1
|
Sun Y, Tam WK, Zhu M, Lu Q, Yu M, Hsu Y, Chen P, Zhang P, Lyu M, Huang Y, Zheng Z, Zhang X, Leung VY. MMP12-dependent myofibroblast formation contributes to nucleus pulposus fibrosis. JCI Insight 2025; 10:e180809. [PMID: 40036084 PMCID: PMC11981621 DOI: 10.1172/jci.insight.180809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is associated with low back pain, a leading cause of disability worldwide. Fibrosis of nucleus pulposus (NP) is a principal component of IDD, featuring an accumulation of myofibroblast-like cells. Previous study indicates that matrix metalloproteinase 12 (MMP12) expression is upregulated in IDD, but its role remains largely unexplored. We here showed that TGF-β1 could promote myofibroblast-like differentiation of human NP cells along with an induction of MMP12 expression. Intriguingly, MMP12 knockdown not only ameliorated the myofibroblastic phenotype but also increased chondrogenic marker expression. Transcriptome analysis revealed that the MMP12-mediated acquisition of myofibroblast phenotype was coupled to processes related to fibroblast activation and osteogenesis and to pathways mediated by MAPK and Wnt signaling. Injury induced mouse IDD showed NP fibrosis with marked increase of collagen deposition and αSMA-expressing cells. In contrast, MMP12-KO mice exhibited largely reduced collagen I and III but increased collagen II and aggrecan deposition, indicating an inhibition of NP fibrosis along with an enhanced cartilaginous matrix remodeling. Consistently, an increase of SOX9+ and CNMD+ but decrease of αSMA+ NP cells was found in the KO. Altogether, our findings suggest a pivotal role of MMP12 in myofibroblast generation, thereby regulating NP fibrosis in IDD.
Collapse
Affiliation(s)
- Yi Sun
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wai-Kit Tam
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Manyu Zhu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Qiuji Lu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Mengqi Yu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Yuching Hsu
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Chen
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peng Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Minmin Lyu
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yongcan Huang
- Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhaomin Zheng
- Department of Spine Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xintao Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Victor Y. Leung
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
2
|
Kliuchnikova AA, Ilgisonis EV, Archakov AI, Ponomarenko EA, Moskalev AA. Proteomic Markers of Aging and Longevity: A Systematic Review. Int J Mol Sci 2024; 25:12634. [PMID: 39684346 DOI: 10.3390/ijms252312634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This article provides a systematic review of research conducted on the proteomic composition of blood as part of a complex biological age estimation. We performed a comprehensive analysis of 17 publicly available datasets and compiled an integral list of proteins. These proteins were sorted based on their detection probability using mass spectrometry in human plasma. We propose this list as a basis for creating a panel of peptides and quantifying the content of selected proteins in the format of a proteomic aging clock. The selected proteins are especially notable for their roles in inflammatory processes and lipid metabolism. Our findings suggest, for the first time, that proteins associated with systemic disorders, including those approved by the FDA for clinical use, could serve as potential markers of aging.
Collapse
Affiliation(s)
| | | | | | | | - Alexey A Moskalev
- Institute of Longevity, Petrovsky Russian Research Center for Surgery, Moscow 119435, Russia
| |
Collapse
|
3
|
Lin B, Fan Y, Yang X, Pathak JL, Zhong M. MMP-12 and Periodontitis: Unraveling the Molecular Pathways of Periodontal Tissue Destruction. J Inflamm Res 2024; 17:7793-7806. [PMID: 39494211 PMCID: PMC11529342 DOI: 10.2147/jir.s480466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontal disease is a common disorder affecting a wide range of people and has a high prevalence globally. Periodontitis comprises a series of inflammatory conditions affecting periodontal support tissue, which could ultimately lead to tooth loss and reduce life quality and add to the financial burden of society. Matrix metalloproteinase-12 (MMP-12) is an elastase that is produced mostly by macrophages and could degrade a wide spectrum of extracellular matrix (ECM) and also contribute to several systematic pathological conditions. Recently, researchers have reported higher expression of MMP-12 in chronic periodontitis patients. However, there are few reports on the role of MMP-12 in periodontitis pathogenicity, and the interaction between MMP-12, periodontal pathogens, and periodontal tissues remains unclear. In this review, we introduce the potentially unique role of MMP-12 in the context of periodontal inflammation earlier, summarize the possible effects of MMP-12 on the pathological process of periodontitis and the interaction of host response under the challenge of various inflammatory factors, and provide possible diagnostic and therapeutic strategies targeting MMP-12 for the management of periodontitis. Future research and policies should focus on and implement effective chairside testing methods to reduce the prevalence of periodontal diseases.
Collapse
Affiliation(s)
- Bingpeng Lin
- Department of Orthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Yufei Fan
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Xuechao Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Janak L Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Mei Zhong
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
4
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li GS, Tang YX, Zhang W, Li JD, Huang HQ, Liu J, Fu ZW, He RQ, Kong JL, Zhou HF, Chen G. MMP12 is a Potential Predictive and Prognostic Biomarker of Various Cancers Including Lung Adenocarcinoma. Cancer Control 2024; 31:10732748241235468. [PMID: 38410859 PMCID: PMC10898301 DOI: 10.1177/10732748241235468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVE This study sought to explore the clinical value of matrix metalloproteinases 12 (MMP12) in multiple cancers, including lung adenocarcinoma (LUAD). METHODS Using >10,000 samples, this retrospective study demonstrated the first pan-cancer analysis of MMP12. The expression of MMP12 between cancer groups and their control groups was analyzed using Wilcoxon rank-sum tests. The clinical significance of MMP12 expression in multiple cancers was assessed using receiver operating characteristic curves, Kaplan-Meier curves, and univariate Cox analysis. A further LUAD-related analysis based on 4565 multi-center and in-house samples was performed to verify the findings regarding MMP12 in pan-cancer analysis partly. RESULTS MMP12 mRNA is highly expressed in 13 cancers compared to their controls, and the MMP12 protein level is elevated in some of these cancers (e.g., colon adenocarcinoma) (P < .05). MMP12 expression makes it feasible to distinguish 21 cancer tissues from normal tissues (AUC = 0.86). A high MMP12 expression is a prognosis risk factor in eight cancers, such as adrenocortical carcinoma (hazard ratio >1, P < .05). The elevated MMP12 expression is also a prognosis protective factor in breast-invasive carcinoma and colon adenocarcinoma (hazard ratio <1, P < .05). Some pan-cancer findings regarding MMP12 are verified in LUAD-MMP12 expression is upregulated in LUAD at both the mRNA and protein levels (P < .05), has the potential to distinguish LUAD with considerable accuracy (AUC = .91), and plays a risk prognosis factor for patients with the disease (P < .05). CONCLUSIONS MMP12 is highly expressed in most cancers and may serve as a novel biomarker for the prediction and prognosis of numerous cancers.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - He-Qing Huang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Zong-Wang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
6
|
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:297-327. [PMID: 39287856 DOI: 10.1007/978-3-031-63657-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Amor M, Bianco V, Buerger M, Lechleitner M, Vujić N, Dobrijević A, Akhmetshina A, Pirchheim A, Schwarz B, Pessentheiner AR, Baumgartner F, Rampitsch K, Schauer S, Klobučar I, Degoricija V, Pregartner G, Kummer D, Svecla M, Sommer G, Kolb D, Holzapfel GA, Hoefler G, Frank S, Norata GD, Kratky D. Genetic deletion of MMP12 ameliorates cardiometabolic disease by improving insulin sensitivity, systemic inflammation, and atherosclerotic features in mice. Cardiovasc Diabetol 2023; 22:327. [PMID: 38017481 PMCID: PMC10685620 DOI: 10.1186/s12933-023-02064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Martin Buerger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anja Dobrijević
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Ariane R Pessentheiner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Silvia Schauer
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iva Klobučar
- Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Vesna Degoricija
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Medicine, Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Daniel Kummer
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructural Analysis, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerald Hoefler
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- BioTechMed-Graz, Graz, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
8
|
Sævik ÅB, Ueland G, Åkerman AK, Methlie P, Quinkler M, Jørgensen AP, Höybye C, Debowska AWJ, Nedrebø BG, Dahle AL, Carlsen S, Tomkowicz A, Sollid ST, Nermoen I, Grønning K, Dahlqvist P, Grimnes G, Skov J, Finnes T, Valland SF, Wahlberg J, Holte SE, Kämpe O, Bensing S, Husebye ES, Øksnes M. Altered biomarkers for cardiovascular disease and inflammation in autoimmune Addison's disease - a cross-sectional study. Eur J Endocrinol 2023; 189:438-447. [PMID: 37807083 DOI: 10.1093/ejendo/lvad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/01/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Increased prevalence of cardiovascular disease has been reported in autoimmune Addison's disease (AAD), but pathomechanisms are poorly understood. DESIGN Cross-sectional study. METHODS We compared serum levels of 177 cardiovascular and inflammatory biomarkers in 43 patients with AAD at >18-h glucocorticoid withdrawal and 43 matched controls, overall and stratified for sex. Biomarker levels were correlated with the frequency of adrenal crises and quality of life (QoL) by AddiQoL-30. Finally, we investigated changes in biomarker levels following 250 µg tetracosactide injection in patients without residual adrenocortical function (RAF) to explore glucocorticoid-independent effects of high ACTH. RESULTS Nineteen biomarkers significantly differed between patients with AAD and controls; all but 1 (ST1A1) were higher in AAD. Eight biomarkers were significantly higher in female patients compared with controls (IL6, MCP1, GAL9, SPON2, DR4, RAGE, TNFRSF9, and PGF), but none differed between male patients and controls. Levels of RAGE correlated with the frequency of adrenal crises (r = 0.415, P = .006) and AddiQoL-30 scores (r = -0.347, P = .028) but not after correction for multiple testing. PDL2 and leptin significantly declined 60 min after injection of ACTH in AAD without RAF (-0.15 normalized protein expression [NPX], P = .0001, and -0.25 NPX, P = .0003, respectively). CONCLUSIONS We show that cardiovascular and inflammatory biomarkers are altered in AAD compared with controls, particularly in women. RAGE might be a marker of disease severity in AAD, associated with more adrenal crises and reduced QoL. High ACTH reduced PDL2 and leptin levels in a glucocorticoid-independent manner but the overall effect on biomarker profiles was small.
