1
|
Ip WH, Dobner T. Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 2019; 594:1848-1860. [PMID: 31821536 DOI: 10.1002/1873-3468.13717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.
Collapse
Affiliation(s)
- Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
2
|
Abstract
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function.
Collapse
|
3
|
Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci 2013; 3:18. [PMID: 23547658 PMCID: PMC3621685 DOI: 10.1186/2045-3701-3-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Nakahara-ku, Kosugi-cho, Kawasaki, Kanagawa, 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L. Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell Biosci 2012; 2:42. [PMID: 23256597 PMCID: PMC3562205 DOI: 10.1186/2045-3701-2-42] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 01/14/2023] Open
Abstract
Thyroid hormone (T3) plays diverse roles in adult organ function and during vertebrate development. The most important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks. Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3. The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors (TRs). Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3 signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene activation by liganded TR during vertebrate development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.
| | | | | | | | | |
Collapse
|
5
|
Miller MS, Mymryk JS. An unhealthy relationship: viral manipulation of the nuclear receptor superfamily. Future Microbiol 2011; 6:999-1019. [PMID: 21958141 DOI: 10.2217/fmb.11.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor (NR) superfamily is a diverse group of over 50 proteins whose function is to regulate the transcription of a vast array of cellular genes. These proteins are able to tune transcription over an extremely dynamic range due to the fact that they may act as either transcriptional activators or repressors depending on promoter context and ligand status. Due to these unique properties, diverse families of viruses have evolved strategies to exploit NRs in order to regulate expression of their own genes and to optimize the cellular milieu to facilitate the viral lifecycle. While the specific NRs targeted by these viruses vary, the strategies used to target them are common. This is accomplished at the cis-level by incorporation of nuclear receptor response elements into the viral genome and at the trans-level by viral proteins that target NRs directly or indirectly to modulate their function. The specific NR(s) targeted by a particular virus are likely to be reflective of the tissue tropism of the virus in question. Thus, the essential role played by NRs in the replication cycles of such diverse viruses underscores the importance of understanding their functions in the context of specific infections. This knowledge will allow appropriate considerations to be made when treating infected individuals with hormone-associated diseases and will potentially assist in the rational design of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Matthew S Miller
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
6
|
Das B, Matsuda H, Fujimoto K, Sun G, Matsuura K, Shi YB. Molecular and genetic studies suggest that thyroid hormone receptor is both necessary and sufficient to mediate the developmental effects of thyroid hormone. Gen Comp Endocrinol 2010; 168:174-80. [PMID: 20138179 PMCID: PMC3426277 DOI: 10.1016/j.ygcen.2010.01.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/12/2010] [Accepted: 01/31/2010] [Indexed: 01/14/2023]
Abstract
Thyroid hormone (TH) affects diverse biological processes and can exert its effects through both gene regulation via binding the nuclear TH receptors (TRs) and non-genomic actions via binding to cell surface and cytoplasmic proteins. The critical importance of TH in vertebrate development has long been established, ranging from the formation of human cretins to the blockage of frog metamorphosis due the TH deficiency. How TH affects vertebrate development has been difficult to study in mammals due to the complications associated with the uterus-enclosed mammalian embryos. Anuran metamorphosis offers a unique opportunity to address such an issue. Using Xenopus as a model, we and others have shown that the expression of TRs and their heterodimerization partners RXRs (9-cis retinoic acid receptors) correlates temporally with metamorphosis in different organs in two highly related species, Xenopuslaevis and Xenopus tropicalis. In vivo molecular studies have shown that TR and RXR are bound to the TH response elements (TREs) located in TH-inducible genes in developing tadpoles of both species. More importantly, transgenic studies in X. laevis have demonstrated that TR function is both necessary and sufficient for mediating the metamorphic effects of TH. Thus, the non-genomic effects of TH have little or no roles during metamorphosis and likely during vertebrate development in general.
