassem AA. Formulation, and Optimization of Transdermal Atorvastatin Calcium-Loaded Ultra-flexible Vesicles; Ameliorates Poloxamer 407-caused Dyslipidemia. Int J Pharm 2023; 638:122917. [PMID: 37019321 DOI: 10.1016/j.ijpharm.2023.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14%) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125%, and cumulative drug release of 88.92 ± 3.78% over 24 hours. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.
Collapse
|
3
|
Kanojiya PS, Ghodake PN, Wadetwar RN. Design and optimization of liquisolid compact based vaginal sustained release tablet of antifungal agent for vaginal candidiasis. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2158854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pranita S. Kanojiya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Pradip N. Ghodake
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Rita N. Wadetwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
4
|
Ahmed TA, Alotaibi HA, Almehmady AM, Safo MK, El-Say KM. Influences of Glimepiride Self-Nanoemulsifying Drug Delivery System Loaded Liquisolid Tablets on the Hypoglycemic Activity and Pancreatic Histopathological Changes in Streptozotocin-Induced Hyperglycemic Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223966. [PMID: 36432252 PMCID: PMC9695338 DOI: 10.3390/nano12223966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
The development of an oral anti-diabetic medication characterized by enhanced hypoglycemic activity is in high demand. The goal was to study the hypoglycemic activity and pancreatic histopathology after the black-seed-based self-nanoemulsifying drug delivery system (SNEDDS) loaded with glimepiride liquisolid tablets to diabetic rats. The solubility of glimepiride in various vehicles was investigated. An optimization SNEDDS formulation was developed using a mixture of the experimental design approach. Box-Behnken design (BBD) was used to develop glimepiride liquisolid tablets utilizing Avicel PH 101 and Neusilin as a carrier mixture and FujiSil as a coating material. The quality attributes of the prepared tablets were assessed. Following the administration of the optimized tablets to diabetic rats, the pharmacodynamics and histopathological changes were investigated and compared to a commercial drug product. Results revealed that the optimized SNEDDS formulation that contains 15.43% w/w black seed oil, 40% w/w Tween 80, and 44.57% w/w Polyethylene glycol 400 showed an average droplet size of 34.64 ± 2.01 nm and a drug load of 36.67 ± 3.13 mg/mL. The optimized tablet formulation contained 0.31% Avicel in the carrier mixture, a 14.99 excipient ratio, and 8% superdisintegrant. Pre- and post-compression properties were satisfactory, and the optimized glimepiride liquisolid tablet showed a two-fold increase in dissolution. The optimized tablet demonstrated superior pharmacodynamics. The pancreatic tissues of the group treated with the optimized tablet displayed normal histological structure. The obtained data offered a commercially viable alternative for manufacturing solid dosage forms containing water-insoluble drugs, but additional clinical research is required.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-2-640-0000 (ext. 22250)
| | - Hanadi A. Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Devi S, Kumar S, Verma V, Kaushik D, Verma R, Bhatia M. Enhancement of ketoprofen dissolution rate by the liquisolid technique: optimization and in vitro and in vivo investigations. Drug Deliv Transl Res 2022; 12:2693-2707. [PMID: 35178670 DOI: 10.1007/s13346-022-01120-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
The objective of the current study is to evaluate the prospective of liquisolid formulation to improve the dissolution rate of ketoprofen and thereby the bioavailability. Different batches of liquisolid were prepared using polyethylene glycol 200 as a solvent, microcrystalline cellulose, and aerosil 200 as carrier and coating material, respectively. Central composite design (32) was utilized to examine the effects of independent variables (load factor and excipient ratio) on dependent variables (solubility and % in vitro drug release). Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy techniques were employed for characterization of optimized batch (LS-10) of liquisolid formulation. The half-maximal inhibitory concentration (IC50) values for in vitro anti-inflammatory activity for liquisolid formulation exhibited a higher anti-inflammatory effect than ketoprofen and physical mixture. The statistical analysis of in vivo (anti-inflammatory and analgesic) activities data demonstrated that the test (optimized formulation) treatment group resulted in quick pharmacological response in Wistar rats and Albino mice when compared with standard (pure drug) and control treatment groups. The results obtained in the present study illustrated that the liquisolid formulation could be a propitious approach to increase the bioavailability of ketoprofen and could be used in oral therapy.