Collapse
Affiliation(s)
- Åse Bjorvatn Sævik
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
| | - Grethe Ueland
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Anna-Karin Åkerman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Medicine, Örebro University Hospital, Örebro 702 17, Sweden
| | - Paal Methlie
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Marcus Quinkler
- Practice for Endocrinology and Nephrology, Endocrinology in Charlottenburg, Berlin 10627, Germany
| | | | - Charlotte Höybye
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm 171 77, Sweden
| | | | | | - Anne Lise Dahle
- Department of Internal Medicine, Haugesund Hospital, Haugesund 5528, Norway
| | - Siri Carlsen
- Department of Endocrinology, Stavanger University Hospital, Stavanger 4019, Norway
| | - Aneta Tomkowicz
- Department of Medicine, Sørlandet Hospital, Kristiansand 4604, Norway
| | - Stina Therese Sollid
- Department of Medicine, Drammen Hospital, Vestre Viken Health Trust, Drammen 3004, Norway
| | - Ingrid Nermoen
- Department of Endocrinology, Akershus University Hospital, Lørenskog 1478, Norway
| | - Kaja Grønning
- Department of Endocrinology, Akershus University Hospital, Lørenskog 1478, Norway
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 907 37, Sweden
| | - Guri Grimnes
- Division of Internal Medicine, University Hospital of North Norway, Tromsø 9019, Norway
- Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø 9019, Norway
| | - Jakob Skov
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Trine Finnes
- Section of Endocrinology, Innlandet Hospital Trust, Hamar 2318, Norway
| | - Susanna F Valland
- Section of Endocrinology, Innlandet Hospital Trust, Hamar 2318, Norway
| | - Jeanette Wahlberg
- Department of Endocrinology, Linköping University, Linköping 581 85, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping 581 85, Sweden
| | | | - Olle Kämpe
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Endocrinology, Karolinska University Hospital, Stockholm 171 77, Sweden
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Eystein Sverre Husebye
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Marianne Øksnes
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen 5021, Norway
- Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
9
|
Patel S, Sparman NZR, Arneson D, Alvarsson A, Santos LC, Duesman SJ, Centonze A, Hathaway E, Ahn IS, Diamante G, Cely I, Cho CH, Talari NK, Rajbhandari AK, Goedeke L, Wang P, Butte AJ, Blanpain C, Chella Krishnan K, Lusis AJ, Stanley SA, Yang X, Rajbhandari P. Mammary duct luminal epithelium controls adipocyte thermogenic programme. Nature 2023; 620:192-199. [PMID: 37495690 PMCID: PMC10529063 DOI: 10.1038/s41586-023-06361-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Sympathetic activation during cold exposure increases adipocyte thermogenesis via the expression of mitochondrial protein uncoupling protein 1 (UCP1)1. The propensity of adipocytes to express UCP1 is under a critical influence of the adipose microenvironment and varies between sexes and among various fat depots2-7. Here we report that mammary gland ductal epithelial cells in the adipose niche regulate cold-induced adipocyte UCP1 expression in female mouse subcutaneous white adipose tissue (scWAT). Single-cell RNA sequencing shows that glandular luminal epithelium subtypes express transcripts that encode secretory factors controlling adipocyte UCP1 expression under cold conditions. We term these luminal epithelium secretory factors 'mammokines'. Using 3D visualization of whole-tissue immunofluorescence, we reveal sympathetic nerve-ductal contact points. We show that mammary ducts activated by sympathetic nerves limit adipocyte UCP1 expression via the mammokine lipocalin 2. In vivo and ex vivo ablation of mammary duct epithelium enhance the cold-induced adipocyte thermogenic gene programme in scWAT. Since the mammary duct network extends throughout most of the scWAT in female mice, females show markedly less scWAT UCP1 expression, fat oxidation, energy expenditure and subcutaneous fat mass loss compared with male mice, implicating sex-specific roles of mammokines in adipose thermogenesis. These results reveal a role of sympathetic nerve-activated glandular epithelium in adipocyte UCP1 expression and suggest that mammary duct luminal epithelium has an important role in controlling glandular adiposity.
Collapse
Affiliation(s)
- Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Arneson
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luís C Santos
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel J Duesman
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Centonze
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ephraim Hathaway
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Chung Hwan Cho
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Noble Kumar Talari
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abha K Rajbhandari
- Department of Psychiatry and Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leigh Goedeke
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Center for Data-Driven Insights and Innovation, University of California Health, Oakland, CA, USA
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Karthickeyan Chella Krishnan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Medicine, Division of Cardiology, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology and Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
11
|
CXCR6 Mediates Pressure Overload-Induced Aortic Stiffness by Increasing Macrophage Recruitment and Reducing Exosome-miRNA29b. J Cardiovasc Transl Res 2022; 16:271-286. [PMID: 36018423 DOI: 10.1007/s12265-022-10304-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Aortic stiffness is an independent risk factor for aortic diseases such as aortic dissection which commonly occurred with aging and hypertension. Chemokine receptor CXCR6 is critically involved in vascular inflammation and remodeling. Here, we investigated whether and how CXCR6 plays a role in aortic stiffness caused by pressure overload. CXCR6-/- and WT mice underwent transverse aortic constriction (TAC) surgery for 8 weeks. CXCR6 deficiency significantly improved TAC-induced aortic remodeling and endothelial dysfunction by decreasing CD11c+ macrophage infiltration, suppressing VCAM-1 and ICAM-1, reducing collagen deposition, and downregulating MMP12 and osteopontin in the aorta. Consistently, blocking the CXCL16/CXCR6 axis also reduced aortic accumulation of CD11c+ macrophages and vascular stiffness but without affecting the release of TNF-α and IL-6 from the aorta. Furthermore, pressure overload inhibited aortic release of exosomes, which could be reversed by suppressing CXCR6 or CXCL16. Inhibition of exosome release by GW4869 significantly aggravated TAC-induced aortic calcification and stiffness. By exosomal microRNA microarray analysis, we found that microRNA-29b was significantly reduced in aortic endothelial cells (AECs) receiving TAC. Intriguingly, blocking the CXCL16/CXCR6 axis restored the expression of miR-29b in AECs. Finally, overexpression of miR-29b significantly increased eNOS and reduced MMPs and collagen in AECs. By contrast, antagonizing miR-29b in vivo further enhanced TAC-induced expressions of MMP12 and osteopontin, aggravated aortic fibrosis, calcification, and stiffness. Our study demonstrated a key role of the CXCL16/CXCR6 axis in macrophage recruitment and macrophage-mediated aortic stiffness under pressure overload through an exosome-miRNAs-dependent manner.
Collapse
|
12
|
Li Z, Gurung M, Rodrigues RR, Padiadpu J, Newman NK, Manes NP, Pederson JW, Greer RL, Vasquez-Perez S, You H, Hioki KA, Moulton Z, Fel A, De Nardo D, Dzutsev AK, Nita-Lazar A, Trinchieri G, Shulzhenko N, Morgun A. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages. J Exp Med 2022; 219:213260. [PMID: 35657352 PMCID: PMC9170383 DOI: 10.1084/jem.20220017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023] Open
Abstract
Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.