Collapse
Affiliation(s)
- Biswajit Das
- Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, MD 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
7
|
Shi YB. Dual functions of thyroid hormone receptors in vertebrate development: the roles of histone-modifying cofactor complexes. Thyroid 2009; 19:987-99. [PMID: 19678741 PMCID: PMC2833175 DOI: 10.1089/thy.2009.0041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (TH) receptor (TR) plays critical roles in vertebrate development. Transcription studies have shown that TR activates or represses TH-inducible genes by recruiting coactivators or corepressors in the presence or absence of TH, respectively. However, the developmental roles of these TR cofactors remain largely unexplored. Frog metamorphosis is totally dependent on TH and mimics the postembryonic period in mammalian development during which TH levels are also high. We have previously proposed a dual function model for TR in the development of the anuran Xenopus laevis. That is, unliganded TR recruits corepressors to TH-inducible genes in premetamorphic tadpoles to repress these genes and prevent premature metamorphic changes and subsequently, when TH becomes available, liganded TR recruits coactivators to activate these same genes, leading to metamorphosis. Over the years, we and others have used molecular and genetic approaches to demonstrate the importance of the dual functions of TR in Xenopus laevis. In particular, unliganded TR has been shown to recruit histone deacetylase-containing corepressor complexes in premetamorphic tadpoles to control metamorphic timing. In contrast, metamorphosis requires TH-bound TR to recruit coactivator complexes containing histone acetyltransferases and methyltransferases to activate transcription. Furthermore, the concentrations of coactivators appear to regulate the rate of metamorphic progression. Studies in mammals also suggest that the dual function model for TR is conserved across vertebrates.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
8
|
Sato Y, Ding A, Heimeier RA, Yousef AF, Mymryk JS, Walfish PG, Shi YB. The adenoviral E1A protein displaces corepressors and relieves gene repression by unliganded thyroid hormone receptors in vivo. Cell Res 2009; 19:783-92. [PMID: 19434099 DOI: 10.1038/cr.2009.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human adenovirus type 5 early region 1A (E1A) is one of two oncogenes present in the adenovirus genome and functions by interfering with the activities of cellular regulatory proteins. The E1A gene is alternatively spliced to yield five products. Earlier studies have revealed that E1A can regulate the function of thyroid hormone (T3) receptors (TRs). However, analysis in yeast compared with transfection studies in mammalian cell cultures yields surprisingly different effects. Here, we have examined the effect of E1A on TR function by using the frog oocyte in vivo system, where the effects of E1A can be studied in the context of chromatin. We demonstrate that different isoforms of E1A have distinct effects on TR function. The two longest forms inhibit both the repression by unliganded TR and activation by T3-bound TR. We further show that E1A binds to unliganded TR to displace the endogenous corepressor nuclear receptor corepressor, thus relieving the repression by unliganded TR. On the other hand, in the presence of T3, E1A inhibits gene activation by T3-bound TR indirectly, through a mechanism that requires its binding domain for the general coactivator p300. Taken together, our results thus indicate that E1A affects TR function through distinct mechanisms that are dependent upon the presence or absence of T3.