Collapse
Affiliation(s)
- Sunita Devi
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Vikas Verma
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences (SoMAS), G. D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
6
|
El-Say KM, Felimban RI, Tayeb HH, Chaudhary AG, Omar AM, Rizg WY, Alnadwi FH, Abd-Allah FI, Ahmed TA. Pairing 3D-Printing with Nanotechnology to Manage Metabolic Syndrome. Int J Nanomedicine 2022; 17:1783-1801. [PMID: 35479768 PMCID: PMC9038162 DOI: 10.2147/ijn.s357356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction This work was aimed to develop a Curcuma oil-based self-nanoemulsifying drug delivery system (SNEDDS) 3D-printed polypills containing glimepiride (GMD) and rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes as a model for metabolic syndrome (MS). Methods Compartmentalized 3D printed polypills were prepared and studied in streptozotocin/poloxamer induced diabetic/dyslipidemic rats. The pharmacokinetic parameters of GMD and RSV in the prepared polypills were evaluated. Blood glucose level, lipid profile, antioxidant, and biochemical markers activities were investigated. Also, histopathological examination of the liver and pancreas was carried out. The atherosclerotic index, the area of islets of Langerhans, and liver steatosis lesion scores were calculated. Results The developed SNEDDS-loaded GMD/RSV polypills showed acceptable quality control characteristics with a high relative bioavailability of 217.16% and 224.28% for GMD and RSV, respectively, when compared with the corresponding non-SNEDDS pills. The prepared polypills showed dramatic lowering in blood glucose levels and substantial improvement in lipid profile and hepatic serum biomarkers as well as remarkable decrease in serum antioxidants in response to Poloxamer 407 intoxication. The prepared polypills decreased the risk of atherosclerosis and coronary disease by boosting the level of high-density lipoprotein and lowering both triglyceride and low-density lipoprotein. Microscopic examination showed normal hepatic sinusoids and high protection level with less detectable steatosis in the examined hepatocytes. Normal size pancreatic islets with apparently normal exocrine acini and pancreatic duct were also noticed. Conclusion This formulation strategy clearly shows the potential of the developed polypills in personalized medicine for treatment of patients with MS.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam H Tayeb
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fuad H Alnadwi
- Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Ahmed TA, Alotaibi HA, Alharbi WS, Safo MK, El-Say KM. Development of 3D-Printed, Liquisolid and Directly Compressed Glimepiride Tablets, Loaded with Black Seed Oil Self-Nanoemulsifying Drug Delivery System: In Vitro and In Vivo Characterization. Pharmaceuticals (Basel) 2022; 15:68. [PMID: 35056126 PMCID: PMC8778328 DOI: 10.3390/ph15010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Glimepiride is characterized by an inconsistent dissolution and absorption profile due to its limited aqueous solubility. The aim of this study was to develop glimepiride tablets using three different manufacturing techniques, as well as to study their quality attributes and pharmacokinetics behavior. Black seed oil based self-nanoemulsifying drug delivery system (SNEDDS) formulation was developed and characterized. Glimepiride liquisolid and directly compressed tablets were prepared and their pre-compression and post-compression characteristics were evaluated. Semi-solid pastes loaded with SNEDDS were prepared and used to develop three-dimensional printing tablets utilizing the extrusion technique. In vivo comparative pharmacokinetics study was conducted on Male Wistar rats using a single dose one-period parallel design. The developed SNEDDS formulation showed a particle size of 45.607 ± 4.404 nm, and a glimepiride solubility of 25.002 ± 0.273 mg/mL. All the studied tablet formulations showed acceptable pre-compression and post-compression characteristics and a difference in their in vitro drug release behavior. The surface of the liquisolid and directly compressed tablets was smooth and non-porous, while the three-dimensional printing tablets showed a few porous surfaces. The inner structure of the liquisolid tablets showed some cracks and voids between the incorporated tablet ingredients while that of the three-dimensional printing tablets displayed some tortuosity and a gel porous-like structure. Most of the computed pharmacokinetic parameters improved with the liquisolid and three-dimensional printed tablets. The relative bioavailabilities of the three-dimensional printed and liquisolid tablets compared to commercial product were 121.68% and 113.86%, respectively. Therefore, the liquisolid and three-dimensional printed tablets are promising techniques for modifying glimepiride release and improving in vivo performance but more clinical investigations are required.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| | - Hanadi A. Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| | - Martin K. Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.A.A.); (W.S.A.); (K.M.E.-S.)