Collapse
Affiliation(s)
- Zhipeng Li
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR,Shanghai Mengniu Biotechnology R&D Co., Ltd., Shanghai, China
| | - Manoj Gurung
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Richard R. Rodrigues
- College of Pharmacy, Oregon State University, Corvallis, OR,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Nathan P. Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jacob W. Pederson
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Renee L. Greer
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | | | - Hyekyoung You
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Kaito A. Hioki
- College of Pharmacy, Oregon State University, Corvallis, OR
| | - Zoe Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Anna Fel
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Dominic De Nardo
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,Giorgio Trinchieri:
| | - Natalia Shulzhenko
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR,Correspondence to Natalia Shulzhenko:
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR,Andrey Morgun:
| |
Collapse
|
13
|
Danielsson H, Tebani A, Zhong W, Fagerberg L, Brusselaers N, Hård AL, Uhlén M, Hellström A. Blood protein profiles related to preterm birth and retinopathy of prematurity. Pediatr Res 2022; 91:937-946. [PMID: 33895781 PMCID: PMC9064798 DOI: 10.1038/s41390-021-01528-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
Collapse
Affiliation(s)
- Hanna Danielsson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.416648.90000 0000 8986 2221Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Abdellah Tebani
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden ,grid.41724.340000 0001 2296 5231Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France ,grid.41724.340000 0001 2296 5231Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Wen Zhong
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Nele Brusselaers
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.5284.b0000 0001 0790 3681Global Health Institute, Antwerp University, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anna-Lena Hård
- grid.1649.a000000009445082XThe Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
14
|
Jiang L, Yang M, He S, Li Z, Li H, Niu T, Xie D, Mei Y, He X, Wei L, Huang P, Huang M, Zhang R, Wang L, Li J. MMP12 knockout prevents weight and muscle loss in tumor-bearing mice. BMC Cancer 2021; 21:1297. [PMID: 34863141 PMCID: PMC8642861 DOI: 10.1186/s12885-021-09004-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer is a malignant gastrointestinal cancer, in which some advanced patients would develop cancer cachexia (CAC). CAC is defined as a multi-factorial syndrome characterized by weight loss and muscle loss (with or without fat mass), leading to progressive dysfunction, thereby increasing morbidity and mortality. ApcMin/+ mice develop spontaneous intestinal adenoma, which provides an established model of colorectal cancer for CAC study. Upon studying the ApcMin/+ mouse model, we observed a marked decrease in weight gain beginning around week 15. Such a reduction in weight gain was rescued when ApcMin/+ mice were crossed with MMP12-/- mice, indicating that MMP12 has a role in age-related ApcMin/+-associated weight loss. As a control, the weight of MMP12-/- mice on a weekly basis, their weight were not significantly different from those of WT mice. METHODS ApcMin/+; MMP12-/- mice were obtained by crossing ApcMin/+ mice with MMP12 knockout (MMP12 -/-) mice. Histological scores were assessed using hematoxylin-eosin (H&E) staining. MMP12 expression was confirmed by immunohistochemistry and immunofluorescence staining. ELISA, protein microarrays and quantitative Polymerase Chain Reaction (qPCR) were used to investigate whether tumor could up-regulate IL-6. Cell-based assays and western blot were used to verify the regulatory relationship between IL-6 and MMP12. Fluorescence intensity was measured to determine whether MMP12 is associated with insulin and insulin-like growth factor 1 (IGF-1) in vitro. MMP12 inhibitors were used to explore whether MMP12 could affect the body weight of ApcMin/+ mice. RESULTS MMP12 knockout led to weight gain and expansion of muscle fiber cross-sectional area (all mice had C57BL/6 background) in ApcMin/+ mice, while inhibiting MMP12 could suppress weight loss in ApcMin/+ mice. MMP12 was up-regulated in muscle tissues and peritoneal macrophages of ApcMin/+ mice. IL-6 in tumor cells and colorectal cancer patients is up-regulation. IL-6 stimulated MMP12 secretion of macrophage. CONCLUSIONS MMP12 is essential for controlling body weight of Apc Min/+ mice. Our study shows that it exists the crosstalk between cancer cells and macrophages in muscle tissues that tumor cells secrete IL-6 inducing macrophages to up-regulate MMP12. This study may provide a new perspective of MMP12 in the treatment for weight loss induced by CAC.
Collapse
Affiliation(s)
- Lingbi Jiang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Mingming Yang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.,The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shihui He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhengyang Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Haobin Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ting Niu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Dehuan Xie
- The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- The State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaodong He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Lili Wei
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Pinzhu Huang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Mingzhe Huang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rongxin Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Witayavanitkul N, Werawatganon D, Chayanupatkul M, Klaikeaw N, Siriviriyakul P. Genistein and exercise treatment reduced NASH related HDAC3, IL-13 and MMP-12 expressions in ovariectomized rats fed with high fat high fructose diet. J Tradit Complement Med 2021; 11:503-512. [PMID: 34765514 PMCID: PMC8572705 DOI: 10.1016/j.jtcme.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Background and aim Genistein (GEN) and exercise (Ex) may be regarded as an alternative treatment for non-alcoholic steatohepatitis (NASH). However, the mechanisms behind their therapeutic effects in NASH are not well-understood. Experimental procedure This study investigated the roles of histone deacetylase (HDAC)3 and interleukin-(IL-)13 in the NASH model of ovariectomized (OVX) rats fed with high fat high fructose (HFHF) diet. Results and conclusion Nine weeks after being fed with HFHF diet, severe NASH pathology with mild fibrosis were seen along with an increase in HDAC3, IL-13 and matrix metalloelastase (MMP-12) expressions in OVX rats. Five weeks of either GEN or Ex treatments abrogated the increase in both HDAC3 and IL-13 expressions in OVX rats fed with HFHF diet and ameliorated NASH features, liver fibrosis and MMP-12 expression. The combination of Gen and Ex, however, did not provide additional benefits on NASH features in OVX rats fed with HFHF diet. These results suggested that GEN and Ex treatments improved HFHF diet induced NASH in OVX rats through the suppression of HDAC3, IL-13 and MMP-12 expression. •Estrogen deficiency leads to NASH development. •Either genistein or exercise modulated lipid metabolism reducing steatohepatitis. •Either genistein or exercise attenuated liver fibrosis improving NASH. •Combining genistein and exercise did not provide additional benefits. •Genistein and exercise have beneficial effects in post-menopausal women with NASH.
Collapse
Key Words
- DAB, Diaminobenzidine
- DMSO, Dimethyl sulfoxide
- ELISA, Enzyme-linked immunosorbent assay
- Estrogen deficiency
- Exercise
- FFA, Free fatty acid
- Genistein
- HDAC3, histone deacetylase 3
- HFHF, High-fat high-fructose
- IL-13, Interleukin-13
- MMP-12, matrix metalloelastase 12
- NAFLD, Nonalcoholic fatty liver disease
- NASH, Nonalcoholic steatohepatitis
- Nonalcoholic steatohepatitis
- OVX, ovariectomized
- Ovariectomized
- TBA, Thiobarbituric acid-reactive substances
Collapse
Affiliation(s)
- Namthip Witayavanitkul
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Duangporn Werawatganon
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Maneerat Chayanupatkul
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naruemon Klaikeaw
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasong Siriviriyakul
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
16
|
Song M, Zhang S, Tao Z, Li J, Shi Y, Xiong Y, Zhang W, Liu C, Chen S. MMP-12 siRNA improves the homeostasis of the small intestine and metabolic dysfunction in high-fat diet feeding-induced obese mice. Biomaterials 2021; 278:121183. [PMID: 34653936 DOI: 10.1016/j.biomaterials.2021.121183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
The changes of small intestinal homeostasis have been recognized to contribute essentially to the obese development. However, the core small intestinal regulator which mediates over-nutrient impacts on the homeostasis of the small intestines remains elusive. Here, we identify the MMP-12 as such a responsive factor in mouse small intestines. Taking advantages of the nano delivery system, we demonstrate that small intestine-specific MMP-12 knockdown alleviates high-fat diet feeding-induced metabolic disorders and improves intestinal homeostasis in mice, including a significant decrease in lipid transportation, bile acid reabsorption, and inflammation. In parallel, the small intestinal integrity is recovered and the gut microbiota composition is reversed towards that under normal diet feeding. Mechanistically, MMP-12, differing from its traditional elastolytic function, acts as a transcriptional factor to activate Fabp4 transcription through epigenetic modification. In translational medicine, clinical applications of our nanosystem and therapeutic interventions targeting MMP-12 will benefit patients with obesity and associated diseases.
Collapse
Affiliation(s)
- Mingming Song
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shiyao Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zixuan Tao
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jianning Li
- Nanjing Qixia Hospital, Nanjing, 210046, PR China
| | - Yujie Shi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, PR China
| | - Yonghong Xiong
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chang Liu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
17
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
18
|
Immune-Associated Proteins Are Enriched in Lung Tissue-Derived Extracellular Vesicles during Allergen-Induced Eosinophilic Airway Inflammation. Int J Mol Sci 2021; 22:ijms22094718. [PMID: 33946872 PMCID: PMC8125637 DOI: 10.3390/ijms22094718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Studying the proteomes of tissue-derived extracellular vesicles (EVs) can lead to the identification of biomarkers of disease and can provide a better understanding of cell-to-cell communication in both healthy and diseased tissue. The aim of this study was to apply our previously established tissue-derived EV isolation protocol to mouse lungs in order to determine the changes in the proteomes of lung tissue-derived EVs during allergen-induced eosinophilic airway inflammation. A mouse model for allergic airway inflammation was used by sensitizing the mice intraperitoneal with ovalbumin (OVA), and one week after the final sensitization, the mice were challenged intranasal with OVA or PBS. The animals were sacrificed 24 h after the final challenge, and their lungs were removed and sliced into smaller pieces that were incubated in culture media with DNase I and Collagenase D for 30 min at 37 °C. Vesicles were isolated from the medium by ultracentrifugation and bottom-loaded iodixanol density cushions, and the proteomes were determined using quantitative mass spectrometry. More EVs were present in the lungs of the OVA-challenged mice compared to the PBS-challenged control mice. In total, 4510 proteins were quantified in all samples. Among them, over 1000 proteins were significantly altered (fold change >2), with 614 proteins being increased and 425 proteins being decreased in the EVs from OVA-challenged mice compared to EVs from PBS-challenged animals. The associated cellular components and biological processes were analyzed for the altered EV proteins, and the proteins enriched during allergen-induced airway inflammation were mainly associated with gene ontology (GO) terms related to immune responses. In conclusion, EVs can be isolated from mouse lung tissue, and the EVs’ proteomes undergo changes in response to allergen-induced airway inflammation. This suggests that the composition of lung-derived EVs is altered in diseases associated with inflammation of the lung, which may have implications in type-2 driven eosinophilic asthma pathogenesis.
Collapse
|
19
|
Xia H, Wu Y, Zhao J, Li W, Lu L, Ma H, Cheng C, Sun J, Xiang Q, Bian T, Liu Q. The aberrant cross-talk of epithelium-macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biol Toxicol 2021; 38:167-183. [PMID: 33660100 DOI: 10.1007/s10565-021-09585-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 01/20/2023]
Abstract
Cigarette smoke (CS), a complex chemical indoor air pollutant, induces degradation of elastin, resulting in emphysema. Aberrant cross-talk between macrophages and bronchial epithelial cells is essential for the degradation of elastin that contributes to emphysema, in which extracellular vesicles (EVs) play a critical role. The formation of N6-methyladenosine (m6A) is a modification in miRNA processing, but its role in the development of emphysema remains unclear. Here, we established that production of excess mature microRNA-93 (miR-93) in bronchial epithelial cells via enhanced m6A modification was mediated by overexpressed methyltransferase-like 3 (METTL3) induced by CS. Mature miR-93 was transferred from bronchial epithelial cells into macrophages by EVs. In macrophages, miR-93 activated the JNK pathway by targeting dual-specificity phosphatase 2 (DUSP2), which elevated the levels of matrix metalloproteinase 9 (MMP9) and matrix metalloproteinase 12 (MMP12) and induced elastin degradation, leading to emphysema. These results demonstrate that METTL3-mediated formation of EV miR-93, facilitated by m6A, is implicated in the aberrant cross-talk of epithelium-macrophages, indicating that this process is involved in the smoking-related emphysema. EV miR-93 may use as a novel risk biomarker for CS-induced emphysema.