Collapse
Affiliation(s)
- Yukiyasu Sato
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, PCRM, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J Virol 2008; 82:7252-63. [PMID: 18385237 DOI: 10.1128/jvi.00104-08] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
10
|
Vargas D, Celis L, Romero C, Lizcano F. Modulation of thyroid hormone receptor transactivation by the early region 1A (E1A)-like inhibitor of differentiation 1 (EID1). Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Meng X, Webb P, Yang YF, Shuen M, Yousef AF, Baxter JD, Mymryk JS, Walfish PG. E1A and a nuclear receptor corepressor splice variant (N-CoRI) are thyroid hormone receptor coactivators that bind in the corepressor mode. Proc Natl Acad Sci U S A 2005; 102:6267-72. [PMID: 15849266 PMCID: PMC1088377 DOI: 10.1073/pnas.0501491102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unliganded thyroid hormone (TH) receptors (TRs) and other nuclear receptors (NRs) repress transcription of hormone-activated genes by recruiting corepressors (CoRs), such as NR CoR (N-CoR) and SMRT. Unliganded TRs also activate transcription of TH-repressed genes. Some evidence suggests that these effects also involve TR/CoR contacts; however, the precise reasons that CoRs activate transcription in these contexts are obscure. Unraveling these mechanisms is complicated by the fact that it is difficult to decipher direct vs. indirect effects of TR-coregulator contacts in mammalian cells. In this study, we used yeast, Saccharomyces cerevisiae, which lack endogenous NRs and NR coregulators, to determine how unliganded TRs can activate transcription. We previously showed that adenovirus 5 early-region 1A coactivates unliganded TRs in yeast, and that these effects are blocked by TH. We show here that human adenovirus type 5 early region 1A (E1A) contains a short peptide (LDQLIEEVL amino acids 20-28) that resembles CoR-NR interaction motifs (CoRNR boxes), and that this motif is required for TR binding and coactivation. Although full-length N-CoR does not coactivate TR in yeast, a naturally occurring N-CoR variant (N-CoR(I)) and an artificial N-CoR truncation (N-CoR(C)) that retain CoRNR boxes but lack N-terminal repressor domains behave as potent and direct TH-repressed coactivators for unliganded TRs. We conclude that E1A and N-CoR(I) are naturally occurring TR coactivators that bind in the typical CoR mode and suggest that similar factors could mediate transcriptional activation by unliganded TRs in mammals.
Collapse
Affiliation(s)
- Xianwang Meng
- Department of Medicine, Endocrine Division, Mount Sinai Hospital, University of Toronto Medical School, Toronto, ON, Canada M5G 1X5
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
13
|
Mouillet JF, Sonnenberg-Hirche C, Yan X, Sadovsky Y. p300 regulates the synergy of steroidogenic factor-1 and early growth response-1 in activating luteinizing hormone-beta subunit gene. J Biol Chem 2003; 279:7832-9. [PMID: 14681221 DOI: 10.1074/jbc.m312574200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tight regulation of luteinizing hormone-beta subunit (LHbeta) expression is critical for differentiation and maturation of mammalian sexual organs and reproductive function. Two transcription factors, steroidogenic factor-1 (SF-1) and early growth response-1 (Egr-1), play a central role in activating LHbeta promoter, and the synergy between these two factors is essential in mediating gonadotropin-releasing hormone stimulation of LHbeta promoter. Here we demonstrate that the transcriptional co-activator p300 regulates this synergy. Overexpression of p300 results in strong stimulation of LHbeta promoter but only in the presence of both SF-1 and Egr-1, and not in the presence of other Egr proteins. Mutation of the binding sites for either SF-1 or Egr-1 completely abolishes the synergy between these two factors, as well as the influence of p300. Importantly, LHbeta promoter is precipitated using p300 antibodies in a chromatin immunoprecipitation assay with LbetaT2 gonadotropes, and this effect is enhanced by gonadotropin-releasing hormone. The influence of p300 on LHbeta promoter is potentiated by steroid receptor co-activator, as well as by E1A proteins, and attenuated by Smad nuclear interacting protein 1. Taken together, these results suggest that p300 is recruited to LHbeta promoter where it coordinates the functional synergy between SF-1 and Egr-1.
Collapse
Affiliation(s)
- Jean-François Mouillet
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
14
|
Nygård M, Wahlström GM, Gustafsson MV, Tokumoto YM, Bondesson M. Hormone-dependent repression of the E2F-1 gene by thyroid hormone receptors. Mol Endocrinol 2003; 17:79-92. [PMID: 12511608 DOI: 10.1210/me.2002-0107] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone induces differentiation of many different tissues in mammals, birds, and amphibians. The different tissues all differentiate from proliferating precursor cells, and the normal cell cycle is suspended while cells undergo differentiation. We have investigated how thyroid hormone affects the expression of the E2F-1 protein, a key transcription factor that controls G1- to S-phase transition. We show that during thyroid hormone-induced differentiation of embryonic carcinoma cells and of oligodendrocyte precursor cells, the levels of E2F-1 mRNA and E2F-1 protein decrease. This is caused by the thyroid hormone receptor (TR) regulating the transcription of the E2F-1 gene. The TR binds directly to a negative thyroid hormone response element, called the Z-element, in the E2F-1 promoter. When bound, the TR activates transcription in the absence of ligand but represses transcription in the presence of ligand. In addition, liganded TR represses transcription of the S-phase-specific DNA polymerase alpha, thymidine kinase, and dihydropholate reductase genes. These results suggest that thyroid hormone-induced withdrawal from the cell cycle takes place through the repression of S-phase genes. We suggest that this is an initial and crucial step in thyroid hormone-induced differentiation of precursor cells.