| |
Collapse
|
8
|
El-Say KM, Ahmed TA, Aljefri AH, El-Sawy HS, Fassihi R, Abou-Gharbia M. Oleic acid-reinforced PEGylated polymethacrylate transdermal film with enhanced antidyslipidemic activity and bioavailability of atorvastatin: A mechanistic ex-vivo/in-vivo analysis. Int J Pharm 2021; 608:121057. [PMID: 34461173 DOI: 10.1016/j.ijpharm.2021.121057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
To enhance the poor bioavailability and extensive liver metabolism of atorvastatin calcium (ATC), we have developed an oleic acid-reinforced PEGylated polymethacrylate (OLA-PEG-E-RLPO) transdermal film as a convenient and alternative delivery system. The effect of varying levels of Eudragit RLPO, PEG 400, and oleic acid on the target product profile was optimized through Quality by Design (QbD) approach. The ATC-loaded OLA-PEG-E-RLPO transdermal films were evaluated in ex-vivo experiments using full thickness skin, utilizing Franz cell studies, and undergone in-vivo pharmacokinetics/pharmacodynamics (PK/PD) assessment, using poloxamer-induced dyslipidemic Sprague-Dawley rats. At 2 and 12 h, the optimized ATC films with a thickness of 0.79 mm showed permeation of 37.34% and 97.23% into the receptor compartment, respectively. Steady-state flux was 0.172 mg/cm2h, with 7.01 × 10-4 cm/h permeability coefficient, and 0.713 × 10-3 cm2/h diffusion coefficient. In-vivo PK results indicated that the absorption profiles (AUC0-∞) of the optimized film in pre-treated group of animals were 8.6-fold and 2.8-fold greater than controls pre-treated with non-PEGylated non-oleic acid film and orally administered ATC, respectively. PD assessment of the lipid panel indicated that the lipid profile of the optimized film pre-treated group reached normal levels after 12 h, along with the significant enhancement over the non-PEGylated non-oleic acid film and the oral marketed tablet groups. The histopathological findings revealed near-normal hepatocyte structure for the optimized film pre-treated animal group. Our results further indicate that transdermal delivery films based on an optimized ATC-loaded OLA-PEG-E-RLPO were successfully developed and their assessment in both ex-vivo and in-vivo suggests enhanced permeability and improvement in bioavailability and antidyslipidemic activity of ATC. This approach can provide several advantages, especially during chronic administration of ATC, including improvement in patient compliance, therapeutic benefits, bioavailability, and feasibility for commercialization and as a platform for other drug classes.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Arwa H Aljefri
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Reza Fassihi
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, United States.
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, United States
| |
Collapse
|
9
|
Development of Multi-Compartment 3D-Printed Tablets Loaded with Self-Nanoemulsified Formulations of Various Drugs: A New Strategy for Personalized Medicine. Pharmaceutics 2021; 13:pharmaceutics13101733. [PMID: 34684026 PMCID: PMC8539993 DOI: 10.3390/pharmaceutics13101733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
This work aimed to develop a three-dimensional printed (3DP) tablet containing glimepiride (GLMP) and/or rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes. Curcumin oil was extracted from the dried rhizomes of Curcuma longa and utilized to develop a self-nanoemulsifying drug delivery system (SNEDDS). Screening mixture experimental design was conducted to develop SNEDDS formulation with a minimum droplet size. Five different semi-solid pastes were prepared and rheologically characterized. The prepared pastes were used to develop 3DP tablets using extrusion printing. The quality attributes of the 3DP tablets were evaluated. A non-compartmental extravascular pharmacokinetic model was implemented to investigate the in vivo behavior of the prepared tablets and the studied marketed products. The optimized SNEDDS, of a 94.43 ± 3.55 nm droplet size, was found to contain 15%, 75%, and 10% of oil, polyethylene glycol 400, and tween 80, respectively. The prepared pastes revealed a shear-thinning of pseudoplastic flow behavior. Flat-faced round tablets of 15 mm diameter and 5.6–11.2 mm thickness were successfully printed and illustrated good criteria for friability, weight variation, and content uniformity. Drug release was superior from SNEDDS-based tablets when compared to non-SNEDDS tablets. Scanning electron microscopy study of the 3DP tablets revealed a semi-porous surface that exhibited some curvature with the appearance of tortuosity and a gel porous-like structure of the inner section. GLMP and RSV demonstrated relative bioavailability of 159.50% and 245.16%, respectively. Accordingly, the developed 3DP tablets could be considered as a promising combined oral drug therapy used in treatment of metabolic disorders. However, clinical studies are needed to investigate their efficacy and safety.
Collapse
|
10
|
Vraníková B, Svačinová P, Marushka J, Brokešová J, Holas O, Tebbens JD, Šklubalová Z. The importance of the coating material type and amount in the preparation of liquisolid systems based on magnesium aluminometasilicate carrier. Eur J Pharm Sci 2021; 165:105952. [PMID: 34298140 DOI: 10.1016/j.ejps.2021.105952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Albeit the preparation of liquisolid systems represents an innovative approach to enhance the dissolution of poorly soluble drugs, their broader utilization is still limited mainly due to the problematic conversion of the liquid into freely flowing and readily compressible powder. Accordingly, the presented study aims to determine the optimal carrier/coating material ratio (R value) for formulations based on magnesium aluminometasilicate (NUS2) loaded with polyethylene glycol 400. Four commercially available colloidal silica were used as coating materials in nine different R values (range of 5 - 100). The obtained results suggested that the higher R value leads to the superior properties of powder mixtures, such as better flowability, as well as compacts with higher tensile strength and lower friability. Moreover, it was observed that the type of coating material impacts the properties of liquisolid systems due to the different arrangement of particles in the liquisolid mixture. To confirm the noted dependency of R value and coating material type, the one- and two-way ANOVA, linear regression and principal component analysis (PCA) techniques were performed. In addition, a comparison of results with the properties of loaded NUS2 itself revealed that LSS with sufficient properties may be prepared even without the coating material.
Collapse
Affiliation(s)
- Barbora Vraníková
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Petra Svačinová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Julia Marushka
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jana Brokešová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Zdenka Šklubalová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|