Collapse
Affiliation(s)
- Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Jing Zhao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tao Bian
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China. .,China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Carson C, Macias-Velasco JF, Gunawardana S, Miranda MA, Oyama S, St Pierre CL, Schmidt H, Wayhart JP, Lawson HA. Brown Adipose Expansion and Remission of Glycemic Dysfunction in Obese SM/J Mice. Cell Rep 2020; 33:108237. [PMID: 33027654 PMCID: PMC7594587 DOI: 10.1016/j.celrep.2020.108237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/09/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022] Open
Abstract
We leverage the SM/J mouse to understand glycemic control in obesity. High-fat-fed SM/J mice initially develop poor glucose homeostasis relative to controls. Strikingly, their glycemic dysfunction resolves by 30 weeks of age despite persistent obesity. The mice dramatically expand their brown adipose depots as they resolve glycemic dysfunction. This occurs naturally and spontaneously on a high-fat diet, with no temperature or genetic manipulation. Removal of the brown adipose depot impairs insulin sensitivity, indicating that the expanded tissue is functioning as an insulin-stimulated glucose sink. We describe morphological, physiological, and transcriptomic changes that occur during the brown adipose expansion and remission of glycemic dysfunction, and focus on Sfrp1 (secreted frizzled-related protein 1) as a compelling candidate that may underlie this phenomenon. Understanding how the expanded brown adipose contributes to glycemic control in SM/J mice will open the door for innovative therapies aimed at improving metabolic complications in obesity.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Subhadra Gunawardana
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Mario A Miranda
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Sakura Oyama
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Celine L St Pierre
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Jessica P Wayhart
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave., Saint Louis, MO 63108, USA.
| |
Collapse
|
21
|
Harris SE, Poolman TM, Arvaniti A, Cox RD, Gathercole LL, Tomlinson JW. The American lifestyle-induced obesity syndrome diet in male and female rodents recapitulates the clinical and transcriptomic features of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2020; 319:G345-G360. [PMID: 32755310 PMCID: PMC7509261 DOI: 10.1152/ajpgi.00055.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the progression to nonalcoholic steatohepatitis (NASH) and increased risk of hepatocellular carcinoma remain poorly understood. Additionally, there is increasing recognition of the extrahepatic manifestations associated with NAFLD and NASH. We demonstrate that intervention with the American lifestyle-induced obesity syndrome (ALIOS) diet in male and female mice recapitulates many of the clinical and transcriptomic features of human NAFLD and NASH. Male and female C57BL/6N mice were fed either normal chow (NC) or ALIOS from 11 to 52 wk and underwent comprehensive metabolic analysis throughout the duration of the study. From 26 wk, ALIOS-fed mice developed features of hepatic steatosis, inflammation, and fibrosis. ALIOS-fed mice also had an increased incidence of hepatic tumors at 52 wk compared with those fed NC. Hepatic transcriptomic analysis revealed alterations in multiple genes associated with inflammation and tissue repair in ALIOS-fed mice. Ingenuity Pathway Analysis confirmed dysregulation of metabolic pathways as well as those associated with liver disease and cancer. In parallel the development of a robust hepatic phenotype, ALIOS-fed mice displayed many of the extrahepatic manifestations of NAFLD, including hyperlipidemia, increased fat mass, sarcopenia, and insulin resistance. The ALIOS diet in mice recapitulates many of the clinical features of NAFLD and, therefore, represents a robust and reproducible model for investigating the pathogenesis of NAFLD and its progression.NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) affects 30% of the general population and can progress to nonalcoholic steatohepatitis (NASH) and potentially hepatocellular carcinoma. Preclinical models rely on mouse models that often display hepatic characteristics of NAFLD but rarely progress to NASH and seldom depict the multisystem effects of the disease. We have conducted comprehensive metabolic analysis of both male and female mice consuming a Western diet of trans fats and sugar, focusing on both their hepatic phenotype and extrahepatic manifestations.
Collapse
Affiliation(s)
- Shelley E. Harris
- 1Oxford Centre for Diabetes, Endocrinology and Metabolism, National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Toryn M. Poolman
- 1Oxford Centre for Diabetes, Endocrinology and Metabolism, National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Anastasia Arvaniti
- 1Oxford Centre for Diabetes, Endocrinology and Metabolism, National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, United Kingdom,2Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Roger D. Cox
- 3Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxford, United Kingdom
| | - Laura L. Gathercole
- 1Oxford Centre for Diabetes, Endocrinology and Metabolism, National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, United Kingdom,2Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Jeremy W. Tomlinson
- 1Oxford Centre for Diabetes, Endocrinology and Metabolism, National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Gonçalves NP, Jager SE, Richner M, Murray SS, Mohseni S, Jensen TS, Vaegter CB. Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy. Glia 2020; 68:2725-2743. [PMID: 32658363 DOI: 10.1002/glia.23881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy has an incidence as high as 50% of diabetic patients and is characterized by damage to neurons, Schwann cells and blood vessels within the peripheral nervous system. The low-affinity neurotrophin receptor p75 (p75NTR ), particularly expressed by the Schwann cells in the peripheral nerve, has previously been reported to play a role in developmental myelination and cell survival/death. Increased levels of p75NTR , in the endoneurium and plasma from diabetic patients and rodent models of disease, have been observed, proposing that this receptor might be involved in the pathogenesis of diabetic neuropathy. Therefore, in this study, we addressed this hypothesis by utilizing a mouse model of selective nerve growth factor receptor (Ngfr) deletion in Schwann cells (SC-p75NTR -KO). Electron microscopy of sciatic nerves from mice with high fat diet induced obesity demonstrated how loss of Schwann cell-p75NTR aggravated axonal atrophy and loss of C-fibers. RNA sequencing disclosed several pre-clinical signaling alterations in the diabetic peripheral nerves, dependent on Schwann cell p75NTR signaling, specially related with lysosome, phagosome, and immune pathways. Morphological and biochemical analyses identified abundant lysosomes and autophagosomes in the C-fiber axoplasm of the diabetic SC-p75NTR -KO nerves, which together with increased Cathepsin B protein levels corroborates gene upregulation from the phagolysosomal pathways. Altogether, this study demonstrates that Schwann cell p75NTR deficiency amplifies diabetic neuropathy disease by triggering overactivation of immune-related pathways and increased lysosomal stress.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| | - Sara E Jager
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Simon S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simin Mohseni
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Troels S Jensen
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark.,Department of Neurology and Danish Pain Research Center, Aarhus University, Aarhus C, Denmark
| | - Christian B Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
23
|
A novel chemotactic factor derived from the extracellular matrix protein decorin recruits mesenchymal stromal cells in vitro and in vivo. PLoS One 2020; 15:e0235784. [PMID: 32658899 PMCID: PMC7357784 DOI: 10.1371/journal.pone.0235784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Soft tissue is composed of cells surrounded by an extracellular matrix that is made up of a diverse array of intricately organized proteins. These distinct components work in concert to maintain homeostasis and respond to tissue damage. During tissue repair, extracellular matrix proteins and their degradation products are known to influence physiological processes such as angiogenesis and inflammation. In this study we developed a discovery platform using a decellularized extracellular matrix biomaterial to identify new chemotrophic factors derived from the extracellular matrix. An in vitro culture of RAW.264 macrophage cells with the biomaterial ovine forestomach matrix led to the identification of a novel ~12 kDa chemotactic factor, termed ‘MayDay’, derived from the N-terminal 31–188 sequence of decorin. The recombinant MayDay protein was shown to be a chemotactic agent for mesenchymal stromal cells in vitro and in vivo. We hypothesize that the macrophage-induced cleavage of decorin, via MMP-12, leads to the release of the chemotactic molecule MayDay, that in turn recruits cells to the site of damaged tissue.
Collapse
|
24
|
Yang M, Zhang X, Liu Q, Niu T, Jiang L, Li H, Kuang J, Qi C, Zhang Q, He X, Wang L, Li J. Knocking out matrix metalloproteinase 12 causes the accumulation of M2 macrophages in intestinal tumor microenvironment of mice. Cancer Immunol Immunother 2020; 69:1409-1421. [PMID: 32242260 DOI: 10.1007/s00262-020-02538-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
Abstract
MMP12 is mainly secreted by macrophages, is involved in macrophage development, and decomposes the extracellular matrix. Herein, we investigated whether macrophages would change in the intestinal tumor microenvironment after MMP12 knockout. ApcMin/+;MMP12-/-mice were obtained by crossbreeding ApcMin/+ mice with MMP12 knockout mice (MMP12-/- mice). The data showed that the number and volume of intestinal tumors were significantly increased in ApcMin/+;MMP12-/- mice compared with ApcMin/+ mice. Additionally, the tumor biomarkers CA19-9, CEA, and β-catenin appeared relatively early in intestinal tumors in ApcMin/+;MMP12-/- mice. The results demonstrated that knocking out MMP12 accelerated the tumor growth and pathological process. On further investigation of its mechanism, the proportions of M2 macrophages in the spleen and among peritoneal macrophages were significantly up-regulated in ApcMin/+;MMP12-/- mice. Expression of M2 macrophage-related genes was up-regulated in tumor and peritoneal macrophages. The M2-related cytokine levels of IL-4 and IL-13 were increased in the serum of ApcMin/+;MMP12-/-mice. In vitro, bone marrow-derived M2 macrophages were obtained by treating bone marrow cells with IL-4 and IL-13, and these M2 macrophages secreted cytokines being changed. This finding reveals the crucial role of MMP12 in macrophage development and provides a new target for the control of macrophage polarization. Knocking out MMP12 causes intestinal M2 macrophage accumulation in tumor microenvironment, promoting the growth of intestinal tumors in ApcMin/+ mice.