Collapse
Affiliation(s)
- Maria Nygård
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Zhang X, Grand RJA, McCabe CJ, Franklyn JA, Gallimore PH, Turnell AS. Transcriptional regulation of the human glycoprotein hormone common alpha subunit gene by cAMP-response-element-binding protein (CREB)-binding protein (CBP)/p300 and p53. Biochem J 2002; 368:191-201. [PMID: 12164786 PMCID: PMC1222971 DOI: 10.1042/bj20020634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Revised: 08/05/2002] [Accepted: 08/07/2002] [Indexed: 12/13/2022]
Abstract
We have investigated the functional interactions between adenovirus early region 1A (AdE1A) protein, the co-activators cAMP-response-element-binding protein (CREB)-binding protein (CBP)/p300 and SUG1, and the transcriptional repressor retinoblastoma (Rb) in mediating T3-dependent repression. Utilizing the human glycoprotein hormone common alpha-subunit (alpha-subunit) promoter and AdE1A mutants with selective binding capacity to these molecules we have determined an essential role for CBP/p300. In normal circumstances, wild-type 12 S AdE1A inhibited alpha-subunit activity. In contrast, adenovirus mutants that retain both the SUG1- and Rb-binding sites, but lack the CBP/p300-binding site, were unable to repress promoter activity. We have also identified a role for the tumour-suppressor gene product p53 in regulation of the alpha-subunit promoter. Akin to 12 S AdE1A, exogenous p53 expression repressed alpha-subunit activity. This function resided in the ability of p53 to interact with CBP/p300; an N-terminal mutant incapable of interacting with CBP/p300 did not inhibit alpha-subunit activity. Stabilization of endogenous p53 by UV irradiation also correlated positively with reduced alpha-subunit activity. Intriguingly, T3 stimulated endogenous p53 transcriptional activity, implicating p53 in T3-dependent signalling pathways. These data indicate that CBP/p300 and p53 are key regulators of alpha-subunit activity.
Collapse
Affiliation(s)
- Xian Zhang
- Cancer Research U.K. Institute for Cancer Studies, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The adenovirus early region 1A (E1A) proteins were described originally as immortalizing oncoproteins that altered transcription in rodent cells. Surprisingly, the 243-amino-acid form of adenovirus-5 E1A was found subsequently to reverse-transform many human tumour cells. Tumour suppression apparently results from the ability of E1A to re-programme transcription in tumour cells, and the molecular basis of this intriguing effect is now beginning to emerge. These discoveries have provided a tool with which to study the regulation of fundamental cellular processes.
Collapse
Affiliation(s)
- Steven M Frisch
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
17
|
Soeth E, Thurber DB, Smith CL. The viral transactivator E1A regulates the mouse mammary tumor virus promoter in an isoform- and chromatin-specific manner. J Biol Chem 2002; 277:19847-54. [PMID: 11909860 DOI: 10.1074/jbc.m200629200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins encoded by the adenovirus E1A gene regulate both cellular and viral genes to mediate effects on cell cycle, differentiation, and cell growth control. We have identified the mouse mammary tumor virus (MMTV) promoter as a target of E1A action and investigated the role nucleoprotein structure plays in its response to E1A. Both 12 and 13 S forms target the MMTV promoter when it has a disorganized and accessible chromatin configuration. However, whereas the 13 S form is stimulatory, the 12 S form is repressive. When the MMTV promoter adopts an organized and repressed chromatin structure, it is targeted only by the 13 S form, which stimulates it. Although evidence indicates that E1A interacts with the SWI/SNF remodeling complex, E1A had no effect on chromatin remodeling at the MMTV promoter in organized chromatin. Analysis of E1A mutants showed that stimulation of the MMTV promoter is mediated solely through conserved region 3 and does not require interaction with Rb, p300/CBP-associated factor, or CBP/p300. Imaging analysis showed that E1A colocalizes with MMTV sequences in vivo, suggesting that it functions directly at the promoter. These results indicate that E1A stimulates the MMTV promoter in a fashion independent of chromatin conformation and through a direct mechanism involving interaction with the basal transcription machinery.