Collapse
Affiliation(s)
- Mingming Yang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Xiaohan Zhang
- Department of Pathology, Zhuhai Branch of Traditional Chinese Medicine Hospital of Guangdong Province, Zhuhai, 519015, China
| | - Qing Liu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ting Niu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Lingbi Jiang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Haobin Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jianbiao Kuang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Cuiling Qi
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jiangchao Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Bahadoran Z, Mirmiran P, Ghasemi A. Role of Nitric Oxide in Insulin Secretion and Glucose Metabolism. Trends Endocrinol Metab 2020; 31:118-130. [PMID: 31690508 DOI: 10.1016/j.tem.2019.10.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) contributes to carbohydrate metabolism and decreased NO bioavailability is involved in the development of type 2 diabetes mellitus (T2DM). NO donors may improve insulin signaling and glucose homeostasis in T2DM and insulin resistance (IR), suggesting the potential clinical importance of NO-based interventions. In this review, site-specific roles of the NO synthase (NOS)-NO pathway in carbohydrate metabolism are discussed. In addition, the metabolic effects of physiological low levels of NO produced by constitutive NOS (cNOS) versus pathological high levels of NO produced by inducible NOS (iNOS) in pancreatic β-cells, adipocytes, hepatocytes, and skeletal muscle cells are summarized. A better understanding of the NOS-NO system in the regulation of glucose homeostasis can hopefully facilitate the development of new treatments for T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int J Mol Sci 2019; 20:4888. [PMID: 31581657 PMCID: PMC6801592 DOI: 10.3390/ijms20194888] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is a network of different proteins and proteoglycans that controls differentiation, migration, repair, survival, and development, and it seems that its remodeling is required for healthy adipose tissue expansion. Obesity drives an excessive lipid accumulation in adipocytes, which provokes immune cells infiltration, fibrosis (an excess of deposition of ECM components such as collagens, elastin, and fibronectin) and inflammation, considered a consequence of local hypoxia, and ultimately insulin resistance. To understand the mechanism of this process is a challenge to treat the metabolic diseases. This review is focused at identifying the putative role of ECM in adipose tissue, describing its structure and components, its main tissue receptors, and how it is affected in obesity, and subsequently the importance of an appropriate ECM remodeling in adipose tissue expansion to prevent metabolic diseases.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- RG Adipocytes and metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany.
| | - Andrea Méndez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| |
Collapse
|
27
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Sharma Y, Ahmad A, Yavvari PS, Kumar Muwal S, Bajaj A, Khan F. Targeted SHP-1 Silencing Modulates the Macrophage Phenotype, Leading to Metabolic Improvement in Dietary Obese Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:626-636. [PMID: 31108319 PMCID: PMC6526246 DOI: 10.1016/j.omtn.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
Chronic over-nutrition promotes adipocyte hypertrophy that creates inflammatory milieu leading to macrophage infiltration and their phenotypic switching during obesity. The SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1) has been identified as an important player in inflammatory diseases involving macrophages. However, the role of SHP-1 in modulating the macrophage phenotype has not been elucidated yet. In the present work, we show that adipose tissue macrophage (ATM)-specific deletion of SHP-1 using glucan particle-loaded siRNA improves the metabolic phenotype in dietary obese insulin-resistant mice. The molecular mechanism involves AT remodeling via reducing crown-like structure formation and balancing the pro-inflammatory (M1) and anti-inflammatory macrophage (M2) population. Therefore, targeting ATM-specific SHP-1 using glucan-particle-loaded SHP-1 antagonists could be of immense therapeutic use for the treatment of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Yadhu Sharma
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | | | - Sandeep Kumar Muwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre of Biotechnology, Faridabad, Haryana 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre of Biotechnology, Faridabad, Haryana 121001, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Liu SL, Bajpai A, Hawthorne EA, Bae Y, Castagnino P, Monslow J, Puré E, Spiller KL, Assoian RK. Cardiovascular protection in females linked to estrogen-dependent inhibition of arterial stiffening and macrophage MMP12. JCI Insight 2019; 4:e122742. [PMID: 30626744 PMCID: PMC6485356 DOI: 10.1172/jci.insight.122742] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Arterial stiffening is a consequence of aging and a cholesterol-independent risk factor for cardiovascular disease (CVD). Arterial stiffening and CVD show a sex bias, with men more susceptible than premenopausal women. How arterial stiffness and sex interact at a molecular level to confer risk of CVD is not well understood. Here, we used the sexual dimorphism in LDLR-null mice to show that the protective effect of female sex on atherosclerosis is linked to reduced aortic stiffness and reduced expression of matrix metalloproteinase-12 (MMP12) by lesional macrophages. Deletion of MMP12 in LDLR-null mice attenuated the male sex bias for both arterial stiffness and atherosclerosis, and these effects occurred despite high serum cholesterol. Mechanistically, we found that oxidized LDL stimulates secretion of MMP12 in human as well as mouse macrophages. Estrogen antagonizes this effect by downregulating MMP12 expression. Our data support cholesterol-independent causal relationships between estrogen, oxidized LDL-induced secretion of macrophage MMP12, and arterial stiffness that protect against atherosclerosis in females and emphasize that reduced MMP12 functionality can confer atheroprotection to males.
Collapse
Affiliation(s)
- Shu-lin Liu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anamika Bajpai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Hawthorne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology and
| | - Yongho Bae
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paola Castagnino
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology and
| | - James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Richard K. Assoian
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Engineering MechanoBiology and
| |
Collapse
|
30
|
McGregor BA, Eid S, Rumora AE, Murdock B, Guo K, de Anda-Jáuregui G, Porter JE, Feldman EL, Hur J. Conserved Transcriptional Signatures in Human and Murine Diabetic Peripheral Neuropathy. Sci Rep 2018; 8:17678. [PMID: 30518872 PMCID: PMC6281650 DOI: 10.1038/s41598-018-36098-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes. In this study, we employed a systems biology approach to identify DPN-related transcriptional pathways conserved across human and various murine models. Eight microarray datasets on peripheral nerve samples from murine models of type 1 (streptozotocin-treated) and type 2 (db/db and ob/ob) diabetes of various ages and human subjects with non-progressive and progressive DPN were collected. Differentially expressed genes (DEGs) were identified between non-diabetic and diabetic samples in murine models, and non-progressive and progressive human samples using a unified analysis pipeline. A transcriptional network for each DEG set was constructed based on literature-derived gene-gene interaction information. Seven pairwise human-vs-murine comparisons using a network-comparison program resulted in shared sub-networks including 46 to 396 genes, which were further merged into a single network of 688 genes. Pathway and centrality analyses revealed highly connected genes and pathways including LXR/RXR activation, adipogenesis, glucocorticoid receptor signalling, and multiple cytokine and chemokine pathways. Our systems biology approach identified highly conserved pathways across human and murine models that are likely to play a role in DPN pathogenesis and provide new possible mechanism-based targets for DPN therapy.
Collapse
Affiliation(s)
- Brett A McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Stephanie Eid
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Benjamin Murdock
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Guillermo de Anda-Jáuregui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - James E Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
31
|
Plubell DL, Fenton AM, Wilmarth PA, Bergstrom P, Zhao Y, Minnier J, Heinecke JW, Yang X, Pamir N. GM-CSF driven myeloid cells in adipose tissue link weight gain and insulin resistance via formation of 2-aminoadipate. Sci Rep 2018; 8:11485. [PMID: 30065264 PMCID: PMC6068153 DOI: 10.1038/s41598-018-29250-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
In a GM-CSF driven myeloid cell deficient mouse model (Csf2−/−) that has preserved insulin sensitivity despite increased adiposity, we used unbiased three-dimensional integration of proteome profiles, metabolic profiles, and gene regulatory networks to understand adipose tissue proteome-wide changes and their metabolic implications. Multi-dimensional liquid chromatography mass spectrometry and extended multiplex mass labeling was used to analyze proteomes of epididymal adipose tissues isolated from Csf2+/+ and Csf2−/− mice that were fed low fat, high fat, or high fat plus cholesterol diets for 8 weeks. The metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, phospholipids, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet for both genotypes, while mice lacking Csf2 were protected from insulin resistance. Regardless of diet, 30 mostly mitochondrial, branch chain amino acids (BCAA), and lysine metabolism proteins were altered between Csf2−/− and Csf2+/+ mice (FDR < 0.05). Lack of GM-CSF driven myeloid cells lead to reduced adipose tissue 2-oxoglutarate dehydrogenase complex (DHTKD1) levels and subsequent increase in plasma 2-aminoadipate (2-AA) levels, both of which are reported to correlate with insulin resistance. Tissue DHTKD1 levels were >4-fold upregulated and plasma 2-AA levels were >2 fold reduced in Csf2−/− mice (p < 0.05). GM-CSF driven myeloid cells link peripheral insulin sensitivity to adiposity via lysine metabolism involving DHTKD1/2-AA axis in a diet independent manner.
Collapse
Affiliation(s)
- Deanna L Plubell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexandra M Fenton
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Paige Bergstrom
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jessica Minnier
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
32
|
Nakazeki F, Nishiga M, Horie T, Nishi H, Nakashima Y, Baba O, Kuwabara Y, Nishino T, Nakao T, Ide Y, Koyama S, Kimura M, Tsuji S, Sowa N, Yoshida S, Conway SJ, Yanagita M, Kimura T, Ono K. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep 2018; 8:8553. [PMID: 29867212 PMCID: PMC5986813 DOI: 10.1038/s41598-018-27009-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that the accumulation of macrophages as a result of obesity-induced adipose tissue hypoxia is crucial for the regulation of tissue fibrosis, but the molecular mechanisms underlying adipose tissue fibrosis are still unknown. In this study, we revealed that periostin (Postn) is produced at extraordinary levels by adipose tissue after feeding with a high-fat diet (HFD). Postn was secreted at least from macrophages in visceral adipose tissue during the development of obesity, possibly due to hypoxia. Postn-/- mice had lower levels of crown-like structure formation and fibrosis in adipose tissue and were protected from liver steatosis. These mice also showed amelioration in systemic insulin resistance compared with HFD-fed WT littermates. Mice deficient in Postn in their hematopoietic compartment also had lower levels of inflammation in adipose tissue, in parallel with a reduction in ectopic lipid accumulation compared with the controls. Our data indicated that the regulation of Postn in visceral fat could be beneficial for the maintenance of healthy adipose tissue in obesity.
Collapse
Affiliation(s)
- Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hitoo Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Satoshi Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masahiro Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shuhei Tsuji
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Naoya Sowa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Simon J Conway
- Herman B Wells Center for Pediatric Research, Indiana University of Medicine, Indianapolis, Indiana, USA
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
33
|
Hou HH, Wang HC, Cheng SL, Chen YF, Lu KZ, Yu CJ. MMP-12 activates protease-activated receptor-1, upregulates placenta growth factor, and leads to pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol 2018; 315:L432-L442. [PMID: 29722565 DOI: 10.1152/ajplung.00216.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Because of the expansion of aging and smoking populations, chronic obstructive pulmonary disease (COPD) is predicted to be the third leading cause of death worldwide in 2030. Therefore, it is pertinent to develop effective therapy to improve management for COPD. Cigarette smoke-mediated protease-antiprotease imbalance is a major pathogenic mechanism for COPD and results in massive pulmonary infiltration of neutrophils and macrophages, releasing excessive neutrophil elastase (NE) and matrix metalloproteinases (MMPs). Our previous studies indicated that placenta growth factor (PGF) and PGF-triggered downstream signaling molecules mediate NE-induced lung epithelial cell apoptosis, which is a major pathogenic mechanism for pulmonary emphysema. However, the relationship between MMP-directed COPD and PGF remains elusive. We hypothesize that MMPs may upregulate PGF expression and be involved in MMP-mediated pathogenesis of COPD. In this study, we demonstrate that only MMP-12 can increase the expression of PGF by increasing early-growth response protein 1 (Egr-1) level through the activation of protease-activated receptor 1 (PAR-1). The PGF-mediated downstream signaling molecules drive caspase-3 and caspase-9-dependent apoptosis in bronchial epithelial cells. Both the upregulation of PGF by MMP-12 and PGF downstream signaling molecules with pulmonary apoptosis and emphysema were also demonstrated in animals. Given these findings, we suggest that both human COPD-associated elastases, NE, and MMP-12, upregulate PGF expression and promote the progression of emphysema and COPD.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital , Taiwan.,Department of Chemical Engineering and Materials Science, Yuan-Ze University , Taiwan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Yunlin Branch , Taiwan
| | - Kai-Zen Lu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital , Taiwan.,Department of Internal Medicine, National Taiwan University, College of Medicine , Taiwan
| |
Collapse
|
34
|
Soler A, Hunter I, Joseph G, Hutcheson R, Hutcheson B, Yang J, Zhang FF, Joshi SR, Bradford C, Gotlinger KH, Maniyar R, Falck JR, Proctor S, Schwartzman ML, Gupte SA, Rocic P. Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol 2018; 117:88-99. [PMID: 29428638 PMCID: PMC5877315 DOI: 10.1016/j.yjmcc.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/08/2018] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
Arterial stiffness plays a causal role in development of systolic hypertension. 20-hydroxyeicosatetraeonic acid (20-HETE), a cytochrome P450 (CYP450)-derived arachidonic acid metabolite, is known to be elevated in resistance arteries in hypertensive animal models and loosely associated with obesity in humans. However, the role of 20-HETE in the regulation of large artery remodeling in metabolic syndrome has not been investigated. We hypothesized that elevated 20-HETE in metabolic syndrome increases matrix metalloproteinase 12 (MMP12) activation leading to increased degradation of elastin, increased large artery stiffness and increased systolic blood pressure. 20-HETE production was increased ~7 fold in large, conduit arteries of metabolic syndrome (JCR:LA-cp, JCR) vs. normal Sprague-Dawley (SD) rats. This correlated with increased elastin degradation (~7 fold) and decreased arterial compliance (~75% JCR vs. SD). 20-HETE antagonists blocked elastin degradation in JCR rats concomitant with blocking MMP12 activation. 20-HETE antagonists normalized, and MMP12 inhibition (pharmacological and MMP12-shRNA-Lnv) significantly improved (~50% vs. untreated JCR) large artery compliance in JCR rats. 20-HETE antagonists also decreased systolic (182 ± 3 mmHg JCR, 145 ± 3 mmHg JCR + 20-HETE antagonists) but not diastolic blood pressure in JCR rats. Whereas diastolic pressure was fully angiotensin II (Ang II)-dependent, systolic pressure was only partially Ang II-dependent, and large artery stiffness was Ang II-independent. Thus, 20-HETE-dependent regulation of systolic blood pressure may be a unique feature of metabolic syndrome related to high 20-HETE production in large, conduit arteries, which results in increased large artery stiffness and systolic blood pressure. These findings may have implications for management of systolic hypertension in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Jenny Yang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Frank Fan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Sachindra Raj Joshi
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Chastity Bradford
- Department of Biology, Tuskegee University, Tuskegee, AL 36088, United States
| | - Katherine H Gotlinger
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rachana Maniyar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - John R Falck
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
35
|
Hinder LM, Murdock BJ, Park M, Bender DE, O'Brien PD, Rumora AE, Hur J, Feldman EL. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: An inflammatory story. Exp Neurol 2018; 305:33-43. [PMID: 29550371 DOI: 10.1016/j.expneurol.2018.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
Diabetic peripheral neuropathy is the most common complication of diabetes and a source of considerable morbidity. Numerous molecular pathways are linked to neuropathic progression, but it is unclear whether these pathways are altered throughout the course of disease. Moreover, the methods by which these molecular pathways are analyzed can produce significantly different results; as such it is often unclear whether previously published pathways are viable targets for novel therapeutic approaches. In the current study we examine changes in gene expression patterns in the sciatic nerve (SCN) and dorsal root ganglia (DRG) of db/db diabetic mice at 8, 16, and 24 weeks of age using microarray analysis. Following the collection and verification of gene expression data, we utilized both self-organizing map (SOM) analysis and differentially expressed gene (DEG) analysis to detect pathways that were altered at all time points. Though there was some variability between SOM and DEG analyses, we consistently detected altered immune pathways in both the SCN and DRG over the course of disease. To support these results, we further used multiplex analysis to assess protein changes in the SCN of diabetic mice; we found that multiple immune molecules were upregulated at both early and later stages of disease. In particular, we found that matrix metalloproteinase-12 was highly upregulated in microarray and multiplex data sets suggesting it may play a role in disease progression.