Collapse
Affiliation(s)
- Edlyn Soeth
- Signal Transduction Group, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
18
|
Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. J Neurosci 2002. [PMID: 11739587 DOI: 10.1523/jneurosci.21-24-09792.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The deafness caused by early onset hypothyroidism indicates that thyroid hormone is essential for the development of hearing. We investigated the underlying roles of the TRalpha1 and TRbeta thyroid hormone receptors in the auditory system using receptor-deficient mice. TRalpha1 and TRbeta, which act as hormone-activated transcription factors, are encoded by the Thra and Thrb genes, respectively, and both are expressed in the developing cochlea. TRbeta is required for hearing because TRbeta-deficient (Thrb(tm1/tm1)) mice have a defective auditory-evoked brainstem response and retarded expression of a potassium current (I(K,f)) in the cochlear inner hair cells. Here, we show that although TRalpha1 is individually dispensable, TRalpha1 and TRbeta synergistically control an extended array of functions in postnatal cochlear development. Compared with Thrb(tm1/tm1) mice, the deletion of all TRs in Thra(tm1/tm1)Thrb(tm1/tm1) mice produces exacerbated and novel phenotypes, including delayed differentiation of the sensory epithelium, malformation of the tectorial membrane, impairment of electromechanical transduction in outer hair cells, and a low endocochlear potential. The induction of I(K,f) in inner hair cells was not markedly more retarded than in Thrb(tm1/tm1) mice, suggesting that this feature of hair cell maturation is primarily TRbeta-dependent. These results indicate that distinct pathways mediated by TRbeta alone or by TRbeta and TRalpha1 together facilitate control over an extended range of functions during the maturation of the cochlea.
Collapse
|
19
|
Castro DS, Arvidsson M, Bondesson Bolin M, Perlmann T. Activity of the Nurr1 carboxyl-terminal domain depends on cell type and integrity of the activation function 2. J Biol Chem 1999; 274:37483-90. [PMID: 10601324 DOI: 10.1074/jbc.274.52.37483] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nurr1, a member of the nuclear hormone receptor superfamily, was recently demonstrated to be of critical importance in the developing central nervous system, where it is required for the generation of midbrain dopamine cells. Nuclear receptors encompass a transcriptional activation function (activation function 2; AF2) within their carboxyl-terminal domains important for ligand-induced transcriptional activation. Since a Nurr1 ligand remains to be identified, the role of the Nurr1 AF2 region in transcriptional activation is unclear. However, here we show that the Nurr1 AF2 contributes to constitutive activation independent of exogenously added ligands in human embryo kidney 293 cells and in neural cell lines. Extensive mutagenesis indicated a crucial role of the AF2 core region for transactivation but also identified unique features differing from previously characterized receptors. In addition, Nurr1 did not appear to interact with, and was not stimulated by, several previously identified coactivators such as the steroid receptor coactivator 1. In contrast, adenovirus protein E1A, stably expressed in 293 cells, was shown to contribute to AF2-dependent activation. Finally, while the AF2 core of RXR is required for ligand-induced transcriptional activation by Nurr1-RXR heterodimers, the functional integrity of Nurr1 AF2 core is not critical. These results establish that the ligand binding domain of Nurr1 has intrinsic capacity for transcriptional activation depending on cell type and mode of DNA binding. Furthermore, these results are consistent with the possibility that gene expression in the central nervous system can be modulated by an as yet unidentified ligand interacting with the ligand binding domain of Nurr1.
Collapse
Affiliation(s)
- D S Castro
- Ludwig Institute for Cancer Research, Stockholm Branch, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|