Collapse
Affiliation(s)
- Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Diane E Bender
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
36
|
Correia CR, Gaifem J, Oliveira MB, Silvestre R, Mano JF. The influence of surface modified poly(l-lactic acid) films on the differentiation of human monocytes into macrophages. Biomater Sci 2018; 5:551-560. [PMID: 28128374 DOI: 10.1039/c6bm00920d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages play a crucial role in the biological performance of biomaterials, as key factors in defining the optimal inflammation-healing balance towards tissue regeneration and implant integration. Here, we investigate how different surface modifications performed on poly(l-lactic acid) (PLLA) films would influence the differentiation of human monocytes into macrophages. We tested PLLA films without modification, surface-modified by plasma treatment (pPLLA) or by combining plasma treatment with different coating materials, namely poly(l-lysine) and a series of proteins from the extracellular matrix: collagen I, fibronectin, vitronectin, laminin and albumin. While all the tested films are non-cytotoxic, differences in cell adhesion and morphology are observed. Monocyte-derived macrophages (MDM) present a more rounded shape in non-modified films, while a more elongated phenotype is observed containing filopodia-like and podosome-like structures in all modified films. No major differences are found for the expression of HLA-DR+/CD80+ and CD206+/CD163+ surface markers, as well as for the ability of MDM to phagocytize. Interestingly, MDM differentiated on pPLLA present the highest expression of MMP9. Upon differentiation, MDM in all surface modified films present lower amounts of IL-6 and IL-10 compared to non-modified films. After stimulating MDM with the potent pro-inflammatory agent LPS, pPLLA and poly(l-lysine) and fibronectin-modified films reveal a significant reduction in IL-6 secretion, while the opposite effect is observed with IL-10. Of note, in comparison to non-modified films, all surface modified films induce a significant reduction of the IL-6/IL-10 ratio, a valuable prognosticator of the pro- versus anti-inflammatory balance. These findings provide important insights into MDM-biomaterial interactions, while strengthening the need for designing immune-informed biomaterials.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Gaifem
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. and Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Mariana B Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ricardo Silvestre
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. and Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
37
|
Zhu Q, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol 2017; 14:105-120. [PMID: 29199276 DOI: 10.1038/nrneph.2017.157] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excess adiposity can induce adverse sequelae in multiple cell types and organ systems. The transition from the lean to the obese state is characterized by fundamental cellular changes at the level of the adipocyte. These changes affect the local microenvironment within the respective adipose tissue but can also affect nonadipose systems. Adipocytes within fat pads respond to chronic nutrient excess through hyperplasia or hypertrophy, which can differentially affect interorgan crosstalk between various adipose depots and other organs. This crosstalk is dependent on the unique ability of the adipocyte to coordinate metabolic adjustments throughout the body and to integrate responses to maintain metabolic homeostasis. These actions occur through the release of free fatty acids and metabolites during times of energy need - a process that is altered in the obese state. In addition, adipocytes release a wide array of signalling molecules, such as sphingolipids, as well as inflammatory and hormonal factors (adipokines) that are critical for interorgan crosstalk. The interactions of adipose tissue with the kidney - referred to as the adipo-renal axis - are important for normal kidney function as well as the response of the kidney to injury. Here, we discuss the mechanistic basis of this interorgan crosstalk, which clearly has great therapeutic potential given the increasing rates of chronic kidney disease secondary to obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA.,Touchstone Diabetes Center, Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8549, USA
| |
Collapse
|
38
|
Role of MMP-1 (-519A/G, -1607 1G/2G), MMP-3 (Lys45Glu), MMP-7 (-181A/G), and MMP-12 (-82A/G) Variants and Plasma MMP Levels on Obesity-Related Phenotypes and Microvascular Reactivity in a Tunisian Population. DISEASE MARKERS 2017; 2017:6198526. [PMID: 29317790 PMCID: PMC5727656 DOI: 10.1155/2017/6198526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/04/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022]
Abstract
Aims The impact of MMP-1 (-519A/G, -1607 1G/2G), MMP-3 Lys45Glu (A/G), MMP-7 -181A/G, and MMP-12 -82A/G variants and plasma MMP levels on obesity and microvascular reactivity in Tunisians. Methods Our population included 202 nonobese and 168 obese subjects. Anthropometric, biochemical, and microvascular parameters were determined according to standard protocols. PCR-RFLP and ELISA were used to determine the genetic variants and levels of MMPs, respectively. Results The MMP-3 45Glu (G) allele associates with higher anthropometric values and MMP-3 levels compared to AA genotype carriers (BMI (kg/m2): 30 ± 0.51 versus 27.33 ± 0.8, P = 0.004; MMP-3 levels: 7.45 (4.77–11.91) versus 5.21 (3.60–10.21) ng/ml, P = 0.006). The MMP-12 -82G allele was also associated with higher BMI values when compared to subjects carrying the AA genotype (31.41 ± 0.85 versus 28.76 ± 0.43, P < 0.001). Individuals carrying the MMP-3 45G or MMP-12 -82G variants were also associated with a higher risk for severe forms of obesity (MMP-3: OR = 1.9, P = 0.002; MMP-12: OR = 2.63, P = 0.003). Similarly, the MMP-7 -181G allele was associated with a higher MMP-7 level and an increased risk for morbid obesity when compared to AA genotype carriers (0.32 (0.31–0.60) versus 0.18 (0.17–0.24) ng/ml, P = 0.01; OR = 1.67, P = 0.02, resp.). Conclusion MMP-3, MMP-7, and MMP-12 polymorphisms associate with obesity risk and its severity.
Collapse
|
39
|
Sakamuri SSVP, Watts R, Takawale A, Wang X, Hernandez-Anzaldo S, Bahitham W, Fernandez-Patron C, Lehner R, Kassiri Z. Absence of Tissue Inhibitor of Metalloproteinase-4 (TIMP4) ameliorates high fat diet-induced obesity in mice due to defective lipid absorption. Sci Rep 2017; 7:6210. [PMID: 28740132 PMCID: PMC5524827 DOI: 10.1038/s41598-017-05951-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/07/2017] [Indexed: 01/09/2023] Open
Abstract
Tissue inhibitor of metalloproteases (TIMPs) are inhibitors of matrix metalloproteinases (MMPs) that regulate tissue extracellular matrix (ECM) turnover. TIMP4 is highly expressed in adipose tissue, its levels are further elevated following high-fat diet, but its role in obesity is unknown. Eight-week old wild-type (WT) and Timp4-knockout (Timp4 -/-) mice received chow or high fat diet (HFD) for twelve weeks. Timp4 -/- mice exhibited a higher food intake but lower body fat gain. Adipose tissue of Timp4 -/- -HFD mice showed reduced hypertrophy and fibrosis compared to WT-HFD mice. Timp4 -/- -HFD mice were also protected from HFD-induced liver and skeletal muscle triglyceride accumulation and dyslipidemia. Timp4 -/--HFD mice exhibited reduced basic metabolic rate and energy expenditure, but increased respiratory exchange ratio. Increased free fatty acid excretion was detected in Timp4 -/--HFD compared to WT-HFD mice. CD36 protein, the major fatty acid transporter in the small intestine, increased with HFD in WT but not in Timp4 -/- mice, despite a similar rise in Cd36 mRNA in both genotypes. Consistently, HFD increased enterocyte lipid content only in WT but not in Timp4 -/- mice. Our study reveals that absence of TIMP4 can impair lipid absorption and the high fat diet-induced obesity in mice possibly by regulating the proteolytic processing of CD36 protein in the intestinal enterocytes.
Collapse
Affiliation(s)
- Siva S V P Sakamuri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Abhijit Takawale
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiuhua Wang
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Samuel Hernandez-Anzaldo
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wesam Bahitham
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
40
|
Lv FZ, Wang JL, Wu Y, Chen HF, Shen XY. Knockdown of MMP12 inhibits the growth and invasion of lung adenocarcinoma cells. Int J Immunopathol Pharmacol 2017; 28:77-84. [PMID: 25816409 DOI: 10.1177/0394632015572557] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Matrix metalloproteinase-12 (MMP12) is involved in many pathological processes including cancer. The expression and function of MMP12 in lung adenocarcinoma (LAC) remain unclear. The present study aimed to investigate the correlation of MMP12 expression with LAC patients and clarify its role in growth and invasion of LAC cells. The expression of MMP12 in human LAC was examined by immunohistochemical assay using a tissue microarray procedure. A loss-of-function experiment was used for observing the effects of lentiviral vector-mediated MMP12 shRNA (shMMP12) on cell growth and invasion in LAC cell lines (A549), indicated by MTT and Transwell assays. We found that the expression of MMP12 protein was significantly increased in LAC tissues compared with that in adjacent non-cancerous tissues (ANCT) (57.69% vs. 32.69%, P = 0.019), and was closely correlated with the pathological stage and lymph node metastasis of LAC patients (P = 0.01; P = 0.003). Knockdown of MMP12 inhibited proliferation and invasion of LAC cells followed by the downregulation of proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF). In conclusion, our findings show that high expression of MMP12 is correlated with the pathological stage and tumor metastasis of LAC patients, and knockdown of MMP12 suppresses the development of LAC cells, suggesting that MMP12 may be a promising therapeutic target for the treatment of LAC.
Collapse
Affiliation(s)
- F-Z Lv
- Department of Thoracic Surgery, The Huadong Hospital, Shanghai Fudan University, Shanghai, PR China
| | - J-L Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Y Wu
- Department of Thoracic Surgery, The Huadong Hospital, Shanghai Fudan University, Shanghai, PR China
| | - H-F Chen
- Department of Respiration medicine, The Huadong Hospital, Shanghai Fudan University, Shanghai, PR China
| | - X-Y Shen
- Department of Thoracic Surgery, The Huadong Hospital, Shanghai Fudan University, Shanghai, PR China
| |
Collapse
|
41
|
Plubell DL, Wilmarth PA, Zhao Y, Fenton AM, Minnier J, Reddy AP, Klimek J, Yang X, David LL, Pamir N. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. Mol Cell Proteomics 2017; 16:873-890. [PMID: 28325852 DOI: 10.1074/mcp.m116.065524] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/28/2017] [Indexed: 01/17/2023] Open
Abstract
The lack of high-throughput methods to analyze the adipose tissue protein composition limits our understanding of the protein networks responsible for age and diet related metabolic response. We have developed an approach using multiple-dimension liquid chromatography tandem mass spectrometry and extended multiplexing (24 biological samples) with tandem mass tags (TMT) labeling to analyze proteomes of epididymal adipose tissues isolated from mice fed either low or high fat diet for a short or a long-term, and from mice that aged on low versus high fat diets. The peripheral metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet and advancing age, with long-term high fat diet exposure being the worst. In response to short-term high fat diet, 43 proteins representing lipid metabolism (e.g. AACS, ACOX1, ACLY) and red-ox pathways (e.g. CPD2, CYP2E, SOD3) were significantly altered (FDR < 10%). Long-term high fat diet significantly altered 55 proteins associated with immune response (e.g. IGTB2, IFIT3, LGALS1) and rennin angiotensin system (e.g. ENPEP, CMA1, CPA3, ANPEP). Age-related changes on low fat diet significantly altered only 18 proteins representing mainly urea cycle (e.g. OTC, ARG1, CPS1), and amino acid biosynthesis (e.g. GMT, AKR1C6). Surprisingly, high fat diet driven age-related changes culminated with alterations in 155 proteins involving primarily the urea cycle (e.g. ARG1, CPS1), immune response/complement activation (e.g. C3, C4b, C8, C9, CFB, CFH, FGA), extracellular remodeling (e.g. EFEMP1, FBN1, FBN2, LTBP4, FERMT2, ECM1, EMILIN2, ITIH3) and apoptosis (e.g. YAP1, HIP1, NDRG1, PRKCD, MUL1) pathways. Using our adipose tissue tailored approach we have identified both age-related and high fat diet specific proteomic signatures highlighting a pronounced involvement of arginine metabolism in response to advancing age, and branched chain amino acid metabolism in early response to high fat feeding. Data are available via ProteomeXchange with identifier PXD005953.
Collapse
Affiliation(s)
- Deanna L Plubell
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Phillip A Wilmarth
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Yuqi Zhao
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Alexandra M Fenton
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Jessica Minnier
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Ashok P Reddy
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - John Klimek
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Xia Yang
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Larry L David
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Nathalie Pamir
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon;
| |
Collapse
|
42
|
The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:221-245. [PMID: 28585201 DOI: 10.1007/978-3-319-48382-5_9] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Optical imaging of MMP-12 active form in inflammation and aneurysm. Sci Rep 2016; 6:38345. [PMID: 27917892 PMCID: PMC5137160 DOI: 10.1038/srep38345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteinase (MMP)-12 plays a key role in the development of aneurysm. Like other members of MMP family, MMP-12 is produced as a proenzyme, mainly by macrophages, and undergoes proteolytic activation to generate an active form. Accordingly, molecular imaging of the MMP-12 active form can inform of the pathogenic process in aneurysm. Here, we developed a novel family of fluorescent probes based on a selective MMP-12 inhibitor, RXP470.1 to target the active form of MMP-12. These probes were stable in complex media and retained the high affinity and selectivity of RXP470.1 for MMP-12. Amongst these, probe 3 containing a zwitterionic fluorophore, ZW800-1, combined a favorable affinity profile toward MMP-12 and faster blood clearance. In vivo binding of probe 3 was observed in murine models of sterile inflammation and carotid aneurysm. Binding specificity was demonstrated using a non-binding homolog. Co-immunostaining localized MMP-12 probe binding to MMP-12 positive areas and F4/80 positive macrophages in aneurysm. In conclusion, the active form of MMP-12 can be detected by optical imaging using RXP470.1-based probes. This is a valuable adjunct for pathophysiology research, drug development, and potentially clinical applications.
Collapse
|
44
|
Grasys J, Kim BS, Pallua N. Content of Soluble Factors and Characteristics of Stromal Vascular Fraction Cells in Lipoaspirates from Different Subcutaneous Adipose Tissue Depots. Aesthet Surg J 2016; 36:831-41. [PMID: 26906346 DOI: 10.1093/asj/sjw022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although fat grafting has emerged as a major force in plastic, reconstructive, and aesthetic surgery, some questions regarding its reliability and regenerative potential remain unanswered. OBJECTIVES The authors examined the influence of three anatomic areas on various lipoaspirate properties to identify the most appropriate harvest site for fat-grafting procedures. METHODS Lipoaspirates from 25 healthy patients were harvested from the abdomen, inner thigh, and knee. The authors measured the content of soluble factors in the lipoaspirate followed by the assessment of the yield, adipogenic differentiation, proliferation of stromal vascular fraction (SVF) cells, and the percentage of adipose-derived stem cells (ASC) in the SVF. The results also were correlated with the age and body mass index of the donors. RESULTS Lipoaspirates from the abdomen showed significantly higher concentrations of matrix metalloproteinase (MMP)-9 compared with the knee. The content of basic fibroblast growth factor (b-FGF), platelet-derived growth factor (PDGF)-BB, and insulin-like growth factor (IGF)-1 tended to be highest in the abdomen but did not reach statistical significance. Vascular endothelial growth factor (VEGF)-A and bFGF-2 contents both correlated negatively with age in lipoaspirates from at least two different anatomic areas. CONCLUSIONS The authors' results indicate that the abdomen may be a slight favorite over the inner thigh and knee because of its richer content of soluble factors. However, because only the difference of MMP-9 content actually reached statistical significance and because no differences in SVF characteristics were observed, a decision primarily based on other criteria appears to be justifiable.
Collapse
Affiliation(s)
- Justinas Grasys
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bong-Sung Kim
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Norbert Pallua
- From the Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
45
|
Amor M, Moreno Viedma V, Sarabi A, Grün NG, Itariu B, Leitner L, Steiner I, Bilban M, Kodama K, Butte AJ, Staffler G, Zeyda M, Stulnig TM. Identification of matrix metalloproteinase-12 as a candidate molecule for prevention and treatment of cardiometabolic disease. Mol Med 2016; 22:487-496. [PMID: 27385318 DOI: 10.2119/molmed.2016.00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
Obesity is strongly associated with metabolic syndrome, a combination of risk factors that predispose to the development of the cardiometabolic diseases: atherosclerotic cardiovascular disease and type 2 diabetes mellitus. Prevention of metabolic syndrome requires novel interventions to address this health challenge. The objective of this study was the identification of candidate molecules for the prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie type 2 diabetes mellitus and cardiovascular disease, respectively. We used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining murine and human data from a microarray experiment and meta-analyses. We obtained a pool of eight genes that were upregulated in all the databases analysed. This included well known and novel molecules involved in the pathophysiology of type 2 diabetes mellitus and cardiovascular disease. Notably, matrix metalloproteinase 12 (MMP12) was highly ranked in all analyses and was therefore chosen for further investigation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of MMP12 in obesity at mRNA, protein and activity levels. In conclusion, using this unbiased approach an interesting pool of candidate molecules was identified, all of which have potential as targets in the treatment and prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- M Amor
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - V Moreno Viedma
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - A Sarabi
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - N G Grün
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - B Itariu
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - L Leitner
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - I Steiner
- Center for Medical Statistics, Informatics, and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Austria
| | - M Bilban
- Core Facility Genomics, Core Facilities, Medical University of Vienna, Vienna, Austria
| | - K Kodama
- Institute for Computational Health Sciences. University of California, San Francisco, EEUU
| | - A J Butte
- Institute for Computational Health Sciences. University of California, San Francisco, EEUU
| | | | - M Zeyda
- Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna
| | - T M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 2016; 119:8-16. [PMID: 27179976 DOI: 10.1016/j.bcp.2016.05.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- De Lin
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology & Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Li Kang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
47
|
Martinez-Santibanez G, Singer K, Cho KW, DelProposto JL, Mergian T, Lumeng CN. Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12. Adipocyte 2015; 4:264-72. [PMID: 26451282 DOI: 10.1080/21623945.2015.1027848] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 01/24/2023] Open
Abstract
The extracellular matrix (ECM) plays important roles in maintaining adequate adipose tissue function and in metabolic regulation. Here we have examined the organization of a relatively unexplored adipose tissue ECM component, elastin and its response to diet induced obesity in mice. Additionally, we have explored the regulation and requirement of macrophage metalloelastase, MMP-12, in adipose tissue ECM remodeling in obesity. In visceral fat depots, elastin fibers form a mesh-like net that becomes denser with diet-induced obesity. In contrast, the elastin fibers in subcutaneous adipose depots are more linear in organization, and are tightly associated with adipose tissue macrophages (ATMs). We found that Mmp12 is produced predominantly by ATMs and can be induced with both short- and long-term high fat diet challenge and rapid remodeling induced by lipolysis. This contrasts with Mmp14 and Timp1 which are further induced only after chronic obesity in non-ATM populations. We examined obese transgenic Mmp12 (-/-) mice and found an increase in gene expression of ECM genes with diet-induced obesity, but showed few significant differences in metabolic parameters, elastin matrix density, or in adipose tissue inflammation. Together, these studies reveal the architecture and diet-induced regulation of the elastin matrix and suggest that MMP-12 is not required for elastin matrix remodeling or for the metabolic dysfunction that occurs with obesity.
Collapse
|
48
|
Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat Med 2015; 21:610-8. [PMID: 25939064 DOI: 10.1038/nm.3829] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation of visceral adipose tissue correlates with elevated inflammation and increased risk of metabolic diseases. However, little is known about the molecular mechanisms that control its pathological expansion. Transcription factor interferon regulatory factor 5 (IRF5) has been implicated in polarizing macrophages towards an inflammatory phenotype. Here we demonstrate that mice lacking Irf5, when placed on a high-fat diet, show no difference in the growth of their epididymal white adipose tissue (epiWAT) but they show expansion of their subcutaneous white adipose tissue, as compared to wild-type (WT) mice on the same diet. EpiWAT from Irf5-deficient mice is marked by accumulation of alternatively activated macrophages, higher collagen deposition that restricts adipocyte size, and enhanced insulin sensitivity compared to epiWAT from WT mice. In obese individuals, IRF5 expression is negatively associated with insulin sensitivity and collagen deposition in visceral adipose tissue. Genome-wide analysis of gene expression in adipose tissue macrophages highlights the transforming growth factor β1 (TGFB1) gene itself as a direct target of IRF5-mediated inhibition. This study uncovers a new function for IRF5 in controlling the relative mass of different adipose tissue depots and thus insulin sensitivity in obesity, and it suggests that inhibition of IRF5 may promote a healthy metabolic state during this condition.
Collapse
|
49
|
Pamir N, Liu NC, Irwin A, Becker L, Peng Y, Ronsein GE, Bornfeldt KE, Duffield JS, Heinecke JW. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion. J Biol Chem 2015; 290:14656-67. [PMID: 25931125 DOI: 10.1074/jbc.m115.645820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 12/21/2022] Open
Abstract
The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2(-/-)) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2(-/-) mice had 75% fewer CD45(+)Cd11b(+)Cd11c(+)MHCII(+) F4/80(-) DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2(-/-) mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2(-/-) mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45(+)Cd11b(+)Cd11c(+)MHCII(+)F4/80(-) DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion.
Collapse
Affiliation(s)
| | | | | | - Lev Becker
- the Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | | | | | | | - Jeremy S Duffield
- the Division of Nephrology and Lung Biology, University of Washington, Seattle, Washington 98109-8050 and
| | | |
Collapse
|